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The characterization of de novo mutations in regions of high sequence and structural diversity from whole-genome se-

quencing data remains highly challenging. Complex structural variants tend to arise in regions of high repetitiveness and

low complexity, challenging both de novo assembly, in which short reads do not capture the long-range context required

for resolution, and mapping approaches, in which improper alignment of reads to a reference genome that is highly di-

verged from that of the sample can lead to false or partial calls. Long-read technologies can potentially solve such problems

but are currently unfeasible to use at scale. Here we present Corticall, a graph-based method that combines the advantages

of multiple technologies and prior data sources to detect arbitrary classes of genetic variant. We construct multisample,

colored de Bruijn graphs from short-read data for all samples, align long-read–derived haplotypes and multiple reference

data sources to restore graph connectivity information, and call variants using graph path-finding algorithms and a model

for simultaneous alignment and recombination. We validate and evaluate the approach using extensive simulations and use

it to characterize the rate and spectrum of de novo mutation events in 119 progeny from four Plasmodium falciparum experi-

mental crosses, using long-read data on the parents to inform reconstructions of the progeny and to detect several known

and novel nonallelic homologous recombination events.

[Supplemental material is available for this article.]

High genomic diversity within a population can confound variant
and particularly de novo mutation (DNM) discovery efforts. As a
single reference genome cannot capture the range of possible hap-
lotypes, short-read aligners assume that new haplotypes are small
perturbations to a known canonical reference sequence. Divergent
or absent loci violate this assumption; hence, reads sampled from
themmay align incorrectly or not at all (Landan and Graur 2009).
This results in many false positives and false negatives in such re-
gions, the combinationofwhich can sometimes be erroneously in-
terpreted as complex forms of variation. Maps of “genome
accessibility” can restrict variant calling to less diverse regions of
the genome and reduce such errors (Volkman et al. 2007; Zheng-
Bradley et al. 2017; Redmond et al. 2018) but may lead to substan-
tial undiscovered variation.

Of particular concern are de novo structural variants (SVs)
driven by mutational mechanisms mediated by microhomology
and repeat structure (Carvalho and Lupski 2016). Many SVs are
predisposed to occur within repetitive loci around the genome.
For example, nonallelic homologous recombination (NAHR) can
occur between two low copy-number repeats (LCRs), repetitive se-
quences ranging from several to hundreds of kilobases in length

and having >95% sequence identity between them (Lupski
2004). Nonallelic copies will occasionally be aligned in meiosis
andmitosis, with subsequent crossover using themas the substrate
for homologous recombination. Resolution of the misaligned se-
quences can yield successive insertions, deletions, duplications,
inversions, and translocations (Parks et al. 2015). NAHR in hu-
mans has been associated with several genomic disorders (e.g.,
Charcot-Marie-Tooth disease type 1A, hereditary neuropathy
with liability to pressure palsies) (Lupski 2009) and cancer (e.g., he-
reditary breast/ovarian cancer) (Xue and He 2014).

For short-read data, SV discovery algorithms examine one or
more signals of variation within reads aligned to a canonical refer-
ence sequence. These signals include paired-end (PE) read analysis
(i.e., clusters of read pairs with significantly different insert sizes or
orientations than expected), changes in read depth (RD), identifi-
cation of split reads (SRs) and/or soft-clipped (SC) reads (for a com-
prehensive overview, see Cameron et al. 2019). Reads showing
such signals are then either examined directly or used to construct
a local assembly of the putative SVs. Among the best-performing
germline SV detection algorithms are DELLY (Rausch et al.
2012), GRIDSS (Cameron et al. 2017), and Manta (Chen et al.
2016). DELLY uses PE and SR evidence to characterize deletions,
inversions, tandem duplications, and translocations but does not
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identify insertions or events <300 bp in length. GRIDSS is a local
assembly method, first extracting reference-aligned reads with pu-
tative evidence for a variant (SR/SC reads as well as discordant PE
reads), assembling the selected reads, and aligning the resulting
contig back to the reference sequence in order to identify SVs.
Manta similarly identifies SR/SC/PE reads and constructs a break-
end association graphwhose edges denote long-range adjacencies.
Reads associated to individual edges are then assembled and
aligned to the reference genome to facilitate SV identification.

Many SV detection algorithms use a heuristic cutoff on puta-
tive event length to avoid processing the entirety of the genome
and focus their computational efforts on the most plausible SV
candidates and thus are insensitive by design to variation below
a preset threshold (typically 50 bp). For variant characterization
below this threshold, additional tools (particularly for SNVs and
small indels) must be applied. The GATK HaplotypeCaller
(Poplin et al. 2017) tool examines mismatch and indel signals in
reference-aligned reads to identify intervals (“active regions”) up
to 300 bp in length that may harbor variation. These reads are
then assembled into candidate haplotypes that are scored by the
maximum likelihood estimate (MLE) of the pair-HMM alignment
of the original input reads to the candidates. Alignments of the
haplotype to the reference are then parsed for variant candidates,
and the base quality scores and per-read haplotype likelihoods are
used to calculate the posterior probability of genotypes for each
variant. Downstream filtering based on RD, readmapping quality,
strand bias, and other indicators of error are applied to reject likely
false-positive calls.

Local assembly around candidate variants is efficient but in-
herently biased toward the reference sequence. Whole-genome
de novo coassembly of short-read data provides a means for over-
coming reference bias, capturing a more comprehensive account
of variation and facilitating a direct comparison among samples
(Iqbal et al. 2012). However, the repetitive nature of many SVs pre-
cludes the straightforward applicationof existing tools (Alkan et al.
2011; Tattini et al. 2015). A typical assembly graph stores genomic
subsequences k-mers as vertices and sequence overlaps (read-to-
read alignments or k−1 substring matches) as edges (Flicek and
Birney 2009). Repeats longer than the vertex length collapse into
a single copy. Differing sequence contexts manifest as multiple
edges, which is problematic for assembly as extracting unambigu-
ous contiguous sequence from a graph requires runs of vertices
with an in-degree and out-degree of one (“unitigs”).

For small sample sizes, de novo assembly using long-read data
from third-generation sequencing is a viable strategy for overcom-
ing reference bias and assembling through highly repetitive loci
(Rhoads and Au 2015; Jain et al. 2018). However, the high-molec-
ular-weight gDNA input requirement relative to second-genera-
tion sequencing (∼5000 ng vs. ∼1 ng) is difficult to satisfy with
some samples. Many pathogens grow slowly in culture, requiring
several months or even years to expand to sufficient amounts for
long-read sequencing. Stromal contamination and high heteroge-
neity in cancer samples compromises the ability to acquire pure
samples of such highmass, and amplification risks PCR replication
artifacts masquerading as true DNMs.

Instead, it may be possible to (1) leverage the relative
strengths of both short- and long-read data, (2) examine multiple
related samples for variation simultaneously, and (3) overcome ref-
erence bias by comparing the samples’ genomes directly. Consider
a scenario inwhich one sequences a small number of samples with
long reads to augment a larger, short-read data set. For a typical as-
sembly from short-read data (e.g., 76-bp reads, >20× coverage), se-

quencing is expected to recover nearly (i.e., barring systematic
sequencing errors and ultra-low-complexity sequences that fail
to amplify) every k-mer in the genome (Lander and Waterman
1988), even if the reads do not provide sufficient genomic context
to navigate through repetitive regions. That context can be provid-
ed by aligning longhaplotypes to the short-read graph, annotating
edge choices, and following these choices when traversing the
graph (Turner et al. 2018). These long haplotypes need not be
from the sample itself; recent common ancestry among samples
leads to extensive sharing of variation that can be used to guide as-
sembly in related samples. By demanding that the short-read ge-
nome graph is immutable (after initial construction and removal
or correction of likely sequencing errors), the process of long-hap-
lotype alignment cannot add any new vertices and can only pro-
vide connectivity information through existing vertices. This
naturally constrains the alignments to informing connectivity in
regions of high (but not necessarily perfect) homology between
the long-read and short-read samples. Finally, by aligningmultiple
data sets to the graph (many long-read data sets, PE reads from the
sample itself, etc.), we can assemble through recombination break-
points by transitioning between annotation sets. In essence, rather
than using existing tools to improve accuracy of long-read assem-
blies with short reads (Koren et al. 2012; Salmela and Rivals 2014;
Walker et al. 2014; Goodwin et al. 2015), we improve the connec-
tivity of short-read assemblies with long reads.

