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A B S T R A C T

Even though industrial development has brought vast improvements to our daily lives, it carries with it negative
effects such as adverse health outcomes caused by PM2.5 and other pollutants. The negative externalities and
external costs might occur when property rights are not properly defined, which means that if no one holds a
property right on the atmosphere and the quality of air, there is no appropriate mechanism to prevent a further
expansion of negative effects. An economic burden of pollution related to premature morbidity and mortality in
individual countries can account for 5–14% of GDP (World Bank, 2021). In 2019, the worldwide health cost of
mortality and morbidity caused by exposure to PM2.5 concentration was $8.1 trillion, which is equivalent to 6.1
percent of the global gross domestic product (GDP) (World Bank estimate). Policymakers require evidence-based
results that clearly show the impact that air pollution has on the economy and society, in order to be able to
establish the proper regulations and ensure their successful implementation. The purpose of this long term study is
to provide methods for assessing the negative effects of PM2.5 concentration on PM2.5-related mortality using
panel data structure and demonstrate how socio-economic factors affect this relation. This study employed
advanced econometric techniques to analyse the long-term impact of PM2.5 on human health, while controlling
for socio economic indicators. This study has demonstrated significant effects of socio-economic, health risk and
system and governance variables on the relation between PM2.5 concentration and PM2.5-related mortality.
1. Introduction

Large-scale industrial development is counted as one of the primary
reasons for the appearance of PM2.5 in the rapidly developing modern
world. Polluted air spreads through the environment and affects people’s
health, and according to Cohen et al. (2017) PM2.5 pollution is a
contributing factor to cardiovascular and respiratory diseases, including
lung cancer. In numerous countries, air pollution is the most important
environmental determinant of health, and the World Health Organiza-
tion (WHO, 2016) estimates that about 7 million premature deaths are
attributed annually to the effects of ambient and household air pollution.
In order to improve their living standards, as well as healthcare and life
expectancy, developing countries have had to prioritize industrial
development. Overall, as emissions of air pollution rise, this leads to
considerable detrimental changes in the environment and can thus cause
ar).
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negative health effects in people. (Brunekreef, 1997; Correia et al., 2013;
Ebenstein et al., 2017; DeFelice, 2020).

During our extensive literature review, we have found that fine par-
ticulate matter (PM2.5) carries the most association with adverse health
outcomes, and therefore causing significant public health concerns (Ito
et al., 2011; Ostro et al., 2007; Peng et al., 2009; Thurston et al., 2005;
Zhou et al., 2011). Cohen et al. (2005) estimated that outdoor PM2.5 air
pollution is responsible for adult cardiopulmonary disease mortality
(about 3%), trachea, bronchus, and lung cancer mortality (about 5%),
and mortality in children under 5 years from an acute respiratory
infection (about 1%) in urban areas worldwide.

A notable number of studies have elaborated the effect of fine par-
ticulate air pollution PM2.5 on health (Pope and Dockery, 2006; Pope
et al., 2009; Caccarelli et al., 2016), that take into account economic
growth and other control factors. However, most of these studies are
16 September 2022
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:Dejan.Loncar@unige.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e10729&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e10729
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2022.e10729


D. Lon�car et al. Heliyon 8 (2022) e10729
focused on short-term exposure to PM2.5 in limited geographical settings.
In addition, the methodologies adopted for this kind of analyses have not
been able to address the issues of autocorrelation and endogeneity in
their econometric models. Several studies have suggested that socio-
economic factors play a significant role in the epidemiology of diseases
and mortality associated with exposure to air pollution, as exposure often
varies according to the socioeconomic status of the population (Dockery
et al., 1993; Zanobetti and Schwartz, 2000; Bobak and Leon, 1999;
Gwynn and Thurston, 2001). The objective of this study is to enhance the
comprehension of the association between socio-economic indicators,
human health and mortality which is caused by PM2.5, while also
providing insight related to which econometric models can be utilized to
model this association.

