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Abstract: Recovery of therapeutic or functional ambulatory capacity in patients with rotator cuff
injury is a primary goal of rehabilitation. Wearable powered exoskeletons allow patients to perform
repetitive practice with large movements to maximize recovery, even immediately after the acute
event. The aim of this paper is to describe the usability, acceptability and acceptance of a hybrid
exoskeleton for upper-limb passive rehabilitation using the System Usability Scale (SUS) question-
naire. This equipment, called ExoFlex, is defined as a hybrid exoskeleton since it is made up of rigid
and soft components. The exoskeleton mechanical description is presented along with its control
system and the way motion is structured in rehabilitation sessions. Seven patients (six women and
one man) have participated in the evaluation of this equipment, which are in the range of 50 to
79 years old. Preliminary evidence of the acceptance and usability by both patients and clinicians
are very promising, obtaining an average score of 80.71 in the SUS test, as well as good results in a
questionnaire that evaluates the clinicians’ perceived usability of ExoFlex.

Keywords: rehabilitation; upper-limb; exoskeleton; robot

1. Introduction

Alterations of the musculoskeletal system are one of the conditions of greater medical
consultation at different levels of health care, and within these, shoulder pain occupies an
important place, also causing considerable functional disability to perform activities of
daily life [1]. The rehabilitation programs for pathologies of trauma origin at the level of
the upper limb have as common objectives the increase of the joint range to promote the
highest level of functionality of the patients.

In some pathologies of traumatic origin such as rotator cuff tendinopathy or frozen
shoulder, recovery of functional capacity must begin early. Though, in others, such as
fractures, dislocations and arthroplasties, it is important to respect an initial period of
immobilization, which helps recovery, reduces pain and edema, helps consolidation and
prevents radiological deformities [2]. After this period of immobilization, it is necessary to
restore the patient’s functionality using various techniques such as kinesitherapy as soon as
possible because of complications such as joint stiffness, muscle atrophy, bone degradation
and both capsular and ligamentous retraction, which the immobilization produces [3].
However, it is not always possible to meet these demands for early and intensive care,
especially in the current situation due to the COVID-19 epidemic, where the time to start
treatments has been increased due to the limitation/restriction of the number of patients
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in physiotherapy rooms and the possibility of being treated manually by the therapist, it
being frequent to refer the patient to his home with an exercise regimen that did not always
present the required adherence, either due to lack of time, lack of motivation or due to pain.

Exoskeleton-assisted rehabilitation has become increasingly popular in recent years
and the use of exoskeletons in the field of rehabilitation has been a real hit [4]. Exoskeletons
assist therapy by providing several advantages over conventional approaches, including a
standardized training environment, adaptable support and the ability to increase treatment
intensity and dose, while reducing the physical burden on therapists. Exoskeleton-based
rehabilitation systems provide a solution to increase the number of movements, involve
safe and intensive rehabilitation exercises and have the advantage that the patient’s move-
ments can be measured objectively [5]. Rehabilitation exoskeletons are, therefore, an ideal
means of complementing conventional therapy in the clinic, presenting great potential for
continuing therapy and care at home using simpler and more portable devices [6].

The acceptance of exoskeletons has been increasing over the years, although, despite
the advantages offered by these devices and the great variety on the market, they are not
yet fully implanted in the clinic as a complementary tool in rehabilitative therapy [7]. The
importance of knowing the opinion of users, both clinicians and patients, should be noted.
Therefore, it is essential to evaluate the experience of both of them with the exoskeletons in
terms of usability, acceptability and acceptance, in the process of developing an exoskeleton
device. According to a definition by the International Organization for Standardization,
usability refers to the effectiveness, efficiency, and user satisfaction rating of a product in
a specific environment by a specific user for a specific purpose. It includes three aspects:
effectiveness (i.e., the accuracy and completeness of a goal that is achieved by a product);
efficiency (i.e., the effort required for a user to complete a task); and satisfaction (i.e.,
the comfort and acceptability of a product). Usability tests and evaluations aim to make
medical equipment easier, safer, and more effective and pleasant for users. A usability
evaluation helps wearable devices to satisfy the requirements of the market and consumers.
In this regard, one of the most popular tools for evaluating the usability, acceptability and
acceptance [8] of exoskeletons is the System Usability Scale (SUS).