Results

Missing genomic novelty in reference-based analysis

We motivate the development of a reference-unbiased DNM dis-
covery tool by first exploring discrepancies in genomic novelty
identified by reference-based versus reference-free analyses.We ex-
amined 20 high-coverage Plasmodium falciparum samples, the eti-
ological agent of malaria, from the MalariaGen project’s
sequencing of crosses between two substantially diverged parasites
(Miles et al. 2016). We compared a conservative list (strong filter-
ing) of novel sequences present in short-read de novo assemblies
of progeny versus a liberal list (no filtering) of novel sequences
from haplotypes combinatorially produced from multiple refer-
ence-based variant callsets on the same data. This comparison is
shown in Figure 1A (for further information on comparison proce-
dure, see Supplemental Fig. S1). If a reference-based callset cap-
tured all sequence diversity in a sample, our expectation is that
all novel sequences would be captured by variant calls and thus
“explained.” However, even with strong filtering on the de novo
assembly data and no filtering on the reference-based callset
data, 28%±22% (min=0%, max=94%) of novel sequences in
the assemblies did not correspond to any reference-based variant
call.Most of these unexplainednovel “k-mers” (length k substrings
from reads) were found in reads that failed to map or that mapped
nonuniquely to the reference sequence (Fig. 1B).

A de novo coassembly approach to DNM discovery

To overcome limitations in the reference-based analysis described
above, we developed a DNM discovery approach consisting of
three steps. First, de novo assembly, based on multicolor linked
de Bruijn graphs (LdBGs; described below), is used to store and
link adjacent k-mers for each sample. These assemblies are error-
cleaned; that is, low-frequency k-mers likely to be the result of se-
quencing errors are removed from the graphs. Unlike error correc-
tion, error cleaning does not add new (and potentially
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unobserved) sequence to the graph. Second, trusted “novel” k-
mers are identified, which are sequences unique to the individual
progeny, indicative of DNMs, that are unlikely to arise from error
or contamination. Finally, novel k-mer-spanning contigs are
aligned to reconstructed sequences in the parents, identifying
the nature of the event that generated the DNM. Figure 2 depicts
these steps, detailed in the Supplemental Material and summa-
rized below.

Connectivity preserved in multicolor LdBGs

We have previously reported on multisample and multicolor de
Bruijn graphs (dBGs) for straightforward reference-free genome
comparison between multiple samples (Iqbal et al. 2012) and
LdBGs for improved assembly via read-to-graph and reference-to-
graph alignment annotations (Turner et al. 2018). Briefly, an
LdBG is a multigraph (Zwillinger 2011) representation of multiple
genomes that preserves “stackability” (easy comparison of multi-
ple samples via inner joins by k-mer of per-sample coverage and
edge information) and connectivity information inherent in reads
and/or long input haplotypes. As illustrated in Figure 2A, input
reads are decomposed into k-mers and stored as graph vertices.
Each sample is assigned a unique identifier (or “color”). Colored
edges are placed between vertices representing k−1 overlaps
with another k-mer in the same sample. Reads and/or haplotype
data (e.g., alternate reference assemblies) are then aligned to the
graph (once per color) by trivial lookups of shared k-mers.
Discrepancies between the sequence and the graph manifest as
missing k-mers, correctable by traversing the graph between the
gap boundaries or truncating the alignment if the correction at-
tempt fails. At junctions (vertices with in-degree or out-degree
greater than one), the edge consistent with the aligned sequence
is recorded in an auxiliary file. All junctions spanned by an align-
ment are annotated with relevant link information, ensuring tra-
versal can begin anywhere in the graph and still have access to
complete navigation data. During traversal, we collect links in
the order they are encountered, assigning each link an “age” re-
flecting the number of vertices traversed since collected and using

the oldest link to specify junction choic-
es. If a conflict arises between multiple
oldest links, we halt traversal.

Novel k-mers are signposts for DNMs

We build upon this genome comparison
framework by first identifying regions of
the joint pedigree graph (an LdBG con-
taining sequence data for parents, proge-
ny, and optional reference sequences) to
explore for potential DNMs. As suchmu-
tations are by definition present in the
progeny and absent in the parents, k-
mers spanning these events would also
be expected to be exclusive to the
progeny.

An accurate list of novel k-mers
serves both as an indicator of DNM pres-
ence around the graph and a measure of
how many mutational events are avail-
able for discovery. However, iteration
over the graph and selection of putative
novel k-mers (those with zero coverage

in the parents and more than zero coverage in the progeny) will
yield a set enriched for sequencing errors and other artifacts that
obscure the small fraction of k-mers arising from genuine DNMs.
We applymultiple filters to remove such artifacts (specifically, con-
tamination; graph tips; low-complexity sequence; “orphans,” se-
quence found in the progeny but with no edges to parental
sequences; low-coverage k-mers; “unanchored” k-mers, k-mers in
branches that have no unique alignment in any provided genome;
and k-mers shared by other progeny; for details, see Methods). We
verified these filters by examining novelty in simulated P. falcipa-
rum crosses and a real trio for which we obtained Pacific
Biosciences (PacBio) sequencing on both parents and progeny.

Contigs spanning novel k-mers contain putative de novo events

Next, we “partition” the graph into subgraphs, grouping novel k-
mers into separate bins based on their proximity to one another
within the graph. This is illustrated in Figure 2B. Each partition
mayharbor one ormoreDNMs, but DNMs are not split acrossmul-
tiple partitions. At each novel k-mer, we walk along the progeny’s
color in the pedigree graph, exploring outward and constructing
the longest possible contigs. To maximize contig length (and
thus increase our sensitivity to complex variation), we use two
strategies. First, links derived from haplotype alignments (e.g.,
draft references, PE reads, etc.) are used to disambiguate junction
choices. Second, as DNMswill typically yield a succession of novel
k-mers in a graph and as the previous filtering step will have re-
moved most artifacts, we walk past junctions when one (and
only one) of the outgoing edges at a novel k-mer connects to an-
other novel k-mer. This procedure, which we have termed “novel
k-mer aggregation,” ensures that proximate novel k-mers are con-
sidered together, useful for large SVs that may manifest as a series
of nearby, but nonadjacent, runs of novel k-mers.

Assembling adjacent parental contigs for event decoding

We then construct parental sequences that constitute the candi-
date haplotypic background(s) for a DNM. At each parentally
shared k-mer in a partition, we initiate a contig assembly in the

BA

Figure 1. Extent of reference-characterized and -uncharacterized novelty among 18 progeny from an
experimental cross between 3D7 and HB3 P. falciparum isolates, sequenced by the MalariaGen project
(Illumina 76-bp reads, ∼100× coverage). (A) Novel k-mers observed in the reference-based analysis (“ex-
plained”; bars above x-axis) versus novel k-mers remaining from the reference-free analysis (“unex-
plained”; bars below x-axis). (B) Reads that map uniquely to the reference genome (MQ>0; green)
versus mapping multiple times or not mapping at all (MQ=0; red), conditioned on the read containing
a novel k-mer. For further details, see Supplemental Material.
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parents. The presence of novel k-mers in the partition may lead to
gaps in the parental contigs not automatically filled by this assem-
bly step. We close these gaps via depth-first searches (DFSs) be-
tween bordering k-mers. To prevent a combinatoric explosion of
considered paths, we limit our explorations to depths of 1000 bp
by default. For gaps we fail to close in this manner, we assemble
flanking boundaries up to a maximum of 500 bp.