In order to be able to incentivize international and national stake-
holders to develop policies and instruments that will decrease the con-
centration of PM2.5, it is crucial to analyze and document the negative
effects of PM2.5 air pollution on health and the economy. So far, signif-
icant financial resources, through various institutions and sectors, have
been channeled to cope with the direct and indirect consequences of air
pollution on health. Kunzli et al. (2001) explain that national and in-
ternational efforts to mitigate the risks from air pollution should have a
multi-sector approach, considering all socio-economic aspects of this
significant issue through the prism of government, businesses, popula-
tion and the wellbeing of the planet.

2. Methodology

In this study, we investigated the effects of PM2.5 concentration on
the population over 35 years of age on associated health outcomes while
controlling for factors such as GDP, education, smoke intensity,
inequality of the distribution of wealth, indoor pollution produced by
the use of fossil fuels, population density in urban areas and national
and health system regulatory capacities. The selection of variables for
this study is based on theoretical concepts, an extensive literature re-
view and the World Health Organization’s air quality database that
provides data disaggregated by ICD codes. Our primary covariate of
importance is annual mean exposure to PM with a diameter size of 2.5
microns or less (PM2.5). Additionally, PM2.5 data is deemed merely as a
proxy indication of air quality to inform cross-country comparisons of
the health risks due to PM (World Bank Group). Our independent var-
iables included in the regression model are: GDP PPP, HDI, Social
Health Determinants and Health Risk Indicators, Smoking Prevalence,
DTP coverage, GINI Index, WGI variables, Fossil Fuel consumption as
percentage of total energy consumption, Urban/Rural percentage of
population, Polity IV project indicators. The mortality data are mapped
with the following ICD codes: B27, B29, B101, B323, B325 (ICD9) and
I20–I25, I60–I69, C33, C34, J40–J44 and J47 (ICD10).

Mortality data contain a number of limitations which need to be
addressed. Our unbalanced panel of mortality data consists of 91 coun-
tries (1397 data points) mostly from high and upper middle-income
countries and limited number of data for 2015 (15 data points) from
low-income countries. We have deliberated applying the projected
mortality data from the Institute for Health Metrics and Evaluation
(IHME) to increase the completeness of our dataset but this attempt was
not used due to bias issues that may appear since this IHME and WHO
methodology (Mathers and Loncar, 2006) employs identical independent
variables to populate missing mortality data as we do in our
regression analysis. In this study we proxied health system capacities and
prioritization of health with the coverage of immunization
Diphtheria-tetanus-pertussis (DTP), expressed as the percentage of
immunized children ages 12–23 months from the World Bank Group,
(Bos and Batson, 2000).

We addressed a few methodological challenges when approximating
a relationship between PM2.5 concentration and PM2.5 related mortality
and other socio-economic independent variables using cross-country
data over time (Lon�car et al., 2022). Independent variables could be
2

potentially endogenous which means that we need to adopt appropriate
instrumental variables estimation techniques to correct for endogeneity
bias. Since there is a data set running across several countries over time,
there may be unobserved heterogeneity in the data, and they have to be
properly accounted for. We considered dynamic effects and tests for
potential autocorrelation in the error term due to a presence of time se-
ries in our model.

Our model can be expressed in a general notation:

yit ¼ x
0
itβ þ εit i ¼ 1…N; t ¼ 1…T; (1)

where yit denotes the PM2.5-relatedmortality rate of country i in year t, x
0
it

is (1 � K) row vector of the observation (i,t) on all the explanatory var-
iables mentioned above as well as the controls, and εit is the error term. In
our study we used following econometric specifications: (i) A classical
least squares regression (OLS) which assumes exogeneity of all xit ’s and
i.i.d. εit , but it ignores the panel data nature, thus we need to use more
advanced econometric estimators, (ii) Fixed and Random Effects models
that can address panel data structure but not potential endogeneity in the
model and (iii) Instrumental Variables method where we address the
both endogeneity of our independent variables and panel data nature.
2.1. Introduction to panel data estimators

Before analysing panel data models it would be beneficial to discuss
the nature of the unobserved effects. The challenge arises due to the fact
that we have presumed the intercept α to be the same for all countries.
Disregarding the individual or time-specific effects that occur among
cross-sectional or time-series units can lead to inconsistent or meaning-
less estimates of the relevant parameters. Consider the following error
component model shown in Eq. (2):

yit ¼ αiþxitβþ vit (2)