The remainder of this paper is structured as follows. Section 2 describes ExoFlex and
the movements that it can assist in rehabilitation. In Section 3, SUS and the clinician’s ques-
tionnaire are presented. Section 4 gathers the validation results for both tests. In Section 5,
a discussion about the results and a comparison with other devices is performed. Finally,
Section 6 gathers the main conclusions of this work.

2. Materials and Methods

ExoFlex is a cable-driven hybrid exoskeleton intended for upper-limb passive rehabili-
tation. This kind of rehabilitation is usually used in the early stages of the rehabilitation
process, and it is based on moving the subject’s limb while they leave it completely re-
laxed [9]. A nylon-covered steel cable is attached to the subject’s arm via a flexible wearable
textile coupling. The other end of the cable is attached to a pulley inserted in the shaft of
motor m1 (Figure 1), which is coupled to the end effector of the exoskeleton. In this way,
the exoskeleton is capable of moving the user’s arm by controlling the length of the cable
(winding or unwinding it over the pulley) and by properly positioning the rigid structure’s
end effector. This exoskeleton is considered hybrid since it is made up of a mix of rigid com-
ponents fixed to the floor and a wearable coupling worn by the patient. The rigid part not
only accounts for the precise position of the end effector of the exoskeleton, but additionally
serves to locate the control electronics.

With regard to the methods used for the evaluation of ExoFlex, we have used the SUS
to evaluate the patients’ acceptance of the device and an additional questionnaire for the
clinicians in order to evaluate the perceived potential of this tool for rehabilitation. Both
are presented in the following section.
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Figure 1. Views of the hybrid exoskeleton developed for arm rehabilitation treatments. Active joints during patient
rehabilitation are shown in green; joints for the adjustment of the structure are shown in red. The origin of the system is
marked in the three views.

2.1. Exoskeleton Overview

The exoskeleton includes five Degrees of Freedom (DoF). The actuation system is
constituted by four DC motors (motors m1, m2, m3 and m4) and motor m5 is a Longruner
Nema-17 LD08 stepper motor. The DC motors are DCX22S GB KL 48V motors with
planetary reducers with reduction ratios of 794, 14, 326 and 794 for motors m1, m2, m3
and m4, respectively. These four motors include high resolution ENX16 EASY 1024IMP
encoders. Lead screws have been attached to the shafts of motors m2 and m5 in order to
transform rotational movement into linear displacement.

Each ExoFlex joint is endowed with an optical limit switch (Omron EE-SX4009-P1).
Each time ExoFlex is turned on, a calibration process is performed. This consists of a
sequential movement of all the motors at a predefined speed until each joint achieves its
limit, signaled by each limit switch. These sensors also work as a safety system.

The LAUNCHXL-F28379D dual-core 32-bit micro controller from Texas Instruments
has been used to interface with the actuation system and to implement low-level control.
A Printed Circuit Board (PCB) called ALICE (Assistive LImb Control Electronics) has been
specifically designed for the exoskeleton. It contains all the necessary hardware (current
sensors, ADCs, communication interfaces and drivers for motors) in a compact and modu-
lar way. This shield-style board is mounted on top of the microcontroller board. The control
of the motors is performed with a super-twisting sliding mode controller (SMC). The use
of a robust controller is mandatory in this kind of applications, where there appear many
unmodelled phenomena, such as slacks and hysteresis in the exoskeleton’s fabric; and there
can exist significant variability among users in terms of anatomical parameters. Robustness
to external disturbances is also critical. More details are available in Appendix B. For
safety purposes, two emergency buttons have been allocated in the chair, one at each side.
They can be pressed at any time by the patient or the therapist to immediately stop the
rehabilitation and move the robot to the initial position.

The used encoders are of the quadrature-type and have a high resolution (1024 pulses
per revolution). The counting of the pulses must be carried out by means of a hardware
counter, since the high frequency of reception of pulses does not allow counting by means
of interruptions. The LAUNCHXL-F28379D board has embedded three hardware counting
modules for encoders, which are used for motors m1, m2 and m3. An external pulse
counting module (LS7366R) has also been added for m4. This module communicates with
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the microcontroller through SPI and greatly lightens the software load of the microcontroller.
Motor m5 position is obtained by counting the number of steps.