Each contig is given a label specifying the parental back-
ground from which it was reconstructed and a unique index. If
draft/finished reference sequence data are available, we additional-
ly attach coordinate information by aligning each parental contig
to the associated draft reference sequence via a built-in version of
BWA-MEM (BWA-MEM Java bindings developed by Pierre
Lindenbaum, https://github.com/lindenb/jbwa) (Li 2013).

“Mosaic” alignment reveals simple and complex mutations

To identifymutations, determine parental background, and assign
genomic coordinates, we apply a pair-HMM to simultaneously
align and phase progeny contigs over candidate parental haplo-
types. This model, originally used to study evolutionary relation-
ships in a set of highly diverse antigenic genes from the P.
falciparum var gene family (Zilversmit et al. 2013), combines the
probabilistic models for sequence alignment (Durbin 1998) and
the detection of recombination events (for trellis diagram of mod-
el, see Supplemental Fig. S3; for model parameter definitions, see

Supplemental Table S7; Li and Stephens 2003). Recast in a SV
framework, it enables simultaneous discovery of both simple/com-
plex mutations in a panel of sequences that are not prealigned to
one another. As our model permits recombination between any
site and any candidate parental haplotype, it also enables the
detection of nonallelic events, such as NAHR.

Briefly, the method is as follows. Consider a query sequence
(the contig in the progeny) and a set ofN source sequences (contigs
in both parents, partially or completely spanning the target se-
quence). Our goal is to describe the target sequence as a set of
match/mismatch, insertion, deletion, and recombination opera-
tions on the source sequences. We choose the starting point in
the source sequence uniformly across all sites in the source se-
quences, beginning in the match or insert states with some prob-
ability. At each position, there exists the probability of jumping to
any target sequence and any position via recombination. Themax-
imum likelihood alignment (and trajectory through the target
panel sequence space) is obtained using the Viterbi algorithm.
Variant calls are obtained by examining the traceback path and
identifying differences with respect to the query sequence. This
process is depicted in Figure 2C (an expanded representation on
a similar toy sample is presented in Supplemental Fig. S4).

A simple set of postprocessing filters are applied to keep
false-discovery rates low. For all mutational types, we reject events
containing fewer than five novel k-mers. We additionally
require NAHR events to satisfy one of two conditions: (1)

B

A

C

Figure 2. Overview of the Corticall algorithm. (A) Samples are assembled into a multicolor linked de Bruijn graph (LdBG). Short, accurate reads are used
to determine graph topology. Longer sequences derived from paired-end reads or from draft/finished assemblies are thread through the graph, providing
information on connectivity to overcome repeats but not adding novel k-mers. (B) Novel k-mers, sequences present in the progeny and absent in the par-
ents, are filtered and then used to signal the presence of putative de novomutations (DNMs). Subgraphs around such events are extracted, forming a set of
variant candidates. (C) Regions flanking novel k-mers are assembled to reveal candidate parental haplotypes. The progeny’s contig is probabilistically
aligned to the set of candidate parental contigs, allowing for mismatches, indels, and (potentially nonallelic) recombination. The resulting alignment
thus specifies parental background and (if reference sequences are available) coordinate information. Variants (SNVs, MNVs, indels, translocation break-
ends, etc.) within the novel k-mer regions are returned as likely DNMs.
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Multiple breakends are detected within a single contig, and (2)
single breakends are detected within 2000 bp of breakends satisfy-
ing (1).

Simulation: novel k-mer detection and increased contig lengths

To evaluate our ability to correctly detect DNMs in assembly data,
we generated an in silico pedigree of 1000 progeny. This was ac-
complished in two stages: (1) simulation of full-length (23-Mb)
haploid genome sequences for each progeny sample and (2) simu-
lation of reads for each genome sequence. For each genome se-
quence, we incorporated a wide range of de novo events for later
evaluation. Annotated draft reference sequences constructed for
two P. falciparum isolates (HB3 and DD2) (see Supplemental
Material, section S2) were used as parental genomes.We computed
k-mer–based homology maps per sister chromatid and modeled
crossovers per chromosome based on empirical rates provided in
Miles et al. (2016; for simulatedmap lengths and per-chromosome
crossover probabilities, see Supplemental Fig. S5), keeping track of
the relocated members of each parent’s var gene repertoire. We
then added simple and complex DNMs, simulating small (1- to
100-bp), intermediate (101- to 500-bp), and large (501- to 1000-
bp) events and placing them randomly throughout the genome.
In addition to simulating SNVs, MNVs/indels with random se-
quence, and inversions, special care was taken to simulate variants
arising from repeat expansion and contraction by searching for ex-
isting repetitive regions in the genome and adding or subtracting
repeat units. NAHR events were simulated by recombining mem-
bers of the progeny’s var gene repertoire after meiotic recombina-
tion. Assuming a low DNM rate, three random events were
simulated per progeny.

To generate reads for these synthetic genomes, we simulat-
ed 76-bp PE reads with an insert size distribution of 250±50
bp, stochastic coverage of 100×, and a sequencing error rate
of 0.5% (∼Q23). These values were comparable to existing
data on the HB3×DD2 cross (Wellems et al. 1990, 1991; Miles
et al. 2016). We constructed joint pedigree graphs using exist-
ing Illumina data for the HB3×DD2 parents along with our sim-
ulated reads for the progeny, applying the assembly procedure
detailed in Supplemental Material, section S3.5 (initial assembly
at k=47, error cleaning, and PE read and draft reference thread-

ing), and extracted novel k-mers according to the procedure in
Methods.

We first evaluated our novel k-mer detection procedure on
these simulated data sets. Figure 3A summarizes our detection
of true and false novel k-mers. We were able to detect 90.0%
±22.7% of expected novel k-mers per sample. Novel k-mers
that we failed to detect were typically low-complexity or repet-
itive sequences (generated de novo by the mutation process but
also occurring elsewhere in the genome). For these events, a k-
mer size of 47 bp was insufficient to resolve the sequences as
novel.

Next, we examined the recovery of novel and variant k-mers
as a function of short-read coverage and by downsampling cover-
age on the simulated genomes to values between 20× and 100×. As
coverage increases, the fraction of expected novel k-mers increases,
saturating at ∼60× (Fig. 3B, left panel). However, not all novel
k-mers generated by a mutational event need be recovered to tag
a variant. Despite some novel k-mers being lost to filtration,
enough remain such that effective variant reconstruction can still
occur at ∼40× average genome coverage (Fig. 3B, right panel).

Finally, we sought to more clearly understand the relation-
ship between missed novel k-mers versus the type and length of
variant event from which they arose, summarized in Figure 3C.
Across all variant types, 97.8%±3.1% of novel k-mers generated
by mutational events are detected. The bottom three performers
are short tandem repeat (STR) contractions, STR expansions, and
NAHR events, in which the percentage of novel k-mers detected
are 86.1%, 95.4%, and 96.0% respectively. This is to be expected;
all three mutational classes are manipulations of repetitive se-
quence, the expansion/contraction/recombination of which
would be plausibly expected to generate k-mers already present
in other repeats in the genome.