αi are unobserved time-invariant individual effects; vit is the error term,
also not observed. xit is a (1 � k) vector of regressors, and β is a (k � 1)
vector of parameters to be estimated. We assume the following:

Assumption Panel #1. (Linear model) The model can be written as Eq.
(2) where αi is unobserved.
Assumption Panel #2. (Random sample) yit and xit are identically and
independently distributed (i.i.d.)
Assumption Panel #3. (Identification) There is no perfect linear
relationship among the explanatory variable (matrix X is non-
singular).
Assumption Panel #4. (Spherical disturbances) (i) V (αi|X)¼ σ2; (ii) V
(vit |X) ¼ σ2v; (iii) E (αi vit |X) ¼ E (vitvis |X) ¼ 0.
2.2. Instrumental variables (IV)

The Zero Conditional Mean assumption or exogeneity assumption is
at the core of OLS unbiasedness and consistency. Whenever this
assumption fails i.e., OLS estimator is biased and inconsistent as some of
the regressors are correlated with the error term. This can arise for
several reasons: sample selection, reverse causality, omitted variables or
measurement error. To address endogeneity issues we use the instrument
variables instead of endogenous variables in the model. Instruments are
variables, which impact y but only indirectly, through their effect on
endogenous variable xk. Two conditions have to be satisfied by a valid
instrument z, the instrument has to be correlated with the endogenous
explanatory variable, and has to be uncorrelated with the error term.

The main notion of the IV estimation procedure is to take variation in
the explanatory variable that matches up with variation in the instru-
ment, so is uncorrelated with the error and uses only this variation to
compute the slope estimate (Anderson and Hsiao, 1981).
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IV Estimator: Provided that we have a random sample of observations
on y, X, Z and Rank E (Z0X) ¼ k, where IV conditions are satisfied, the
instrumental variable estimator is defined as in Eq. (3):

cβIV ¼ðZ0
XÞ�1Z

0
y (3)

We can obtain the IV estimator using a two-step procedure:

1. Regress by OLS endogenous variable X on instrument Z: X ¼ δZ þ μ
2. Use the predicted bX as the explanatory variable in the structural

equation: y ¼ bXβþ u

Using simple matrix algebra, we can show Eq. (4):

cβIV ¼ðZ0
XÞ�1Z

0
y¼ðbX0

bXÞ�1
bX
0
y (4)

2.2.1. Limitations of IV estimation
The assumption for the validity of the instrumental variable z,

whereby Cov (z,u)¼ 0, is partly subjective since its exogeneity cannot be
fully tested statistically. We can, however, perform a number of tests to
support the use of our instruments.

The following are some of the aspects and limitations which users of
this methodology should be aware of. A weak instrument is a variable,
which is weakly correlated with the endogenous regressor although the
instrument might be still “relevant”. The first issue is that weak in-
struments lead to more imprecise estimates. A second issue is that weak
instruments exacerbate the bias. To confirm two conditions that have to
be satisfied by a valid instrument z, we test the instrument for its validity
using Sargan-Hansen’s test and its strength using Anderson-Rubin under-
id tests.

In order to test the relevance of the instruments to meet the rank
condition we use a t-test or F-test on the instruments' coefficients in the
first stage estimation. With more endogenous regressors (Lon�car et al.,
2019), we have to rely on the Cragg-Donald F-statistic, the F-statistic of
the relevance of the instruments. A value of 10 or more for this F-statistic
is a common rule-of-thumb, but it can be contingent on the size of the
sample and the number of instruments (reported by IVREG2 command in
Stata).

3. Results

3.1. Descriptive statistics

The descriptive statistics of our variables of interest are offered in
Table 1.

The summary statistics of PM2.5 related death rate, PM2.5 concen-
tration and gross domestic product (GDP) show that the skewness values
are 0.7, 3.2 and 1.7 while kurtosis values are 3.1, 15.3 and 7.9 respec-
tively, which shows a lack of symmetry and the presence of outliers in
PM2.5 concentration and GDP data. Regional variations of variables of
Table 1. Summary statistics.