A multi-threaded real-time application has been developed to control the exoskeleton.
In this way, we have precise control over the frequency with which data from the different
sensors is obtained, the control period and the speed of the communications. The design of
the application is modular, which makes it easy to adapt the system to new needs that may
arise during the development of the device (see Figure 2).

Figure 2. System architecture. Electronics, actuators and control.

A Jetson Nano communicates with the microcontroller via SPI to transmit movement
references and store the data obtained during work sessions for later analysis. A Graphical
User Interface (GUI) has been implemented on the Jetson Nano to be able to interact in a
simple and friendly way with the exoskeleton and monitor the data in real time. It allows us
to select rehabilitation session options. In each session, the type of movement, the elevation
angle and speed, the number of repetitions and a waiting time between movements can be
configured. The configuration determines the commands to be sent to the motor controllers
at any time. The fact that the electronics and software are our own designs allows us to
obtain an architecture highly adapted to the needs of the exoskeleton.

Exoskeleton motion generation is produced as follows. Motor m1 controls the length
of the cable. Motor m2 generates linear displacement of the end effector of the exoskeleton
along the rod to which it is attached while motor m3 allows performance of the elevation
of that rod by winding the cable anchored to it over its pulley. Motor m4 controls the
rod angle with respect to the sagittal plane (we call this angle shoulder aperture angle θ)
and motor m5 horizontally moves all the actuation structure to accommodate the user’s
complexion. On the one hand, motors m1, m2 and m3 are active during the rehabilitation
therapies to generate the predefined patient arm movement. On the other hand, actuators
m4 and m5 are only used for adjusting the mechanical structure to the kind of treatment
and patient body size (see Appendix C for further details).

The exoskeleton range of motion for arm elevation angle φ is comprised between 0
degrees and 160 degrees. That elevation range is guaranteed for every shoulder aperture
angle θ between 0 degrees (pure flexion) and 90 degrees (pure abduction). Figure 3 shows
those two angles involved in shoulder motion for a concrete pose.
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(a) Upper view of the transverse plane (b) Lateral view of the elevation plane

Figure 3. Motion planes. (a) The angle (θ) between the arm and the sagittal plane along the
transverse plane determines the elevation plane. (b) The angle φ is the elevation angle of the arm in
the elevation plane.

The wearable coupling between the user and the rigid structure through the trans-
mission cable is an adjustable piece of fabric that is placed on the wearer’s limb and
distributes pressure across different specially designed seams. More specific details about
its design can be found in Appendix A. The main purpose of an exoskeleton is to achieve
all joint rotations and the alignment of the exoskeleton joints with the anatomical ones.
The misalignment of the axes and the two additional translation DOF in the human shoul-
der require additional mechanisms, making the exoskeleton more complex to build and
use [10]. Lightweight aluminum profiles have been used to build the fixed structure of
the exoskeleton in a modular fashion. Custom parts necessary for the assembly of the
whole structure were designed and 3D printed with a material which combines nylon with
carbon fiber. A static stress study for the structure was performed via simulation and a
safety factor of 2.66 was obtained for a force of 100 N applied on the tip of the rod where
motor m2 is placed, which is the point where the applied force generates more torque.
The structure is designed to increase the height of the entire system manually in case any
subject needs it.

2.2. Setup Description for Rehabilitation

At the beginning of the session, the subject sits down in the chair and the position of
the acromioclavicular joint is measured with respect to a reference point of the exoskeleton.
This process is carried out only once since the user data are stored on the interface for
future sessions.

