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Background: The b-lactam antibiotic piperacillin (in combination with tazobactam) is commonly chosen for
empirical treatment of suspected bacterial infections. However, pharmacokinetic variability among patient
populations and across ages leads to uncertainty when selecting a dosing regimen to achieve an appropriate
pharmacodynamic target.

Objectives: To guide dosing by establishing a population pharmacokinetic model for unbound piperacillin
in febrile children receiving cancer chemotherapy, and to assess pharmacokinetic/pharmacodynamic target
attainment (100% fT.1%MIC and 50% fT.4%MIC) and resultant exposure, across body weights.

Methods: Forty-three children admitted for 89 febrile episodes contributed 482 samples to the pharmacokinetic
analysis. The typical doses required for target attainment were compared for various dosing regimens, in particu-
lar prolonged infusions, across MICs and body weights.

Results: A two-compartment model with inter-fever-episode variability in CL, and body weight included through
allometry, described the data. A high CL of 15.4 L/h (70 kg) combined with high glomerular filtration rate (GFR)
values indicated rapid elimination and hyperfiltration. The target of 50% fT.4%MIC was achieved for an MIC of
4.0 mg/L in a typical patient with extended infusions of 2–3 (q6h) or 3–4 (q8h) h, at or below the standard adult
dose (75 and 100 mg/kg/dose for q6h and q8h, respectively). Higher doses or continuous infusion were needed
to achieve 100% fT.1%MIC due to the rapid piperacillin elimination.

Conclusions: The licensed dose for children with febrile neutropenia (80 mg/kg q6h as a 30 min infusion) per-
forms poorly for attainment of fT.MIC pharmacokinetic/pharmacodynamic targets. Given the population phar-
macokinetic profile, feasible dosing regimens with reasonable exposure are continuous infusion (100%
fT.1%MIC) or prolonged infusions (50% fT.4%MIC).

Introduction

The combination of fever and neutropenia in patients receiving
chemotherapy for treatment of cancer is an ominous warning of
serious infection and a major cause of morbidity, mortality and
increased costs due to hospitalization.1,2 Neutropenia, defined as
an absolute neutrophil count below 0.5%109 neutrophils/L, renders
the patient highly susceptible to infection. In such situations, mul-
tiple guidelines recommend administration of initial (empirical)

antibiotic therapy.3,4 While multiple factors come into play when
choosing an antibiotic (individual risk, infection history, renal
dysfunction and local epidemiology of bacterial pathogens and
antimicrobial resistance) a b-lactam antibiotic covering Gram-
negative bacteria is generally recommended.5

For antibiotic administration and resulting effectiveness
(pharmacodynamics), the pharmacokinetic behaviour, i.e. the
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shape of the concentration–time curve in the population of inter-
est, is important when choosing a dosing regimen. For b-lactams,
antibacterial activity is related to the time for which the free drug
concentration stays above the MIC (fT.MIC).6 In neutropenic ani-
mals, bacteriostasis is reached for dosing regimens with 35%–40%
fT.1%MIC, and near maximal effect is achieved at 60%–70%.6

Stricter targets of 100% fT.1%MIC or 50% fT.4%MIC are fre-
quently used,7 with therapeutic effect assumed to increase and
risk of resistance development to reduce.8 A common regimen is
administration by a short bolus-like infusion (SI), but extended in-
fusion (EI) and continuous infusion (CI) offer increased fT.MIC

9–11

(provided that concentrations are above the MIC in question).
While prolonged infusions may improve clinical outcomes such as
mortality,12 reduced tissue penetration has also been reported,13

and more evidence of impact on clinical outcomes is required.
It is important to define antibiotic pharmacokinetics in the target

population, as drug pharmacokinetics vary among individuals and
as disease may introduce pathophysiological changes that affect V
and/or the rate of elimination.14 Integration of plasma concentra-
tion samples from multiple individuals in a population pharmacoki-
netic model determines both typical behaviour and variability in
drug pharmacokinetics. This aids in identifying and quantifying how
pharmacokinetic parameters are related to patient covariates such
as age, body weight or kidney function.15 The impact of covariates
on the antibiotic concentration–time course can assist in optimizing
the starting dose, which can later be refined by further adjustment
according to therapeutic drug monitoring, if feasible.7