Variable N Mean SD Midian Min Max

Death rate 1387 678 342 619 2 1753

PM2.5 1387 21 16 17 5 122

GDP per capita PPP 1350 26392 19872 24008 1040 132514

Human capital 1387 10 2 10 3 13

Smoking prevalence 1384 0 0 0 0 0

Fossil use (%) 1322 77 19 82 10 100

Gini 1015 0 0 0 0 1

Urban population 1387 69 17 70 9 100

DTP coverage 1337 93 7 95 45 99

Polity 1274 18 5 20 1 21

3

interest are observed in our dataset. The highest mean of PM2.5 related
death rate is registered in Europe and Central Asia and the lowest in
South Asia, 787 and 163 cases per 100.000 populations, respectively. As
anticipated, the Middle East and North Africa (MENA) and South Asia
have the highest average values of concentration of PM2.5, 51 and 30 μg/
m3, respectively. The lowest level of PM2.5 is registered in North America,
with an average concentration of 9.4 μg/m3. North America has the
highest GDP based on purchasing power parity (PPP) of USD 39,341,
while the lowest level of GDP, as anticipated is recorded in Sub-Saharan
Africa of USD 11,994 and South Asia of USD 8,476. The results of this
study ought to be analysed from the perspective of countries which were
used in this report, as out dataset includes mostly high and upper-middle-
income countries.

We postulate that certain income level variations exist in our data,
therefore we summarized the variables by income level in Table 2. The
highest mean of death rates attributed to PM2.5 pollution is found in
lower middle income countries, with 964 cases per 100,000 population,
and the lowest level is in high income countries, with 622 cases per
100,000 population. This was anticipated when observing the data.

In the bivariate analysis we observed an unexpected negative trend
between PM2.5 concentration and the PM2.5 related death rate. We
observed that where PM2.5 is less than 50 μg/m3, there is no clear relation
between PM2.5 concentration and PM2.5 related death rate. The second
segment, where PM2.5 is higher than 50 μg/m3, demonstrates that this
relationship has a negative trend. The countries that drive the negative
trend in the second segment of the graph are: Tajikistan, Kuwait, Egypt,
Bahrain, and Qatar.

Figure 1 shows time trends of PM2.5 related death rates, PM2.5 con-
centration and GDP in the dataset. The death rate attributed to PM2.5
shows a slightly decreasing trend which is not something unforeseen, due
to the fact that the majority of our data comes from high and upper-
middle income countries where generally the mortality rate caused by
PM2.5 associated diseases are decreasing. Interestingly, the PM2.5 mean
shows quite a concave shape, showing initially a decreasing and after an
increasing trend. As expected, the GDP means shows constantly an
increasing trend.
3.2. Using available models

A Fisher test for unbalanced panel data was employed to test the
stationarity of the time series of our variables. Under the null hypothesis,
the Fisher’s test assumes that all-time series are non-stationary against
the alternative that at least one-time series within the panel is stationary.
Fisher’s test confirmed a sufficient level of stationarity and we rejected
the null.

A simple OLS lin-lin model was employed to analyse the determinants
of the dependent variable which is death rate attributable to PM2.5
concentrations (per 100,000 individuals). Our primary independent
variable of interest is the annual mean of PM2.5 concentrations, expressed
in μg/m3 and another health risk, socio-economic and governance con-
trol variables such as: GDP PPP, smoking intensity and human capital
index. The OLS reported negative and non significant association be-
tween PM2.5 concentration and PM2.5 related death rates, however
smoking prevalence showed significant and positive association with
PM2.5 related death rates. Since the OLS model does not address panel
Table 2. Tabular statistics for death rate by income level (in hundreds).

Income Summary of Death rate

Mean Std.Dev. Freq.

High 6.2213176 2.9450498 935

Lower middle 9.6365257 4.3552476 138

Upper middle 7.1978764 3.5926168 314

Total 6.7821959 3.4200922 1,387



Figure 1. The trend of death rate, PM2.5, GDP (World Bank Open Data).

Table 3. Instrumental Variable (I–V) regression estimator results (lin-lin).