The session is set out as follows: the therapist determines the shoulder’s aperture
angle θ with which the lifting movement is desired to be performed. Once the aperture
angle has been selected, motors m4 and m5, according to the measured position of the
subject’s shoulder, are positioned so that the mobile rod is parallel to the arm and the
end effector (pulley of motor m1) is aligned with the arm ( Algorithm A1). These motors
(m4 and m5) will not make any movement during the arm lift. Afterwards, the shoulder
maximum elevation angle φ, the movement speed, the number of repetitions and the
pause time between consecutive repetitions are selected. During both the ascending and
descending stages of the movement, motor m1 controls the cable length and motors m2
and m3 are in charge of mobilizing the exoskeleton end effector according to the specified
range of motion. Given that the main pulley of motor m1 is positioned in the form of a
crane, if the elevation angle of the arm is less than 90 degrees, motors m2 and m3 will
not move in the session ( Algorithm A2). In the case where the angle is greater, those two
motors will move synchronously to rise the arm beyond that threshold. This behavior can
be observed in Figures 4–6 and the algorithm is described in the Appendix D.
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(a) (b) (c) (d) (e)

Figure 4. From (a–e) a series of frames corresponding to an abduction movement (θ = 90◦) increasing the angle φ are shown.
Note that the exoskeleton end effector is not moved until the subject´s arm is at 90 degrees. From then on, motors m2 and
m3 move synchronously in order to properly move motor m1 in the workspace while the cable length is being controlled.

(a) (b) (c) (d) (e)

Figure 5. From (a–e) a series of frames corresponding to a flexion movement (θ = 0◦) are shown. Similarly to the abduction
movement, until reaching the 90 degrees arm elevation, the elevation of the arm is uniquely performed by reducing the
cable length. In this case, a maximum elevation angle φ of 130 degrees was programmed, according to the patient’s needs.

(a) (b) (c) (d) (e)

Figure 6. From (a–e) a series of frames corresponding to an intermediate aperture angle elevation (θ = 30◦) are shown. The
maximum elevation angle for this patient was set to φ = 145◦, according to the clinicians’ indications.
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2.3. Subjects

A total of seven participants (six women and one man) with upper limb impair-
ments participated in the study. The age of the patients ranged between 50 and 79 years
(63.57 ± 10.72 years). The sociodemographic characteristics and the health status of the
participants in the study is summarized in Table 1.

The inclusion criteria established for the selection of the patients were: presentation
of musculoskeletal injury of the right upper limb, being a subsidiary of rehabilitative
treatment, not presenting any pathology that contraindicates the rehabilitative treatment
and ages over 18 years. Patients who presented some of the following exclusion criteria
were not admitted to the study: cognitive impairment that implies not understanding
simple commands, neurological injury that affects the upper limb, and dermatological
injury that prevents the use of exoskeleton material.

This protocol was approved by the Research Ethics Committee of the Rey Juan Carlos
University. The ethical principles for medical research in humans of the Declaration of
Helsinki were followed. All subjects signed the informed consent before participation.
The trials were carried out at the Clinic Center of Getafe (Madrid, Spain). Before performing
the device test, the patients provided sociodemographic data and a rehabilitation doctor
evaluated their health status. The test consisted of a series of passive mobilizations of the
affected upper limb: shoulder flexion, shoulder abduction and shoulder elevation with
an intermediate aperture angle. These movements are the same as those performed by
physiotherapists in conventional physiotherapy sessions.

All tests were performed in the patients’ painless range of motion (ROM). ROM
was evaluated by a doctor before performing the test. The active range of movement of
the patients was determined, as well as the ROM, in which the patient could perform
the movement without pain, and thus the exact angles at which the exoskeleton would
perform the movements were determined.

Table 1. Participant profile.

Participant Sex Age Upper Limb Pathology

Experience
in Using

Rehabilitation
Exoskeleton

1 Male 78 yrs Shoulder surgery
(Supraspinatus suture) No

2 Female 60 yrs Troquiter Fracture plus
tendinosis supraspinatus No

3 Female 65 yrs Supraspinatus partial tear plus
frozen shoulder No

4 Female 79 yrs Supraspinatus tear No
5 Female 51 yrs Rotator cuff tendinosis No
6 Female 62 yrs Rotator cuff tendinosis No
7 Female 50 yrs Supraespinatus tendinosis No

3. Usability and Acceptance Scales

ExoFlex performance has been evaluated from the point of view of the patient and the
point of view of the clinician. The next subsections show the details of each questionnaire.