Piperacillin/tazobactam (ratio 8:1) is a b-lactam/b-lactamase
inhibitor combination with broad-spectrum antibacterial activity,
often administered as empirical treatment for bacterial infec-
tions.16 In adults, a dose of 4000 mg is normally administered
intermittently by SI three or four times daily, with a maximum
daily dose of 16000 mg. To reach comparable daily exposures (as
measured by the AUC), a dose of 100 mg/kg three times daily was
predicted to be required in children over 9 months of age suffering
from intra-abdominal infection.17 However, achieving similar daily
AUCs does not translate to the achievement of fT.MIC pharmaco-
dynamic targets, as the shape of the concentration–time profile
determines target attainment. Therefore, further investigation of
alternative dosing regimens is warranted.

The pharmacokinetics of piperacillin has been determined in
adults18,19 and children suffering from febrile neutropenia20 as well
as in children admitted to the ICU.21,22 The aim of this study was to
provide dosing recommendations for febrile children receiving can-
cer chemotherapy and assess the impact of pharmacodynamic tar-
gets on the dose required for target attainment across dosing
regimens. A sparse sampling design, where the time above a thresh-
old could be adequately determined by subsequent modelling, was
proposed using optimal design methodology and a population phar-
macokinetic model was developed based on the data gathered.

Patients and methods

Study design

The study was a prospective and descriptive study at the Department of
Pediatric Oncology, Aarhus University Hospital, Aarhus, Denmark, between
1 April 2016 and 31 January 2018 (EudraCT: 2016-00466-33). The Danish
Medicines Agency, The National Committee on Health Research Ethics
(ESDH: 1-10-72-342-15) and the Danish Data Protection Agency approved

the study. Informed consent was required, with parents or guardians
providing consent for children younger than 15 years of age.

Patient population
The study included children aged 6 months to 18 years suffering from can-
cer and chemotherapy-induced fever, who started empirical treatment
with piperacillin/tazobactam and had a central venous catheter available.
Fever was defined as presence of a single temperature measurement
above 38.0�C. Children could participate on more than one occasion in the
case of multiple febrile episodes. Children that were breastfed exclusively
or who had a central venous catheter from which blood sampling was not
feasible were excluded.

The following covariates were registered at each febrile episode:
body weight, height, age, sex, serum creatinine, type of cancer and
whether neutropenia (,0.5%109 neutrophils/L), severe neutropenia
(,0.1%109 neutrophils/L) or bacteraemia (yes/no) were present. Individual
glomerular filtration rate (GFR) was derived from serum creatinine meas-
urements using the Schwartz formula for children.23

Study drug and design for blood sample collection
Piperacillin/tazobactam (TazocinVR , ratio 8:1) was administered intravenously
as a 5 min SI approximately every 8 h. A daily piperacillin dose of 300 mg/kg
was administered across three doses and capped at 16000 mg correspond-
ing to the adult dose.

Sampling times were optimized in the PopED 2.13 optimal design tool24

given a prior piperacillin pharmacokinetic model for febrile paediatric
patients.20 The optimization focused on providing information on the popula-
tion pharmacokinetics and the individual fT.MIC, which are presented in
greater detail in Appendix S1 (available as Supplementary data at JAC Online)
and was similar to a previously described approach.25 Based on the prior
two-compartment model, fT.MIC was mainly determined by the terminal
elimination phase (b-parameter) and a design criterion was formulated that
enabled sampling time optimization for maximized precision in both primary
population pharmacokinetic parameters and the b-parameter.

Each patient had three blood samples drawn during two dosing inter-
vals (six blood samples per subject). Patients belonging to group A had
blood samples drawn at 10–30 min, 4–5 h and 7–8 h after drug administra-
tion, while patients in group B had blood samples drawn at 1.5–2 h, 4–5 h
and 7–8 h after administration, with additional samples taken on a con-
secutive day if possible. After samples from the first 12 patients (23 fever
episodes) were available, an interim evaluation led to an updated design
based on the patient population to date (see Supplementary data). As a re-
sult, the optimal sampling times for the two last samples were changed to
3.5–4.5 h and 6.5–7.5 h after drug administration for both groups. Exact
sampling times and piperacillin/tazobactam dosing history was registered
and implemented in the dataset.