Variable IVREG1 DIVREG1

lag Death Rate - - 0.806*** (0.026)
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data nature and endogeneity issues, we utilizedmore advancedmodels in
order to widen our analysis.

Before looking at the Instrumental Variable (IV) models, we briefly
report the results of the panel specifications, namely Fixed and Random
Effects models, that keep GDP exogenous and enable us to gain more
insights into the panel effects over the time. We used a Hausman test to
compare the within estimation with the generalized least squares (GLS)
approach. We rejected the absence of correlation of the specific effects
with the other exogenous variables, and thus employed Fixed Effects (FE)
models for the interpretation of the results. To improve normality and
heteroscedasticity in the model we corrected the standard errors by using
the “robust cluster” option in the regression models.

In order to regulate for the effects of indoor PM2.5 pollution and
government regulatory capacity on PM2.5 related mortality, we included
“percentage of use of fossil fuel” and “regulatory quality” variables. Both
variables showed a significant association (p< 0.001) with PM2.5-related
mortality, with the estimated regression coefficient for the “percentage of
the use of fossil fuel” variable ranging between 2.8 and 3.9 and the
estimated coefficient for the regulatory quality variable varying between
-68 and -82. The polity variable to proxy democratic and open gover-
nance systems is consistently found to be insignificant in the model.
PM2.5 -7.14 (6.92) -9.71* (4.23)

lag PM2.5 -0.641 (5.16) 8.20** (3.16)

GDP PPP per capita -0.011*** (0.001) -0.003** (0.001)

I.T. PM2.5* Gini -4.18 (4.34) -2.50 (2.65)

Smoking Prevalence 871*** (194) 48.09 (122)

Human Capital -26.1*** (6.04) -1.05 (3.75)

Fossil Use 4.33*** (0.864) 0.780 (0.539)

DTP Coverage -2.03* (1.01) - -

Regulatory Quality -90.5*** (17.0) -14.7 (10.6)

R-squared 0.525 0.823

N 622 622

Note: *p<; 0.05, **p < 0.01, and ***p < 0.001.
3.3. Instrumental variable (IV) estimation

Finally, the instrumental variable (IV) models to address the issue of
the possible endogeneity of GDP was employed. Our strategy was to use
“Polity” variable to instrument GDP in the model as it is reasonable to
belive that “Polity” variable is positively correlated with GDP. It has been
shown in a significant number of studies that higher economic growth
seems to be a trait of more democratic governments (Helliwell, 1994). A
further motive for employing the “Polity” variable as an instrument, is
that we have never found the polity variable to be statistically significant
in any of our model estimations. We tested validity of the instrument and
performed an over-identification test.
4

Table 3 reports the results of the IV regression model (IVREG1) es-
timations with the “polity” and lag of GDP variables used to instrument
for GDP and address endogeneity issue. We find that the “Polity” and lag
of GDP variables are valid, relevant and not a weak instrument. As the
residuals in the model are not autocorrelated, we introduced a dynamic
component in the model which is lag of PM2.5 related death rates (DIV-
REG1). The IV regression models show that instrumented GDP is statis-
tically significant (p < 0.001) and negatively associated with death rates
attributed to PM2.5 with coefficient estimates of �0.011 and �0.003, for
the IVREG1 and DIVREG1 models, respectively. To be able to proxy the
time of exposure to PM2.5 concentration we used interaction term of Gini
index and PM2.5. Our hypothesis is that certain populations with varying
income levels are subject to differing levels of PM2.5. PM2.5 concentra-
tion, the lag of PM2.5 concentration, and interaction terms PM2.5*Gini are
not shown to be statistically significant. However, as anticipated,
smoking prevalence and % use of fossil fuel demonstrate a significant (p



Table 5. Arellano-Bond regression results (log-log).