3.1. System Usability Scale Questionnaire

After testing ExoFlex, the participants completed the SUS questionnaire that collected
subjective evaluations and recommendations regarding the device (Table 2). The question-
naire has been translated from Spanish to English, since the patients were Spanish-speaking,
and the questionnaire was in their language. The SUS was developed by Brooke [11] as
a system usability tool, which has been widely used in the evaluation of a range of sys-
tems [12].
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The SUS provides a quick and reliable tool for measuring the usability of a device.
Furthermore, the SUS is versatile and can be used to evaluate websites, software, mobile
devices, and medical systems; it is a short questionnaire that is quick to answer; a final score
is provided with an interpretation based on a well-established reference standard; it is free,
it is suitable even when applied to small samples (N < 14) and it has excellent reliability
(0.85). Overall, the SUS is a quick and simple method for usability evaluation. It consists of
a 10-item questionnaire with five response options for respondents; from strongly agree
(score of 5) to strongly disagree (score of 1). There are five positive statements and five
negative ones, which are presented in alternation. Odd numbered questions (Q1, 3, 5, 7,
and 9) were positive questions, and the recorded scores were the original scores subtracted
by 1. Even numbered questions (Q2, 4, 6, 8, and 10) were negative questions, and the
recorded scores were 5 minus the original ones. Once the results for the ten questions
are treated, the score of each question is added and the result is multiplied by a 2.5 factor.
The score of the SUS, therefore, ranges from 0 to 100, where a higher score means better
usability, with a threshold of 68 that determines the usability of the device.

Table 2. System Usability Scale questionnaire.

Item Question

Q1 I think I would use this device frequently
Q2 I find this device unnecessarily complex
Q3 I think the device was easy to use

Q4 I think I would need help from a person with technical
knowledge to be able to use this device

Q5 The functions of this device are well integrated
Q6 I think the device has a lack of consistency
Q7 I imagine that most people would learn to use this device very quickly
Q8 I find the device very difficult to use
Q9 I feel safe using this device

Q10 I needed to learn many things before being able to use this device

3.2. Clinician Questionnaire

We have evaluated clinicians’ perceived usability, acceptability, and satisfaction of
ExoFlex by a satisfaction questionnaire. Five items are rated on a Likert-type scale from 1
to 5 (strongly disagree—strongly agree) [13]:

1. “Are you satisfied with ExoFlex?”;
2. “Has ExoFlex been useful for the rehabilitation of the upper limb?”;
3. “Do you think that ExoFlex could be helpful in the process of upper limb rehabilita-

tion?”;
4. “Would you recommend ExoFlex to other clinicians?”;
5. “Do you think ExoFlex has advantages compared to other devices?”

The arithmetic mean across all items provides the total satisfaction score.

4. Results

Results on the patient’s opinion on the usability and acceptability of the exoskeleton
and clinicians’ evaluation of the usefulness of the device for rehabilitation therapies are
presented in the following subsections.

4.1. Patients Acceptability Assessment

The SUS questionnaire score for the subjects ranged from 67.5 to 92.5, with an average
score of 80.71 ± 9.79, indicating a high degree of acceptance by the patients. That score
exceeds the average of 68, which, according to the SUS questionnaire standards, defines a
tool as usable. Moreover, as defined in [14], a device with this score can be classified as
“Excellent” in the acceptability range. Table 3 shows the average score for each question of
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the SUS questionnaire and Figure 7 presents a bar graph with the individual SUS score for
each patient and the average one.

1 2 3 4 5 6 7

Patients

50

55

60

65

70

75

80

85

90

95

100

S
c
o

re
Subject scores

Mean score

Figure 7. SUS score for each patient along with the mean score.

Among the results, some aspects should be highlighted. A result of 3.4 in each question
would lead to obtain a SUS score of 68. Questions Q1, Q3, Q5, Q7, Q9 and Q10 widely
surpass that threshold, while the other questions’ averages do not meet it. The results in
question Q9 show that all the patients felt completely safe during the tests. Given that
the average age of the participants is quite elevated, this result is even more valuable,
since older people are normally more frightened and reluctant to try new technologies
than youngsters. Finally, question Q4 is the one with lowest score, showing the almost
unanimous perception that the participants feel the need to be helped by a person with
technical knowledge about the device.

Apart from the SUS questionnaire, the participants were also asked about any adverse
effects that may have happened during the trial and no relevant adverse effects were
reported. It is important to say that one of the patients stated that she felt less pain when
the device performed the movement than when the therapist performed it in her regular
therapy, both reaching the same maximum elevation angle.