Simulation: mutation detection and evaluation

We applied Corticall and four other variant calling software pack-
ages (DELLY,GRIDSS, HaplotypeCaller, andManta) to the simulat-
ed set of 1000 HB3×DD2 progeny. Although our software is
specifically designed to leverage multiple reference sequences
and identify variants on the closest haplotypic background, the
latter four algorithms are not. Attempting to characterize variation

BA C

Figure 3. Simulation-based evaluation of novel k-mer detection and subsequent reassembly quality for contigs spanning novel k-mers in error-contain-
ing short-read data. (A) Number of k-mers in the progeny correctly identified as novel (true positives), undetected (false negatives), and misidentified as
novel (false positives). (B) Novel and variant k-mer recovery for all in silico progeny at simulatedmean coverages of 20×, 40×, 60×, 80×, and 100×. (C) For all
simulated alleles, the fraction assembled completely (i.e., wholly contained within a single contig) and incompletely (i.e., only partially reconstructed).
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in simulated HB3 and DD2 haplotypes absent from the 3D7 refer-
ence does not provide an effective demonstration of the
other algorithms’ capabilities. Instead, we developed a procedure
to run each alternate caller twice on child reads aligned to the
HB3 and DD2 reference genomes separately, integrate the result-
ing callsets (taking care to exclude redundant variants appearing
in syntenic regions of the parental genomes), and filter out inher-
ited and likely false-positive mutations. We quantified caller per-
formance by computing F1 scores for different variant classes,
requiring type compatibility, 80% reciprocal overlap of alleles,
and correct parental background identification.We also computed
a more lenient F1 score wherein these requirements were signifi-
cantly relaxed. Further details are provided in our Supplemental
Material. The aggregated results for all simulated samples are
shown in Table 1.

Overall, we found that >90% of detected novel k-mers are as-
signable to variant events, and >86% of simulated variants are
identified (either partially or completely reconstructed). This
changes very little with assembly mode as, aside from some light
filtering, the absence or presence of link information does not alter
the detection of novel k-mers. Instead, it simply alters the number
of contigs into which a variant assembles. For complete recon-
struction of each variant event, F1 uniformly increases between
the link-uninformed and link-informed reconstruction as link in-
formation provides a means to overcome repetitive regions of the
assembly.

We measured calling performance on NAHR breakends and
further our ability to detect all breakends within a single event.
Although both unlinked and linked reconstructions are generally
able to detect the presence of a breakend, the reconstructions
with links show a marked improvement in event characterization.
This permits multiple breakends to be observed on a single contig,
enabling detection and assignment of all breakends within a
NAHR event to a single call and simplifying variant classification.
As the other tested variant callers do not specify which variants
were found on the same contig, this metric could not be assessed
for other algorithms.

Corticall substantially outperformed other algorithms in the
detection of DNMs across all variant classes except inversions. Of
the alternate algorithms evaluated, DELLY provided results most
comparable to our own, performing particularly well on tandem
duplications, deletions, and inversions (outperforming Corticall
for 101- to 500-bp inversions) but, by design, did not identify short
indels and multinucleotide variants (MNVs). DELLY was also able
to detect more NAHR breakends than any alternate algorithm ex-
cept our own. Given that these events were simulated in noncore
var genes having little homology between the HB3 and DD2
repertoires, recovery performance was unaffected by relaxing the
restriction that events be identified on the correct haplotypic
background.

The other SV detection methods (GRIDSS and Manta), and
SNV/small indel caller (HaplotypeCaller) underperformed consid-
erably at DNM detection compared with Corticall and DELLY.
Although poor sensitivity was a substantial issue for these ap-
proaches, these low F1 measures are more attributable to the diffi-
culty in controlling the high false-positive rate, even after filtering
out inherited variation and syntenic sites and after applying a bat-
tery of depth, mapping quality, and strand bias filters. This could
potentially be remedied by using a similar novel k-mer approach
to Corticall, permuting the reference sequence with putative vari-
ants to identify spanning k-mers and variants with k-mer support
in the parental read data sets.

Core, noncore, and repetitive region DNM detection

in P. falciparum

To characterize the number and type of DNMs occurring in the ge-
nome of themalaria parasite P. falciparum, we applied our software
to sequencing data from four P. falciparum experimental crosses:
3D7×HB3 (Walliker et al. 1987), HB3×DD2 (Wellems et al.
1990), 7G8×GB4 (Hayton et al. 2008), and 803×GB4 (Sá et al.
2018). Seeking to obtain finished or draft reference sequences
for all parents in the crosses, we first obtained the canonical
3D7 reference genome from PlasmoDB (Gardner et al. 2002). We
additionally obtained recently generated high-quality draft refer-
ence assemblies for the HB3, DD2, and 7G8 parental genomes.
Finally, we generated new PacBio draft assemblies for the GB4
and 803 parental genomes, as well as one progeny genome from
the 803×GB4 cross (36F11). Except for the 3D7 reference se-
quence, all assemblies were made using PacBio RSII sequencing
data (∼100×, 10- to 15-kbp per sample). We verified our long-
read assembly procedure by comparing the canonical reference se-
quence to our version of the 3D7 genome (for a dotplot compari-
son between the two assemblies, see Supplemental Fig. S2). NCBI
accessions for new GB4, 803, and 36F11 genomes are provided in
“Data access” and ERA accessions for all PacBio data sets are pro-
vided in Supplemental Table S1. Further data set and assembly
metrics are provided in Supplemental Table S2.

We then obtained Illumina data for all parents and progeny
in the experimental crosses (NCBI accessions in Supplemental
Table S3; metrics in Supplemental Table S4) and generated
McCortex assemblies at k=47. After contaminant and outlier re-
moval, we called DNMs in 119 progeny and verified our calling
procedure on real data by manually comparing novel k-mers and
variant calls between the Illumina and PacBio data sets for the
36F11 progeny parasite (Supplemental Tables S5, S6, respectively).
Calls across all four crosses are summarized in Figure 4.

Across samples, we assigned putative variant calls to 89%±
11% of novel k-mers (Fig. 4A). Their impact was greatest in the
803×GB4 cross, where the 803 and GB4 draft reference sequences
have comparatively poorer assembly qualities of Q28 and Q23, re-
spectively (compared with Q28 and Q29 for 3D7 and HB3). After
filtering, we detected a total of 972 DNMs (163 SNVs, 348 inser-
tions, 322 deletions, 19 MNVs, seven NAHR events, and 113 in-
completely assembled events). The average per sample DNM
count is low, with short indels (approximately 5.47 per sample)
outnumbering SNVs (approximately 1.29 per sample).

To determine the functional effect of each variant, we trans-
ferred existing 3D7 genemodels and performed ab initio gene pre-
diction on each parental genome via the Companion (Steinbiss
et al. 2016) annotation server. We then concatenated genemodels
for each cross and annotated all variants with SnpEff (Cingolani
et al. 2012). Taking the first (most deleterious effect) listed, these
results are summarized in Table 2. As expected, the majority of
events (∼85%) landed outside of gene coding regions, including
nearly all incompletely assembled variants (likely owing to the dif-
ficulty of assembling the low-complexity and repetitive intergenic
loci). Relatively few missense or conservative in-frame mutations
are observed (7%), and even fewer stop-gain, frameshift, or other-
wise disruptive indels (3%) are detected.