Variable ABOND-1 ABOND-2

log ln (Death Rate) 0.377*** (0.044) 0.459*** (0.012)

ln (PM2.5) -0.200 (0.116) -0.036 (0.029)

ln (lag PM2.5) 0.100 (0.096) -0.030 (0.045)

I.T. ln (PM2.5* Gini) -0.003 (0.077) - -

ln (GDP PPP per capita) 0.352 (0.438) -0.108*** (0.013)

ln (SQ GDP PPP per capita) -0.024 (0.023) - -

ln (Human Capital) -0.124* (0.063) -0.081*** (0.015)

ln (Smoke Prevalence) 0.449*** (0.075) 0.423*** (0.054)

ln (Fossil Use) 0.215*** (0.045) 0.269*** (0.025)

ln (Regulatory Quality) -0.051 (0.080) -0.018 (0.019)

ln (Gini) - - 0.009 (0.007)

Constant 3.29 (2.156) 4.43*** (0.214)

N 429 408

Note: *p < 0.05, **p < 0.01, ***p < 0.001.
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< 0.001) and positive association with the mortality rate, with estimated
regression coefficients of 872 and 4.33, respectively. Human capital (p <

0.001), regulatory capacity (p < 0.001) and diphtheria-tetanus-pertussis
(DTP) coverage (p < 0.05) also revealed to have a statistically significant
and negative association with the mortality rate, with coefficient esti-
mates of �26, �91, and �2, respectively. The DIVREG1 model reveals
that the lag of the death rate attributable to PM2.5 pollution has a sig-
nificant and positive association (p < 0.001) with mortality with a co-
efficient estimate of 0.81. In the DIVREGmodel, it can be seen for the first
time that the lag of PM2.5 concentration has a positive association with
mortality with an estimated coefficient of 8.2 at a statistically significant
level (p < 0.01). The log-transformed IVREG1 and DIVREG2 models do
not produce results that vary significantly from those observed so far in
the other regression models (Tables 3 and 4).

We use the same I–V models but with log transformed variables of
interest for the instrumental variable regression models with and without
the dynamic component (Table 4). To summarize the data, the lag of
death rate is found to be significant at a level of p< 0.001 with a positive
regression coefficient of 0.7. The results for the marginal effects of PM2.5
concentration on mortality follow the findings that we have observed in
previous models. Specifically, we cannot observe the significance of
PM2.5 concentration either in IVREG2 nor DIVREG2, although the signs
of the regression coefficients are negative.

Furthermore, the lag of PM2.5 concentration exhibits a positive but
insignificant association with mortality (DIVREG2). The results for GDP
demonstrate a negative and statistically significant association with
mortality (p < 0.001) for both models, with coefficient estimates of
�0.28 and �0.09, respectively. The “smoking prevalence” and socio-
economic indicators are found to be significant at the p < 0.001 level
with the expected association with mortality attributed to PM2.5
(IVREG2): smoking prevalence (0.72), human capital (�0.5), % use of
fossil fuels (0.36), DTP coverage (�0.5) and regulatory quality (�0.18) at
a significance level of p < 0.05. The socio-economic variables in the
DIVREG2 model are found to have a similar association with mortality.

Consequently, we use the Arellano-Bond (ABOND) method for the
endogenous covariate in the model as a dynamic panel model specifi-
cation. The models ABOND1 consider GDP to be an exogenous variable,
while the ABOND2 models' instrument GDP with the polity variable and
the lag of the GDP (Table 5). As anticipated, for all variants of the dy-
namic panel models that we inspected, the lag of death rate is found to be
statistically significant at a high level (p < 0.001), with a positive
regression coefficient varying between 0.38 and 0.46. PM2.5 concentra-
tion and the lag of PM2.5 concentration in most of the models are not
found to be statistically significant, showing a mixed association with
mortality. The variables such as GDP, human capital, smoke prevalence
and fossil use give consistently statistically significant results with effects
on PM2.5 related mortality as we have anticipated.
Table 4. Instrumental Variable (I–V) regression estimator results (log-log).