Table 3. Results of the Usability Scale questionnaire for each question. The score is expressed as
mean ± standard deviation.

Question Score

Q1 3.57 ± 0.73
Q2 3.43 ± 0.90
Q3 3.43 ± 0.49
Q4 1.57 ± 1.18
Q5 3.29 ± 1.03
Q6 2.86 ± 1.46
Q7 3.14 ± 1.36
Q8 3.14 ± 1.12
Q9 4.00 ± 0.00
Q10 3.86 ± 0.35

TOTAL 80.71 ±9.79

4.2. Clinician’s Satisfaction Assessment

The perceived usability, acceptability, and satisfaction of ExoFlex by clinicians is
summarized in Table 4. The responses of the clinicians who participated in all the tests per-
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formed by the participants showed a high degree of satisfaction with the device. The aver-
age satisfaction score for the clinicians was 4.0, which corresponds with an overall “agree”.

The two clinicians evaluated “strongly in agreement” with satisfaction, usefulness
and help in the rehabilitation process, one of the clinicians evaluated “strongly agree” with
the possibility of recommending it to other clinicians, nevertheless the other scored “agree”.
However, all participants stated “neutral” with the advantages of using ExoFlex compared
with other exoskeletons, perhaps due to the lack of knowledge about the rest of the robotic
devices for the upper limb in terms of price and benefits for patients.

Table 4. Results of the clinician assessment.

Clinical Item Strongly
Disagree Disagree Neutral Agree Strongly

Agree

1 1 X
2 X
3 X
4 X
5 X

2 1 X
2 X
3 X
4 X
5 X

5. Discussion

The present study shows the use of a hybrid exoskeleton system for upper limb
passive rehabilitation, and describes the preliminary evidence of usability, acceptability,
and acceptance by patients and clinicians.

In order to evaluate the grade of acceptance of this kind of technology, the most
common scales used include the SUS, the ISONORM 9241/10 Questionnaire, and the
Post-Study System Usability Questionnaire (PSSUQ), being the most popular the SUS [15].
It is worth highlighting the score of 80.71 ± 9.79 obtained in the SUS of this study, which
indicates a high degree of acceptance. In fact, this score can be classified as “Excellent”
in the acceptability range. In addition, it should be noted that the clinicians were highly
satisfied with the device, as their responses to the clinicians’ questionnaire show. Also,
at this point it is good to mention that this type of questionnaire uses ordinary scores
which some authors see as a bad practice [16] and could make an approximation to the
measurements by interval [17].

The acceptability of similar devices has been evaluated using the SUS. For instance,
a motorized exoskeleton interface [18] obtained a “Good” overall score evaluated on 11
subjects (6 injured and 5 healthy) while [19] has tested a ExoGlobe with 14 experienced
occupational therapists, obtaining a score of 63.75. A passive exoskeleton for static upper
limb activities [20] got a score over 70, therefore being deemed to be usable. Tests were
performed with eight participants. Additionally, in [21], the SUS score obtained from
the patients, caregivers, and therapists (a total of 17 subjects) was 71.8 ± 11.9, indicating
a high level of usability and product acceptance. The statistical assessment for a robot-
based tool used on rehabilitation [22] has shown a mean score of 79.3 testing with seven
injured patients.

For some exoskeletons, the mean score rises above 90, as the case of an assistive device
for upper limb support [23] tested with users affected by neuromotor disorders. As an
exceptional case, but not for shoulder rehabilitation, we can find the DexoHand [24] which
has obtained in the SUS a score, for both the patients and healthy subjects, of 94.77 ± 2.98,
indicating an excellent level of usability. On the other hand, authors in [25] have evaluated
two behavior methods on the same device, one using muscle activity and the other one,
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manual control. They found out that the manual control has gotten a score of 77 but the
one using the muscle activity has no acceptance score.

In the case of exoskeletons for lower extremities [26] completed two user experience
questionnaires, the Quebec User Evaluation of Satisfaction with assistive Technology (D-
QUEST) and the SUS. Participants were satisfied with the exoskeleton (D-QUEST 3.7 ± 0.4)
and the SUS score was 72.5.