We applied the RepeatMasker (Smit et al. 2013) software to
annotate repetitive genomic sequences and Spine (Ozer et al.
2014) to annotate noncore genomic regions (sequences private
to each parasite isolate, typically encompassing subtelomeric/hy-
pervariable regions) across all parental genomes. We then
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inspected variant locations with respect to these annotations (Fig.
4B,C). Aggregated across all samples and crosses, we found a three-
fold enrichment of mutations occurring in repetitive genomic re-
gions, ∼90% of which fell within tandem duplications.
Mutations were enriched in the noncore (∼2 Mb) versus core
(∼21 Mb) genomic compartments (SNVs: P=1.5 ×10−7; INS/DEL/
MNV: P<2.2 ×10−16; BND: P<2.2 ×10−16; based on chi-squared
tests accounting for indel lengths and number of novel k-mers ap-
pearing in NAHR events) (see Supplemental Material). We ob-
served similar per-sample mutation distributions across samples.

We computed per-sample per-nucleotide mutation rates
across all four crosses. Additionally, as DNMs can continue to accu-
mulate in each parasite during the in vitro intraerythrocytic life-
cycle, we computed mutational rates per nucleotide and
generation. However, culture time and lifecycle time for cross
progeny was not always known. Assuming a culture time of 52 d
between initial cloning and sequencing (the average of the docu-
mented culture times for the 3D7×HB3 and HB3×DD2 cross prog-
eny), and a mitotic generation time of 48 h (Trampuz et al. 2003),
Per-nucleotide mutational rates are presented in Table 3. These

B

A

C

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

× × × ×

Figure 4. Per-sample DNMdiscoverymetrics in 119 P. falciparum progeny. (A) Novel k-mers per cross and sample (gray bars). For those contained within
successfully assembled variants, k-mers in variant passing filters are shown in green; the rest are shown in red. (B) Per-cross DNM sample distributions for
mutations appearing in repetitive regions of the respective parental genomes. (C) Violin plots showingDNM sample distributions per cross, split by those in
core genomic regions (left) and noncore regions (right).

Table 2. Functional annotation of discovered de novo mutations

Variant effect SNV INS DEL MNV INC NAHR

Conservative in-frame
deletion

0 0 11 0 0 0

Conservative in-frame
insertion

0 4 0 0 0 0

Disruptive in-frame deletion 0 0 3 0 0 0
Disruptive in-frame

insertion
0 3 0 0 0 0

Downstream gene variant 20 46 40 1 15 0
Frameshift variant 0 11 7 0 5a 0
Intergenic region 12 69 22 5 16 0
Intron variant 0 2 2 0 0 0
Missense variant 53 1 0 3 0 0
Noncoding transcript exon

variant
3 1 2 1 0 0

Splice region variant 0 0 1 0 1a 0
Stop gained 2 0 0 0 0 0
Synonymous variant 8 0 0 1 0 0
Upstream gene variant 64 210 228 9 75 0
(Not annotated) 0 4 4 0 0 7

aEffect uncertain given incomplete allele reconstruction.
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rates are broadly consistent across crosses and compartments and
with previous estimates based on parasite clone trees (Bopp et al.
2013; Claessens et al. 2014).

Hypothesis-free discovery of NAHR events at base-pair

resolution

To detect NAHR events, we grouped proximate breakend calls and
applied three filtration criteria: (1) Eventsmust contain 20 ormore
novel k-mers, (2) events must consist of three or more breakends,
and (3) at least one contig must link distal genomic loci within
the same contig. We detected seven NAHR events in total after fil-
tration, depicted in Figure 5. All occurred in subtelomeric noncore
regions of the genomes. Examining these events with respect to
our newgenemodels, all but four of the genes closest to a breakend
were related to antigenic gene families and immune evasion.

Previous work onNAHR events in P. falciparum—based on ob-
servations of apparent translocations of var gene sequences and
limited by inadequate reference sequences for parasites other
than 3D7—have only reported NAHR events within the exon 1
of var-gene family members (Deitsch et al. 1999; Freitas-Junior
et al. 2000; Frank et al. 2008; Duffy et al. 2009; Bopp et al. 2013;
Claessens et al. 2014; Sander et al. 2014). As we enforce no a priori
hypothesis onwhich loci are likely to harbor such recombinations,
the discovered events in our data set extend beyond var exon 1.We
summarize these events in Table 4. Although the events still occur
in the subtelomeric regions of the genome (within which many
other genes related to immune evasion reside), five of the 12 genes
proximate to the NAHR breakends were not var genes. A single
event occurred near a gene from the rif gene family.

Beyond identifying new NAHR events outside of the usual
var-gene repertoire, we were also able to clarify the extent of
previously observed events. Figure 6 depicts three of the detected
NAHR events. In Figure 6A, our calls recapitulate previously report-
ed rearrangements (breakends 5–9) within the long exons of
PF3D7_0100100 and PF3D7_0223500 (PFA0005w and PFB1055c
in older nomenclature) (Sander et al. 2014). Flanking these known

breakends are a number of mutations that have not been previous-
ly reported, including an additional series of breakends upstream
of each of the var genes (1 and 2), two MNVs (3 and 4), and an
SNV within the coding region of the antigenic gene on
Chromosome 2. In panel B, a novel NAHR event is shown with a
recombination path that weaves in and out of coding regions,
touching upon the previously unexamined exon 2. The recombi-
nation path within the novel event in panel C (within a sample
in the previously unpublished 803×GB4 cross) remains wholly
within the coding sequence.

Among the isogenic pair 76H10 and 76H10-Tk13 (a trans-
formant clone C580Y allele in the Kelch propeller domain of
K13) (see the section pfk13 Modification in the supplemental in-
formation of Sá et al. 2018), the latter shows multiple recombina-
tion breakpoints absent in the untransformed counterpart. It is
also the only parasite in the data set to show breakends linking
the subtelomeric ends of more than two chromosomes. Further
inspection revealed the 310 novel k-mers underlying these events
to be unique to 76H10-Tk13 and unlikely to be a filtering artifact;
zero overlapwas observed between the 310novel k-mers present in
the transformed clone (76H10-Tk13) after filtering and the 42,549
novel k-mers present in the untransformed clone (76H10) before
the application of filters. 76H10-Tk13 required several months of
continuous cultivation, including transfection with zinc-finger
plasmids to induce allelic substitution and subsequent limited
cloning dilution. The presence of these breakends in the trans-
formed clone and their absence in the untransformed clone sug-
gests the acquisition of structural mutations in long-term
continuous culture. This finding comports with the similar obser-
vations by Bopp et al. (2013) indicating substantial telomeric plas-
ticity relative to the core region of the genome in P. falciparum
parasites propagated in vitro for 180 generations.

Variant calling with cumulatively expanding reference set

Exploring beyond comparisons of progeny-to-progenitor ge-
nomes, we hypothesized that genomic novelty present in a sample

Table 3. Mutation rates per cross, sample, mutational class, and genome compartment

3D7×HB3 HB3×DD2 7G8×GB4 803×GB4

Culture time (days)a 47 57 52b 52b

Lifecycle time (hours)c 48 48 48 48
Progeny 18 24 35 42
Genome length (bp)d

Core 20,810,915 21,052,828 21,325,706 21,303,692
(Noncore) (1,860,495) (1,603,876) (2,368,812) (2,389,390)

Total variantse

SNVs 32 (3) 21 (7) 43 (14) 33 (10)
Indels 114 (19) 141 (21) 188 (46) 106 (54)
NAHRs 0 (2) 0 (0) 0 (2) 0 (3)

Rate (sample−1 bp−1)e

SNVs 8.1 × 10−9 (8.5 × 10−8) 3.9 × 10−8 (1.7 × 10−7) 5.3 × 10−8 (1.6 × 10−7) 3.5 × 10−8 (9.5 × 10−8)
Indels 1.7 × 10−6 (4.0 × 10−6) 1.8 × 10−6 (1.4 × 10−6) 1.4 × 10−6 (4.6 × 10−6) 8.1 × 10−7 (3.3 × 10−6)
NAHRs 0 (6.3 × 10−6) 0 (0) 0 (7.9 × 10−7) 0 (9.4 × 10−7)