Variable IVREG2 DIVREG2

ln (lag Death Rate) - - 0.704*** (0.025)

ln (PM2.5) -0.164 (0.176) -0.168 (0.116)

ln (lag PM2.5) -0.374* (0.155) 0.056 (0.104)

I.T. ln (PM2.5* Gini) 0.192* (0.083) 0.006 (0.055)

ln (GDP PPP per capita) -0.280*** (0.034) -0.094*** (0.024)

ln (Human Capital) -0.500*** (0.083) -0.154** (0.056)

ln (Smoke Prevalence) 0.718*** (0.051) 0.187*** (0.039)

ln (Fossil Use) 0.360*** (0.062) 0.112** (0.042)

ln (DTP Coverage) -0.500*** (0.118) - -

ln (Regulatory Quality) -0.178 (0.077) -0.058 (0.051)

R-squared 0.630 0.838

N 622 622

Note: *p < 0.05, **p < 0.01, ***p < 0.001.
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4. Discussion

In this study we investigated our assumptions concerning the as-
sociation of PM2.5 concentration, socioeconomic, health risk and sys-
tem and governance indicators on PM2.5 related mortality, controlling
for time of PM2.5 exposure where these variables were operationalized
by PM2.5 emission, GDP, Gini, education, smoking intensity, immuni-
zation coverage, ratio of urban population, and government regulatory
capacity. The income level of population was controlled by GDP, and
the fossil use variable was included to control effects of industrial
development and indoor PM2.5 pollution. The effect of human capital
on mortality has been very well documented in literature, so we uti-
lized the education variable to control this association. Numerous
studies revealed a strong association between risk factors such as
smoking prevalence and mortality (Mathers and Loncar, 2006) thus we
employed this variable in the model. As argued, the population with
lower income levels is exposed to higher levels of PM2.5 emissions for
longer periods of time and consequently, will have more negative
health consequences of PM2.5 emission. Population density and
industrialization were the primary reasons for influencing heightened
PM 2.5 pollution (Xiangxue et al., 2021). A study in China demon-
strated that population accumulation, industrialization, foreign in-
vestment, transportation, and pollution emissions added to the
escalation of PM2.5 concentration. (Yazhu et al., 2019). Analysing the
results of a study in California, authors concluded that future mortality
studies should reflect on adjusting for differences with rural–urban
variables (Garcia et al., 2015). In this study we postulate that a
country with a proportionally larger urban population, lower income
and a more significant inequality in wealth distribution is subject
longer to higher levels of PM2.5 emissions. Thus, we consider to proxy
the time of exposure to PM2.5 concentration with the Gini index to
address inequity of wealth distribution and share of urban population
to control the ratio of urban rural population in the country. It is
reasonable to postulate that the population with lower levels of wealth
distribution is exposed to higher levels of PM2.5 concentration, thus we
use the iteration term as a product of Gini and PM2.5 in our model.
Lastly, our literature review provided strong evidence that health
system capacities proxied by immunization coverage and regulatory
capacity carries a significant association with mortality rates.

The study has demonstrated significant effects of socioeconomic,
health risk and system and governance variables on the relation between
PM2.5 concentration and PM2.5 related mortality with less obvious and
mixed evidence of the direct effect of PM2.5 concentration on PM2.5

related mortality.
Initial models, OLS and FE, unexpectedly exposed that the relation

between PM2.5 concentration expressed in μg/m and mortality rates
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attributed to PM2.5, has a negative coefficient at a statistically signif-
icant level, while more robust and sophisticated estimators that con-
trol potential heteroscedasticity, autocorrelation and endogeneity
show that this relation is not statistically significant with mixed re-
sults. Similar results were reported in several empirical studies, i.e.,
Venners et al. (2003). However, this result was not consistent during
the entire study as it can be observed that PM2.5 concentration has a
various effect on mortality on differing levels of GDP and PM2.5
concentration.