UPLC
The free concentrations of piperacillin in sera were assessed using UPLC pre-
ceded by ultra-filtration (UHPLC, Agilent 1290, Agilent Technologies, USA),
described in detail previously.25,26 Intra-run (total) imprecisions (coefficient
of variation) were 10.2% (15.3%) at 4.5 mg/L and 4.7% (8.2%) at 15.6 mg/L.
The lower limit of quantification (LLOQ) was 0.5 mg/L.

Pharmacokinetic modelling
A population pharmacokinetic model was developed using NONMEM 7.4.3
(ICON Development Solutions, Gaithersburg, MD, USA)27 aided by Perl-
Speaks-NONMEM and Pira~na.28 Model parameters were estimated using
the Laplacian method with interaction and M329 for accurate consideration
of observations below the assay LLOQ. Statistical selection between two
nested models was made with a likelihood-ratio test of their objective
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function values (OFVs), assuming that the OFVs follow a v2 distribution (a
DOFV"#3.84 significant at P"0.05 for one additional parameter).
Additionally, residual goodness-of-fit plots and visual predictive checks
(VPCs)30 aided model selection and evaluation.

Model development assessed one- or two-compartment models and
included inter-individual variability (IIV) in parameters (with log-normally
distributed individual parameters). Inter-occasion variability (IOV) was
assessed with an occasion defined as a febrile episode. Furthermore, as the
study population consisted of children, body weight was expected to be a
key covariate to include early in model development in addition to assess-
ment of kidney maturation.31 This was in line with allometry, where the size
of a physiological process follows a power relationship to body weight, with
fixed exponents of 0.75 and 1.0 for CLs and Vs, respectively.32 Screening of
remaining covariates (age, GFR, sex, bacteraemia and neutropenia) was
done on pharmacokinetic parameters by means of stepwise covariate
modelling (SCM)33 after an acceptable base model had been established,
with forward search (P,0.05) and backwards deletion (P,0.01).
Continuous covariates were tested through linear, piecewise linear
(hockey-stick) or power relationships centred on the median covariate
value for continuous covariates and as a shift in the typical value for the
least common category for categorical covariates.33

MICs and pharmacokinetic/pharmacodynamic targets
The two pharmacokinetic/pharmacodynamic targets of 50% fT.4%MIC (free
piperacillin concentration maintained above four times the MIC for at least
half of the dosing interval) and 100% fT.1%MIC (free piperacillin concentra-
tion maintained above the MIC for the entire dosing interval) were evaluated.

Estimates of MIC50 and MIC90 for piperacillin/tazobactam were derived
from an internal MIC study that assessed 165 pathogenic isolates from
paediatric patients with malignant disease (from 2004 to 2013). In add-
ition, the piperacillin/tazobactam MIC breakpoint of 16.0 mg/L for
Pseudomonas spp. from EUCAST was used to represent a high MIC.34

To illustrate the typical free concentration–time course of piperacillin in
the study population and the impact of identified covariates, predictions of
300 mg/kg/day administration by SI or EI (as a 3 h infusion), both q8h, and
CI were performed. Furthermore, the relationship between MIC and the
typical dose required to attain the two pharmacokinetic/pharmacody-
namic targets was established for a number of dosing regimens at
steady-state conditions, consisting of CI, SI (5 min infusion q8h) and EI
with varying infusion lengths (1–4 h, both q6h and q8h). Additionally,
the licensed dosing regimen for piperacillin in children with febrile
neutropenia was assessed (30 min infusion of 80 mg/kg given q6h). To
facilitate discussion of the impact of the choice of pharmacokinetic/
pharmacodynamic target, regimens were compared with respect to the
dose required for target attainment at steady-state conditions and the
resulting exposure (AUCss) and peak concentration (Cmax, ss). The impact
of unexplained variability in the population was illustrated with a 90%
prediction interval (i.e. 5th–95th percentile of simulated profiles) based
on 1000 simulated patients.

Results

Patient characteristics

Forty-three patients were included with characteristics shown in
Table 1. The patients contributed 482 piperacillin samples (19
below the LLOQ) across 89 fever episodes (1–4 per patient). The
data are shown in Figure 1, with no clear systematic change in the
time course between febrile episodes within a patient.