Rate (sample−1 bp−1 gen−1)e

SNVs 3.4 × 10−9 (3.6 × 10−9) 1.4 × 10−9 (6.1 × 10−9) 2.0 × 10−9 (5.9 × 10−9) 1.4 × 10−9 (3.7 × 10−9)
Indels 1.2 × 10−8 (2.3 × 10−8) 9.4 × 10−9 (1.8 × 10−8) 8.9 × 10−9 (1.9 × 10−8) 4.3 × 10−9 (1.9 × 10−8)
NAHRs 0 (2.4 × 10−9) 0 (0) 0 (8.5 × 10−10) 0 (1.1 × 10−9)

aCulture time estimates from Claessens et al. (2014).
bAssumed as mean of 3D7×HB3 and HB3×DD2 culture times.
cAssumed from Trampuz et al. (2003).
dAveraged lengths of core and noncore regions for each parent.
eCore (noncore) rates shown outside (inside) parentheses.
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but not placeable on the background of an evolutionarily distant
reference sequence would be better elucidated through the simul-
taneous use of multiple reference sequences. We obtained
Illumina data and constructed a PacBio draft assembly of an
803×GB4 progeny (36F11). From the 36F11 data, we extracted k-
mers that were novel with respect to the 3D7 reference genome,
further filtering these k-mers based on presence in the counterpart
36F11 clone assembly, thus constructing a conservative k-mer list
that flags true variation in the 36F11 parasite. We used this list to
seed variant calls, increasing the number of reference sequences
provided with each callset.

Figure 7 depicts the calling results on 36F11 with the cumu-
lative addition of 3D7, HB3, 7G8, DD2, GB4, and 803 reference

sequences. As novel k-mers are computed with respect to 3D7,
calls at these k-mers can only be homozygous-variant. As addi-
tional reference sequences are added, variants are described
against a new background sequence. However, many novel k-
mers tagging variation against 3D7 are no longer considered novel
with respect to another reference sequence, and their reconstruct-
ed sequence for the progeny is perfectly homologous to the addi-
tional reference. Thus, as more reference sequences are added,
apparent variation against 3D7 is redescribed as homozygous-var-
iant (hashed bars) or homozygous-reference to a sequence other
than 3D7 (solid bars). When using all six reference sequences,
our ability to characterize apparent novelty to 3D7 grows from
40% to 95%.

Figure 5. Circos (Krzywinski et al. 2009) plot of NAHR events detected in all 119 samples across four P. falciparum experimental crosses. Parental genomes
for each cross are depicted in the inner grouped circular tracks. Bézier curves depict each translocation event, with termini indicating the parent(s) of origin
and a label at the apex of the curve identifying the sample in which it was found. Closest gene names annotated on outer circumference. Dark bands in-
dicate noncore regions determined by the Spine (Ozer et al. 2014) software, except in the outer ideogram, which is based on alignability maps for the
canonical 3D7 reference genome (Miles et al. 2016).
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Discussion

We have presented a graph-based DNM calling method,
available through our software Corticall, that is capable of dis-
covering simple and complex variants in pedigrees and experi-
mental crosses without bias toward a reference sequence. Our
approach leverages long-haplotype data derived from any source
(existing finished genomes, draft assemblies from third-genera-
tion sequencing, targeted sequencing of specific loci, etc.) to
improve the assemblies of other short-read data sets. These
long-haplotype samples need not be from the same sample.
Short-read data are used to establish graph topology, whereas
long-haplotype data are aligned to the graph but constrained
to specify connectivity information only. Sequencing errors
(and possibly mutations) are always adjudicated in favor of the
existing graph; thus, no new sequence is added, only navigation
information. This approach opens the opportunity for multiple
long-read data sets to be used to improve the connectivity of
many more short-read assemblies.

Corticall can leverage many finished or draft reference-qual-
ity data sets, seamlessly transitioning between connectivity infor-
mation sets during assembly. This affords a powerful approach to
the hypothesis-free study of DNMs. As many of these events oc-
cur in repetitive or genetically diverse regions of the genome, the
use of multiple reference sequences during assembly helps to pro-
vide access to so-called genomic “dark matter,” loci underserved
by pure short-read de novo assembly or a single canonical
reference.

Corticall assembles variants, not genomes, and keeps false-
discovery rates low by only inspecting regions of the genome har-
boring novel k-mers. By combining local, multisample assembly
with a simultaneous alignment/recombination model, we are
able to detect a wide variety of mutational types with a single,
consistent framework. Additionally, tracking the number of novel
k-mers explained by each variant call provides a useful metric for
determining the completeness of the final callset.

In the P. falciparum crosses, we detected SNVs at rates broadly
consistent with previous work, as well as indels at more than four
times the SNV rate. We detected new NAHR events, all in subtelo-
meric regions of the genome that are not represented in the canon-
ical reference. For previously discovered NAHR events, we are able
to find additional breakends in nearby noncoding regions, estab-
lishing a more complete picture of nonallelic recombination
behavior in thesepathogens.Muchof thedenovomutational spec-
trum appears in noncore regions. These compartments are diverse
in the population precisely because they typically harbor clinically

relevant genes underlying drug resistance or immune escape func-
tionality. Themapping-free, reference-agnostic approach espoused
by Corticall thus enables the detection of this clinically relevant
variation and removes the requirement for determining the appro-
priate genome reference for mapping and analysis.

The fixed record size structure of Cortex graphs used with
Corticall enables storage in an ordered, randomly accessible man-
ner, thus keeping memory requirements low as the entire graph
need not be loaded into memory in order to be inspected.
Predetermining the novel k-mers to inspect, along with intelligent
caching to prevent redundant lookups when assembling multiple
samples over shared k-mers, reduces disk accesses. As a result,
Corticall is able to scale to genomes of any size. This may provide
a valuable approach to the study ofMendelian disease in large ped-
igrees or tumor/normal pairs (wherein the normal can be consid-
ered as the parent of the tumor samples).

Corticall has several limitations, addressable by future work.
Although Corticall need not load an entire graph into memory
to perform variant calling, the genome assembly software upon
which it relies does require that the entire graph be stored in
RAM as it is being constructed. Thus, even though the variant call-
ing step on human data can be performed in as little as 1 GB of
RAM, the initial de novo assembly step still requires hundreds of
gigabytes of memory to execute. Recent approaches to streaming
graph construction (Rozov et al. 2018) and/or succinct dBGs
(Conway and Bromage 2011; Muggli et al. 2017) may well address
this limitation.

Additionally, our use of long-haplotype data is restricted to se-
quences that have been substantially error-corrected. Typically,
k-mer sizes used in dBG-based short-read assemblies (e.g., k=31–
96) are still too high for the long, error-prone reads generated by
third-generation sequencers. However, lowering the k-mer size of
the short-read assemblies to a length more likely to result in a per-
fect match on the long-read data (e.g., k=11) would result in too
many junctions from homologous sequences in the graph. Our
current approach to error-correcting long reads against the graph
requires that the path through the existing graph contain no junc-
tions, and would thus be impaired by setting the k-mer size too
low. A more computationally expensive read-to-graph alignment
procedure could remedy this limitation.