As has been exposed, several of these studies have applied the SUS to patients and
healthy people, including in some cases therapists. Others have only applied the SUS to
patients. As the latter ones, we have decided to apply the SUS only to patients since these
are the ones that are going to use the exoskeleton in their own body, so their acceptability
score is the important one, in comparison to the one of healthy subjects or therapists. Similar
to some of the aforementioned studies, we consider that the clinician’s opinion about the
usefulness of the exoskeleton is extremely important. However, in order to evaluate it, we
considered that the inclusion of a specific questionnaire for them was of great value, since
more concrete aspects can be evaluated. As we believe, applying the SUS questionnaire
to clinicians provides unavailing information in comparison to the one obtained by the
specific clinicians’ test that has been designed. In this way, we have two different metrics for
the evaluation of the acceptability of very different groups—the patients and the clinicians.

Study Limitations

The current study has several limitations. First, the sample of subjects was small.
Therefore, caution must be taken in generalising the results. Second, our study did not
evaluate whether scores obtained with ExoFlex were clinically significant. Third, only two
clinicians evaluated the device’s usability, acceptability, and satisfaction. Further studies
are necessary to examine ExoFlex’s impact in rehabilitation outcomes in treating upper
limb pathologies.

The limitations of the ExoFlex as a rehabilitation tool can be listed as follows:

1. The maximum angle of elevation of the subject’s arm is 160 degrees;
2. This version of the ExoFlex does not perform shoulder rotations;
3. The trajectory generation is focused on arm lifting movements in a fixed plane. Further

work will focus on varying the movement plane during the elevation process.

6. Conclusions

The validation of the usability and acceptability for both patients and clinicians
with respect to the upper-limb passive rehabilitation exosuit ExoFlex has been addressed.
In the preliminary results, the average SUS score for the patients was 80.71 ± 9.79, far
surpassing the threshold of 68 necessary for considering the device as acceptable to the
patients. Moreover, the ExoFlex score in SUS is comparable that of other state-of-the-art
exoskeletons, even improving the scores obtained by several of those presented in the
Discussion section.

Regarding the clinicians’ satisfaction with the tests, although they positively valued the
exoskeleton in terms of usefulness and satisfaction, they could not make a judgment about
the advantages or disadvantages of ExoFlex in comparison with other similar devices
in rehabilitation therapies. For this purpose, parallel tests should be performed with
ExoFlex and other existing options. Finally, to further characterize the potential of this
exoskeleton, the following tests will involve middle or long-term therapies in order to
obtain quantitative results about the benefits of using ExoFlex in the full treatment of
a patient.
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Appendix A

The research team has previously proposed a body-adaptable textile design that aids
performance for shoulder movements by combining textile layers with force-fit seams. This
design also includes pieces for guiding, anchoring and cable support. These pieces use
different methods of construction to facilitate manufacture, use and cleaning [27]. On the
other hand, the team has developed a wearable wired and textile exoskeleton to help flex
the elbow and shoulder. In this docking interface, different fabrics and sewing patterns are
combined to promote force distribution and adaptation to the user’s anatomy [28]. These
textiles are used in this research.

Appendix B

A super twisting slider mode controller [29] has been simulated and implemented
previously for elbow and shoulder flexion and extension movements [30]. In the study
conducted previously by the authors, the use of a supertwisting controller is proposed,
which stands out from other controllers in sliding mode due to its attenuation of chattering,
a high frequency noise coupled to the control signals due to the discontinuous nature of
SMC. This controller is applied to the four DC motors of the system. The control law for
motor i is given by ((A1)–(A4)):

ui = ci|σi|
1
2 sign(σi) + wi (A1)

ẇi = bisign(σi) (A2)

ci = 1.5
√

Ci; bi = 1.1Ci (A3)

σi = σi1ei1 + σi2ei2 + σi3ei3 (A4)

where, for the motor i, ui is the control action, σi is its sliding surface (given by the
coefficients σik), ωi is the term for the attenuation of the chattering, Ci is a control parameter
and the eij are the errors associated with the motor state reference i consisting of the
position, speed and current of it. The horizontal positioning stepper motor of the structure
is controlled in an open loop, which is perfectly feasible since both the speed and the torque
to be applied by the motor are low enough so that no step is lost.