In the more advanced dynamic instrumental regression model, an
important finding we observed is that the lag of PM2.5 concentration has
a positive association with mortality with an estimated coefficient of 8.2
at a statistically significant level (p < 0.01). This finding highlights that
an increased level of PM2.5 concentration on average increases the
PM2.5-related mortality estimate. The results show that GDP per capita
PPP shows a consistently strong negative effect on mortality rate
attributed to PM2.5 at high levels of statistical significance (p < 0.001).
We can approximate from more advanced models, while controlling the
endogeneity and autocorrelation that for each increase of US$ 10,000 in
annual GDP per capita, between 20 and 110 deaths in 100,000 in
population will be decreased on average. Smoking prevalence was
documented as one of the main risk factors for cardiovascular, respi-
ratory and lung cancer causes of death (Mathers and Loncar, 2006). This
study confirms that smoking prevalence is consistently, strongly and
positively associated with the mortality rate at high significance level of
p < 0.001 across all regression models. As our long term study has
exhibited a mixed result of association between PM2.5 concentration and
PM2.5 related mortality we postulate that a strong effect of smoking
intensity in the models diminished the effect of PM2.5. We estimate that
an increase of smoking prevalence of 1 % in total population will in-
crease on average between 668 and 927 deaths per 100,000 of a pop-
ulation. The average year of schooling, as foreseen, shows a negative
association at a statistically significant level on mortality in most of the
models. Average education shows a negative association with mortality
and based on the coefficient estimates, we can anticipate that every
1-year increase in a country’s average years of schooling reduces the
PM2.5-related mortality rate by on average between 3 and 26 deaths per
100,000 individuals. Moreover, as previously discussed, the PM2.5
related health outcomes are caused by both indoor and outdoor PM2.5
pollution. Since our PM2.5 covariate measures the average value of
outdoor pollution we proxy the effects of indoor pollution by percentage
of use of fossil fuel. Our hypothesis is that a higher percentage of use of
fossil fuels increases the population exposure to indoor PM2.5 pollution.
The log-log regression models also demonstrate a positive and statisti-
cally significant relationship between indoor PM2.5 pollution proxied by
use of fossil fuels and PM2.5-related mortality rate with a regression
coefficient between 0.1 and 0.36. The government regulatory capacity
to develop and implement policy and institutional reforms has emerged
as an important area that can drive sectorial improvements. Thus, the
abatement of health outcomes through either the reduction of PM2.5
concentration or mitigation of any other associated health risk factors
might be a direct consequence of good regulations. Our analysis shows
that a strong government regulatory capacity affects the decrease in the
PM2.5-related mortality rate. A strong health system and government
commitment to health through investment in new technologies, human
capital for health, research and development, medicines and prevention
activities, reduce negative health outcomes and extend human life
expectancy.

5. Limitations

Our study design encompasses certain limitations, which should be
addressed. Firstly, one of the limitations of this study is that we do not
take into account the amount of time a person has been exposed to PM2.5.
Studies have shown that there are also significant differences in exposure
of populations in different areas, namely urban and rural. Additionally,
6

we haven’t been able to consider the individual characteristics of the
population (previous illnesses, gender, etc.). In this study, our variable is
the average, which can be a concern. Our main strategy in this document
was to use proxy variables which control for the unobserved factors.

6. Conclusions and future perspective

Evidence was found that our socio-economic factors and risk health
factors have a larger impact on PM2.5 related mortality. It is observed that
the relation between PM2.5 emission and health outcomes cannot be
modelled without socio-economic and health risk factors. The in-
vestments in mitigation of negative consequences of PM2.5 concentration
need to be integrated with policy instruments that will address risks
associated with socio-economic factors. This reiterates the importance of
interconnection in a variety of sectors, which then provide an opening to
enhance new ways to reach the SDGs.

Our study demonstrates that more advanced econometric models can
better model the connection between annual mean PM2.5 concentrations
and mortality rate attributable to PM2.5. Initial models show that this rela-
tionship is negative at a statistically significant level, while more sophisti-
cated estimators that can control for heteroscedasticity, autocorrelationand
endogeneity in the model show that this relationship is not statistically
significantwithmixed results. However, it is vital to report that lag of PM2.5

concentrations increase mortality rate attributable to PM2.5.
Current research studies concentrate mostly on the effect of air

quality on mortality, and much less on morbidity. Further studies would
be required to investigate the extent to which morbidity in specific
groups may be associated with changes in PM2.5 related mortality con-
trolling for socioeconomic, health and governance indicators.

This article gives a useful analytical structure for analyzing the health
effects of PM2.5 exposure with advanced econometric estimators that can
accommodate autocorrelation and endogeneity issues in the panel data
and confirms significant association of lagged PM2.5 concentration, socio-
economic, health and governance indicators on PM2.5 related mortality.
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