Pharmacokinetic modelling

Final parameter estimates with uncertainty are included in
Table 2. In Figure 2, VPCs demonstrate an acceptable model fit of

the total dataset (Figure 2a), proportion of samples below the
LLOQ (Figure 2b) and across age intervals (Figure 2c). Samples
followed two-compartment disposition (DOFV"#18.7 over
one-compartment) with first-order elimination from the central
compartment (t1=2,a of 0.708 h and t1=2,b of 10.1 h at 70 kg).
Differences between patients were described with an IIV term
on CL, but with addition of IOV in CL (between fever episodes)
the model fit improved (DOFV"#260.4) and the IIV term be-
came insignificant, indicating that children differed from one
fever episode to another to the same degree as between each
other. IOV in CL for sampling occasions within a fever episode
was not statistically significant.

Inclusion of individual body weight in line with standard
allometry (fixed exponents of 0.75 and 1.0) improved the fit
(DOFV"#49.4) although the unexplained variability in CL did not
decrease. Forward assessments by SCM (P,0.05) identified three
linear relationships and following the backwards deletion step
(P,0.01) age on CL and central V remained, with estimates of the
covariate effects leading to higher (weight-adjusted) parameter
values at lower ages. Further assessment showed that inclusion of
age on CL independent of inclusion of age on V was insignificant
(DOFV"#0.001). Additionally, randomization testing showed
that the actual DOFV required for significance at P,0.01 for inclu-
sion of age on V (DOFV"#11.1) was higher than the theoretical
value of #6.63 and higher than that observed following inclusion
(DOFV"#7.77).35 Therefore, only body weight was included in the
final model. Evaluation of GFR as a covariate for CL did not improve
the model fit despite being mechanistically reasonable for a
renally cleared drug (different parameterizations were tested,
with the largest drop being DOFV"#2.54). Assessment of kidney
maturation31 through the following relationship:

CL ¼ hCL �
WT

70

� �0:75

� PMA3:4

PMA3:4 þ 47:73:4

 !

where hCL is the population estimate of CL, WT refers to body
weight and PMA refers to postmenstrual age,31did not lead to sig-
nificant improvement in fit (DOFV"0.286).

Typical free concentration–time courses are illustrated
in Figure 3 for dosage regimens of 300 mg/kg/day (capped at
16 000 mg) according to: (i) SI (three 5 min infusions); (ii) EI (three
3 h infusions); and (iii) CI. The internal MIC study resulted in MIC50

and MIC90 estimates of 2.0 and 4.0 mg/L, respectively, illustrated
in the graph along with the EUCAST breakpoint MIC of 16.0 mg/L
for Pseudomonas spp. It is evident that children with lower body
weight typically achieve lower exposure.

Target attainment

The relationship between MIC and the dose (mg/kg) required to
achieve the two pharmacokinetic/pharmacodynamic targets at
steady-state is shown in Figure 4 for 10 regimens and three body
weights of 15, 40 and 65 kg. For 50% fT.4%MIC, CI and EI of 2 and
3 h (q6h) or 3 and 4 h (q8h) achieve the target for MIC90 (4.0 mg/L)
with doses at or below the standard adult dose. Individuals with
lower body weight require higher doses (in mg/kg) for target at-
tainment, although the difference diminishes with longer infu-
sions. Conversely, the doses required to achieve 100% fT.1%MIC
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are 1.4–7.7 times larger than standard doses and, except for CI,
none of the regimens achieves the target for MIC90 (4.0 mg/L) for
all studied body weights. Generally, to achieve 100% fT.1%MIC,
higher doses are required for corresponding MICs compared with
50% fT.4%MIC, illustrating that the short t1=2 of piperacillin is limit-
ing for attainment of 100% fT.1%MIC.

The licensed 30 min infusion and the 3 h EI q8h regimens are
further explored in Figure 5, with comparison of the typical dose
required for target attainment at an MIC of 4.0 mg/L and the
resulting AUCss and Cmax, ss. For the licensed dosing regimen, target
achievement requires doses from 0.67–1.96 and 1.98–5.78 times
the standard 80 mg/kg (50% fT.4%MIC and 100% fT.1%MIC, re-
spectively). These doses result in Cmax, ss below or up to 3-fold that
observed following SI dosing (�500 mg/L in Figure 3). For EI, the
dose required for 50% fT.4%MIC is below the standard 100 mg/
kg/dose, resulting in reasonable peak concentrations and compar-
ably low AUCss, whereas the doses required for achievement of
100% fT.1%MIC are similarly high as for the licensed regimen, but
with lower Cmax,ss.