Appendix C

There are two types of synchronized movements to perform the subject’s shoulder
lift. The first relationship of movements is the one that occurs with motors m4 and
m5 in order to reach the work plane. The working plane is calculated by obtaining the
distances in X, Y and Z from the zero of the structure (see origin at Figure 1), to the subject’s
shoulder, explicitly at the acromioclavicular joint. Detection of this junction is accomplished
by touching the upper shoulder between the deltoid and trapezius muscles. Once the
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distances are obtained calculations are made in order to locate the motors as developed on
the Algorithm A1.

The aperture angle defines the angle of the motor m4 while the motor m5 moves
linearly searching a parallel relationship with the subject’s arm. On this method the
maximum distance achievable by each motor (m4_limit and m5_limit) and a fixed distance
of the robot (robotbar) are used.

The second movement relationship is the one that produces the elevation of the
shoulder using the motors m1, m2 and m3 as developed on the Algorithm A2.

This movement consists of three stages of the behavior of these motors. The first
stage is the elevation of the motor m1 to a certain threshold, at this moment m1 stops
and the motor m3 begins to move (stage two), the motor m4 is activated in a third stage
without stopping the motor m3. In this way, a continuous movement of the arm is caused
and a perpendicularity between the cable and the arm is achieved, which causes better
performance.

Algorithm A1: Relationship of the aperture angle with the displacement of the motors m4 and m5
Data: θ, m4_limit, m5_limit, usrX , robotbar
Result: Motor 5 displacement distance

motor_4 = θ ; /* angle of motor m4 is defined by θ */
p2p1 = m5_limit ∗ θ

m4_limit ; /* calculated distance */
motor_5 = usrX + robotbar − p2p1 ; /* displacement distance */

Algorithm A2: Relationship of the aperture angle with the displacement of the motors m1, m2 and m3
Data: Angle φ, Motors current positions [cpm1, cpm2, cpm3]
Data: threshold = 90◦, Motors initial positions [ipm1, ipm2, ipm3]
Result: Motor m1 and m2 displacement distance and motor m3 angle

if φ < threshold then
motor_1 = ipm1 −

( φ
threshold

)
∗ ipm1;

motor_2 = cpm2;
motor_3 = cpm3;

else if φ >= threshold then
motor_1 = cpm1;

di f f = abs(170◦ − threshold);
lm2 = φ−threshold

di f f ∗ pathm2;

if lm4 > pathm2 then
lm4 = pathm2

end
motor_2 = lm2;

di f f = abs(150◦ − threshold);
lm5 = pathm5 −

( φ−threshold
di f f ∗ pathm5

)
;

if lm5 < 0 then
lm5 = 0;

end
motor_3 = lm5;

else
motor_1 = cpm1;
motor_2 = cpm2;
motor_3 = cpm3;

end
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Appendix D

Rehabilitation is controlled by the interface that sends the movement commands to
the microcontroller. Different threads are thrown to monitor and create the commands.
As shown at the Algorithm A3, the number of repetitions leads the rehabilitation and can
be stopped at any time by pressing the stop button on the interface, making the robot move
to the starting position.

Algorithm A3: State machine algorithm for shoulder movement
Data: GUI input parameters
Result: Shoulder rehabilitation

Attach the body-adaptable textile to the subject;
Move robot arm to work plane (θ) using Algorithm A1;
Set parameters (num. repetitions, elevation angle φ, speed up and down, wait time);
Start rehabilitation;
while current_num_rep < total_num_rep or STOP == False do

switch rehabilitation_status do
case INIT do

Initialize variables;
Store initial position;
rehabilitation_status ++, break;

case MOVE_UP do
Use Algorithm A2 ;
rehabilitation_status ++, break;

end
case SLEEP_UP do

Sleep n seconds up;
rehabilitation_status ++, break;

end
case MOVE_DOWN do

Use Algorithm A2 ;
rehabilitation_status ++, break;

end
case SLEEP_DOWN do

sleep n seconds down;
rehabilitation_status = MOVE_UP;
current_num_rep ++, break;

end
end

end
Go to initial position
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