Finally, the generalizability of Corticall to more mutational
types and diploid/polyploid organisms can be improved in the fu-
ture by expanding our signals for putative variation beyond novel
k-mers. Novel k-mers restrict our search for putative variation but
may limit our sensitivity to some classes of variation. Large copy
number variants, inversions, and mobile element insertions

Table 4. Nearest genes to NAHR breakends

Gene 3D7 ortholog Encodes Function

PF3D7_0100100 — PfEMP1 Immune evasion
PF3D7_0223500 — PfEMP1 Immune evasion
PF3D7_0700100 — PfEMP1 Immune evasion
PF3D7_1100100 — PfEMP1 Immune evasion
PF7G8_010005000 Unknown Hypothetical protein, conserved Unknown
PF803_070005000 PF3D7_0100100 PfEMP1 immune evasion
PFGB4_010005200 Unknown Hypothetical protein, conserved Unknown
PFGB4_030005000 Unknown Hypothetical protein, conserved Unknown
PFGB4_050039900 PF3D7_0700200 RIF Variant surface antigen
PFGB4_080041200 PF3D7_0100100 PfEMP1 Immune evasion
PFGB4_110005000 PF3D7_0223500 PfEMP1 Immune evasion
PFGB4_120005100 Unknown Hypothetical protein, conserved Unknown
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typically rearrange or reorient existing sequences in the genome
and thus may not always give rise to novel k-mers. Instead, their
presence would be signaled by changes in coverage (Nijkamp
et al. 2012) and/or patterns of graph connectivity (Lemaitre et al.
2014), which can be found by appropriate comparison between
coassembled samples. Future work should capture these variant
types byadditionally considering k-mer coverage andgraphmotifs.

With the introduction of the high-yield PacBio Sequel II plat-
formwith circular consensus (or “HiFi”) sequencing, aswell as con-
tinued innovation inbase-callingbyOxfordNanopore to lower the
per-readerror rate, the constructionof additional draft referencege-
nomes is becoming more accessible. The utility of these data ex-
tends beyond pure de novo assembly for constructing new
reference sequences or for elucidating structural variation in single
samples. Strategic choices as to which samples to sequence with

long reads can enable simple and complex variant discovery in a
much larger cohort while simultaneously keeping costs low pro-
vided that variant calling methods are capable of leveraging such
information. Corticall is a step forward in this direction, presenting
a uniform approach to variant discovery and typing that combines
assembly, alignment, recombinationmodels, and third-generation
reference sequence panels. Such approaches will assist in over-
coming bias to a single canonical reference sequence and enable
a more complete description of variation in diverse populations.

Methods
Assembly of long-read data

Weperformed PacBio RSII sequencing to∼100× coverage (per ven-
dor recommendation) on DNA from the six experimental cross

B

A

C

Figure 6. Three of the detected NAHR events in the P. falciparum crosses. (A) NAHR event involving two var genes in 3D7×HB3 progeny X5
(PF3D7_0100100 on Chr 1, PF3D7_0223500 on Chr 2). (Top) LdBG contigs spanning mutation (dBG contig shown as thin black line for comparison).
Called mutations shown along contig as red points. (Bottom) Mutations from LdBG contigs in genomic context shown in red. Gene models shown in
dark blue (thick lines: exonic sequence; thin lines: intronic sequence). Inferred recombination path shown in gray. (B) NAHR event in 803×GB4 sample
38G5 (PFGB4_080041200 on Chr 8; PFGB4_11005100 and PFGB4_11005000 on Chr 11). (C) NAHR event in 3D7×HB3 sample XP24
(PF3D7_0700100 on Chr 7 and PF3D7_1100100 on Chr 11).
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parents (3D7, HB3, DD2, 7G8, GB4, 803) and a single progeny
clone from the 803×GB4 cross, 36F11. We performed de novo as-
sembly on each isolate using HGAP2/HGAP3; removed potential
sequence contaminants; performed pseudochromosome contigu-
ation (to facilitate easy comparison with the canonical reference
sequence for isolate 3D7), and annotate gene, repeat, and core/
noncore genome compartments. Further details of sample prepa-
ration, sequencing, assembly, annotation, quality assessment,
and download links are provided in the Supplemental Material.

Assembly of short-read data

We analyzed data from 119 individual isolates from four P. falcip-
arum experimental crosses collected and sequenced in the
MalariaGen Genetic Crosses project (https://www.malariagen
.net/projects/p-falciparum-genetic-crosses). Isolates were se-
quenced using the Illumina GAII or HiSeq platforms to obtain PE
reads ranging from 76 to 100 bp with a target coverage of ≥100×.
We performed de novo assembly on each isolate using the
McCortex (Turner et al. 2018) assembler, using the aforemen-
tioned long-read assemblies to augment the connectivity of each
short-read genome graph. Further details of sample preparation,
sequencing, assembly, and download links are provided in the
Supplemental Material.

Overview of the Corticall algorithm

Our DNM calling strategy is based on identifying mutational mo-
tifs in a “multicolor LdBG” (Iqbal et al. 2012; Turner et al. 2018).
This can be decomposed into three steps. First, we construct
LdBGs from short-read and long-haplotype data sets. Second, for
each so-called “novel” k-mer (those unique to a child and absent
from its parents), we assemble a child contig and one or more pa-
rental contigs containing k-mers shared with the child contig.

Finally, we perform probabilistic all-to-all alignment allowing for
recombination, attempting to describe the child’s sequence as a se-
ries of match, insertion, deletion, and recombination operations
on a panel of candidate parental sequences. Decoding the trace-
back of the probabilistic alignment yields variant calls. Details
on each step are provided below.

Construction of the LdBG

Briefly, a dBG for sample c is formulated as a set of vertices and edg-
es, Gc = {Vc, Ec}. Vertices Vc are input sequences are broken into
fixed length substrings of length k (“k-mers”) with unit stride,
and edges Ec encode k−1 overlaps of adjacent vertices. Each record
is recorded as three columns: a k-mer sequence, its coverage, and its
incoming/outgoing edges. N sample graphs constructed at identi-
cal k can be “stacked” by performing a full (outer) join on k-mer se-
quences, each sample c’s coverage and edge information simply
being recorded as two additional columns in each k-mer record.
Stacking facilitates easy comparison of the graphs of N samples
and formally yields a union graph G = ⋃N

c=1 Gc. This formulation
encodes relationships between two adjacent k-mers (the ith and
(i+1)-th k-mers in a sequence, as well as the (i−1)th and ith),
but relationships between nonadjacent k-mers are lost. Thus,
even if an input sequence spans a repeat when a single k-mer
does not, the connectivity information inherent in the sequence
is not retained. We restore this connectivity by trivially aligning
input sequences Rc,d from data set d to graph GC . The addition of
new vertices to the graph during alignment is disallowed; the pro-
cess merely amounts to lookups of shared k-mers between the in-
put sequence and the graph and to bridging gaps over sequence
differences with simple walks on GC . For all junctions (vertices
with in-degree or out-degree greater than one) spanned by an in-
put sequence, we record the series of disambiguating edge choices
(referred to as “links”), exhaustively annotating all participating
junctions with relevant navigation information. We refer to
this composite data structure (graph and links) as a LdBG,
G = Vc, Ec,

⋃D
d=1 Lc,d

{ }
, where Lc,d is a sparse set of links on graph

color c derived from sequence data set d.

Using links during LdBG navigation

By exhaustively annotating all spanned junctions with links, we
ensure that traversal initiated anywhere in the graph has access
to complete link information. Upon initiating a walk at vertex
vc, we collect each link we encounter. At a junction, we consult
our list and extract the oldest link (i.e., the link that was obtained
earliest in the traversal), as this link establishes the greatest context
as to location in the genome. If there are multiple links with the
same age that disagree as to the next junction choice, we halt
traversal.