Discussion

The work presented here establishes a population pharmacoki-
netic model for the free concentration–time course of piperacillin
in febrile children receiving cancer chemotherapy. A sizable study
population contributed data (Figure 1) and pharmacokinetics
differed between fever episodes, rather than between patients. At
4 h (dosing interval midpoint) approximately half of the samples
were below MIC90 (4.0 mg/L) with only a few observed concentra-
tions �4%MIC90, indicating a need for higher doses with the
employed SI regimen.

Included individuals were biased towards higher ages, with a
single 1 year-old and three 2 year-olds, limiting dosing recommen-
dations to children between 2 and 18 years old. Patients had nor-
mal weight for age, but the values of estimated GFR were high
(IQR of 140–211) indicating hyperfiltration, seen previously in crit-
ically ill children.20,22,36 Previously, one- and two-compartment
models for piperacillin in critically ill children have been
reported,21,22,36,37 but with rapid and more pronounced peripheral
distribution. As the sampling design was based on one of
these studies,36 an interim design update was performed to limit
information loss due to LLOQ samples. In addition to differences in
patient populations, the apparent deviation in model parameters
could be due to a reduced number of LLOQ samples in this study
due to study design. The peripheral distribution is mainly evident
at the end of a dosing interval (Figure 3), where the typical free
concentrations are already below the reference MICs.

The impact of body weight on the pharmacokinetic profile is
clear from Figure 3, with shortened t1=2s at lower body weights due
to the impact of allometric scaling illustrated and discussed previ-
ously,38 suggesting that target attainment will directly depend on
individual characteristics and their impact on the shape of the free
concentration–time profile. A relationship between individual GFR
and CL makes mechanistic sense based on knowledge of the b-lac-
tam elimination pathway39 and has been identified in adults,18 but
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Figure 1. Overview of the piperacillin free concentration samples (points) collected across up to four febrile episodes from the included subjects (see
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Table 1. Overview of patient characteristics

Characteristic Median (IQR) [range] or n/N (%)

Subjects (n"43)

age (years) 12 (7–14) [1–18]

male subjects 27/43 (63)

Fever episodes (n"89)

body weight (kg) 39.4 (24.5–51.8) [9.5–107]

GFR (mL/min/1.73 m2) 172.4 (139.8–210.8) [87.0–425.8]

fever days (days) 1 (1–3) [0–7]

peak temperature (�C) 38.8 (38.4–39.5) [36.9–41.7]

episodes with neutropenia 77/89 (87)

episodes with bacteraemia 10/89 (11)
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none of the parameterizations tested reached statistical signifi-
cance. This could be due to the relatively narrow distribution of GFR
in the study and because the population are likely hyperfiltrators.
This may explain high CL (15.4 L/h) in comparison with studies in
adult sepsis25 (8.58 L/h) or septic shock26 (3.6 L/h). The CL esti-
mated in the current population (15.4 L/h) is, however, similar to
previous studies in critically ill children,20–22,36,37 with estimates
ranging from 12.6 to 20.9 L/h (mean 15.3 L/h), also observed for

central V (range 9.0–30.1 L, mean 19.0 L) compared with our esti-
mate of 16 L.

Based on the developed model, we aimed to identify the typical
dose needed for target attainment across dosing regimens com-
pared with the utilized dose of 100 mg/kg/dose17 (Figure 4). The
dose required for pharmacokinetic/pharmacodynamic target at-
tainment is highly dependent on the target in question and related
to the shape of the concentration–time profile resulting from a

Table 2. Final parameter estimates and variances from the population analysis including uncertainty and shrinkagea

Parameter (units) Parameter description Estimate (RSE%) [SHR%]

CL (L/h) Elimination CL 15.4b (3.7)

Vc (L) Central V 16.0b (4.8)

Q (L/h) Inter-compartmental CL 0.237b (9.6)

Vp (L) Peripheral V 3.40b (34)

CV% CL Inter-fever-episode variability in CL 16.6% (11) [5.2]

CV% ERR Proportional residual error 33.2% (4.7) [12]

aCV%, coefficient of variation as a percentage; RSE, relative standard error; SHR, shrinkage.
bTypical estimates for a patient with a body weight (WT) of 70 kg, according to the allometric relationships: CLtypical,individual"CLtypical,70kg%(WTindividual, kg/70 kg)0.75

and Vtypical,individual"Vtypical,70kg%(WTindividual,kg/70 kg)1.0.
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given regimen. Previous studies of piperacillin in critically ill children
found that 100 mg/kg/dose given as a 3 h infusion q6h would
achieve a target of 50% fT.1%MIC up to an MIC of 32.0 mg/L,20,36

which is unsurprising considering the infusion is ongoing for 50% of
the dosing interval. In our study, we assessed a stricter target
of 50% fT.4%MIC, suitable in critically ill patients,7 in addition
to the commonly applied target for piperacillin of 100%
fT.1%MIC,18,20–22,25 as successful target attainment based on
prolonged infusions may only reach concentrations just above the
pathogen MIC (a variable often determined with high uncertainty).
From Figure 4, it appears that a CI dosing regimen would be
required to achieve 100% fT.1%MIC for most MICs at reasonable
doses, especially at low body weights, while higher doses may
be needed to achieve 50% fT.4%MIC at higher MICs (16.0 mg/L).

To achieve the target of 100% fT.1%MIC, the applied dose
needs to be increased many-fold irrespective of the licensed regi-
men or EI, as illustrated in Figure 5, leading to high peak concentra-
tion and exposure, with potential toxicity issues.40 The target of
50% fT.4%MIC is achieved at doses of 40–80 mg/kg for an MIC of
4.0 mg/L by administering piperacillin as a 3 h EI q8h, i.e. lower
than the standard 100 mg/kg/dose and resulting in steady-state
exposures (182–248 mg�h/L) lower than in adults (322 mg�h/L).17

Considering the uncertainty in MIC determination, application of a
dosing regimen with a lower dose, because it achieves the target
for an MIC of 4.0 mg/L, may be hazardous. However, it appears
that prolonged infusions running for 3 h of a dosing interval or
longer are suitable with respect to the required dose and resulting
exposure metrics in the typical patient (for an MIC of 4.0 mg/L).
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In summary, there might be a wide difference in the dose required
for achievement of various pharmacokinetic/pharmacodynamic
targets. When the optimal target is uncertain, it is recommended
to explore several targets and report associated measures of
exposure (e.g. AUC and Cmax) for selected dosing regimens.

Compared with previous models for piperacillin in critically ill
children,20–22,37 the current study population had samples from
multiple dosing intervals and across hospital admissions according

to a design that was optimized to quantify the fT.MIC more precise-
ly. This quality of data may be higher than when collected
from routine therapeutic drug monitoring, although the number of
individuals in some age bands (especially young children) should
have been higher. In comparison with a previous study in a similar
population,20 our analysis determined the free piperacillin concen-
tration in samples and did not discard samples below the LLOQ. A
potential limitation of the study is that tazobactam concentrations
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were not measured. Pharmacokinetic properties similar to those of
piperacillin have been shown for tazobactam in critically ill chil-
dren,21,22 and as the reported estimates of piperacillin CL are simi-
lar (piperacillin CL of 13.4 and 15.4 L/h and tazobactam CL of 10.1
and 13.3 L/h at 70 kg), similar behaviour of tazobactam is expected
in the current study population. Based on this and generally low
in vitro IC50 for tazobactam,41 the suggested dosing regimens are
unlike to result in inadequate tazobactam coverage.

In conclusion, a population pharmacokinetic model was
developed to describe free piperacillin in febrile children treated for
cancer with chemotherapy. The model revealed the importance
of body weight on the shape of the individual concentration–
time profile and inadequate treatment of patients at lower body
weights with respect to pharmacokinetic/pharmacodynamic tar-
get attainment. Through simulations from the model, the impact
of pharmacokinetic/pharmacodynamic targets on the required
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Figure 5. Overview of free concentration–time profile, AUCss and Cmax, ss for the dose required, at steady-state conditions for a typical patient with
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dose in relation to MIC and exposure metrics was demonstrated.
Administration by EI achieved a target of 50% fT.4%MIC for a rea-
sonable range of doses, whereas the 100% fT.1%MIC target
required higher doses for both SI and EI regimens, owing to the
short t1=2 of piperacillin, which can be overcome by administration
via CI. However, for the target of 50% fT.4%MIC and high MIC
values, CI performed similarly to prolonged infusions.
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