Identification and filtration of novel k-mers

In a multicolor dBG representing parents and children from a ped-
igree or an experimental cross, the locations of most DNMs will be
signaled by the presence of novel k-mers: sequences unique to a
child’s genome and absent from both parental genomes. The set
of novel k-mers in a child should also provide an indication as to
how much novelty in a genome remains to be explained by
some mutational process. As sequencing errors and sample con-
tamination will also contribute to the set of novel k-mers, we
sought to identify all novel k-mers in a child’s graph and remove
potential errors and contaminants. We identified and developed
filters for five common graph or sequence motifs indicative of
error:

Figure 7. Calls tagged by 36F11 k-mers novel with respect to 3D7, rede-
scribed against combinations of other reference sequences. Stacked bars
represent fraction of novel k-mers linked to homozygous-reference
(hom-ref) and homozygous-variant (hom-var) calls or of k-mers where
no call could be made. Colors represent the specific haplotypic back-
ground the call was placed on (if a call can be equally described onmultiple
backgrounds, one is chosen at random).
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1. Contamination.Contamination presents as a subset of novel
k-mers that are unique to the sequencing data for a child but are
irrelevant to the study at hand. To remove these sequences,
each entry in the initial set of putative novel k-mers was
screened for contamination via BLAST (Altschul et al. 1990).
We rejected any k-mer with a match of any quality to an organ-
ism other than the species under study. To account for muta-
tions present in our contaminants but absent in the BLAST
database, we used the contaminating k-mers as starting points
for DFSs in our graphs, exploring the child’s graph until it re-
joins a parent’s graph and rejecting all k-mers along the way.

2. Graph tips.Graph tips present as a series of novel k-mers that
bifurcate from a parental graph but never rejoin. They are typi-
cally the result of sequencing errors at the ends of reads but
could also reflect true variation and subsequent coverage
drop-out during sequencing. However, in the latter case, such
variation tagged by novel k-mers would still not be recoverable
without further sequencing data to fill in the missing coverage.
To remove graph tips, we perform DFS from a putative novel
k-mer, expecting to rejoin a parental graph on both ends. If ex-
ploration on one end connects to a parent and fails on the other
end, we reject all child k-mers contained in the traversal.

3. Promiscuously connected sequences. Low-complexity se-
quence (or “dust”) may manifest as k-mers promiscuously con-
nected to many other low-complexity k-mers, presenting as an
unnavigable graphical tangle. We defined such dust k-mers as
those having a sum of in-degrees and out-degrees greater than
four. We initiated DFS at such k-mers, exploring until we either
run out of edges to navigate or rejoin a parental graph and keep-
ing track of the number of k-mers traversed since the last time
we observed one of low complexity. If we reach one of the afore-
mentioned stopping conditions and the distance traversed
since the last low-complexity k-mer is less than the graph’s k-
mer size, we consider the traversed vertices to be dust and reject
all elements.

4. Highly compressible sequence. Additional low-complexity
sequences are detected by computing the compression ratio
(“CR”) of the k-mer (gzip-compressed length vs. uncompressed
length) and removing any putative novel k-mer with a CR less
than a predefined threshold (by default 0.703 for 47-bp k-mers).

5. Orphans. Graphical orphans are a series of novel k-mers that
fail to ever connect to a parental graph. They may include con-
taminants absent from the BLASTdatabase or readswith unusu-
ally high sequencing error.We performed DFS at putative novel
k-mers, rejecting k-mers from traversals that joined one of the
parental colors at any time.

We also removed putative novel k-mers from consideration
based on two additional criteria:

1. Shared k-mers. Putative novel k-mers, although absent from
parents, may be shared among children. Some of these may re-
flect recurrent DNMs, but the overwhelming majority stem
from recurrent sequencing errors. We remove k-mers shared
with other children (omitting clones of a child from
consideration).

2. Low coverage. A number of putative novel k-mers substan-
tially less than the mean coverage of the sample. Such k-mers
may still permit navigation to flanking regions with coordi-
nates in a parental genome, despite arising from sequencing er-
ror. We remove k-mers with coverage less than a specified value
(by default, 6×).

The bulk of sequences captured by these final two filters are
likely to be recurrent sequencing error. However, we note that

they could also remove a small number of DNMs from our
consideration.

Query sequence assembly

To construct sequences spanning putative variants, we perform
contig assembly at each novel k-mer on the query sample (e.g.,
the child). Unless otherwise specified, these assemblies are con-
ducted using McCortex links generated by threading the sample’s
PE read data and the parental assembly data through the query
sample’s graph (Turner et al. 2018). Optionally during graph tra-
versal, if we encounter a junction vertex that (1) is itself a novel
k-mer and (2) cannot be traversed with links and if (3) one (and
only one) of the outgoing vertices is also a novel k-mer, thenwe as-
sume both novel k-mers are part of the samemutational event and
extend contig construction through these vertices. As assemblies
seeded by proximate novel k-mers may result in redundant con-
tigs, we postprocess the contig set to remove redundant sequences
and those fully containedbyother contigs. Finally, ifmultiple con-
tigs share a novel k-mer, we remove all but the contig that contains
the largest number of novel k-mers. This effectively “partitions”
the contig set into those representing distinct mutational events.

Source sequence assembly

For each query sequence, we build a panel of source sequences to
which the query is aligned. At each nonnovel k-mer in the query
sequence, we perform contig assembly on the source samples
(e.g., the parents). Unless otherwise specified, these assemblies
are conducted using McCortex links generated by threading the
sample’s PE read data and the parental assembly data through
the child’s graph. During assembly, gaps at the boundaries of mu-
tational events in the query sample may be incompletely assem-
bled owing to sequencing error or graph homology. We close
these gaps via DFS between gap boundaries. If still not closed, we
assemble gap flanks by a maximum of 500 bp. Flanking sequence
irrelevant to the query is trimmed by subsetting the source within
the boundaries of the earliest and latest k-mers shared with the
query sequence.

Each source sequence is given a unique label, simply incre-
menting from first to last. If a reference sequence is specified for
the relevant sample in the LdBG, the source sequence is aligned
to that reference using BWA-MEM and relabeled with the resulting
genomic coordinates. Note that the relabeling step does not alter
the source sequence in any way.

Variant typing by simultaneous alignment to reference

genome panels

Two general classes of graphical variant motifs concern us: “bub-
bles” (SNVs, short indels and inversions, multinucleotide poly-
morphisms) and “breakends” (large indels and inversions,
NAHRs, gene conversions, and allelic recombinations).We address
both classes of variants in a single probabilistic frameworkwherein
a novel k-mer-spanning contig (“query” sequence) is simultane-
ously aligned to a panel of candidate haplotypes (“source” se-
quences). We achieve this by repurposing the Tesserae model
(Supplemental Material; Zilversmit et al. 2013), a pair-HMM com-
bining models for global alignment with affine gap penalty (de-
scribed by Durbin 1998) and haplotype diversity estimation via
recombination (Li and Stephens 2003), to the task of bubble and
breakpoint variant typing. Briefly, we assume a query sequence
arises as an imperfect mosaic of source sequences. For each query
and its candidate source sequences (collectively referred to as the
“sequence set,” h), we apply the Viterbi algorithm to find themax-
imum likelihood path through our pair-HMM.
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The model (including formal descriptions of the Viterbi, for-
ward, and backward algorithms) is fully specified by Zilversmit
et al. (2013). The pair-HMM is specified by a transition matrix
and emission matrix, detailed in the Supplemental Material.

Data access

The GB4, 803, and 36F11 PacBio sequencing generated in this
study have been submitted to the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number PRJEB31043.

Source code and a precompiled release of Corticall is provided
as Supplemental Code and is freely available at GitHub (https
://github.com/mcveanlab/Corticall). This software is released un-
der the open-source Apache 2.0 license.
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