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Abstract: Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by
circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such
as light, humidity, and temperature. Among environmental cues, temperature plays an important
role in the regulation of sleep. This review presents an overview of thermoreception in animals and
the neural circuits that link this process to sleep. Understanding the influence of temperature on
sleep can provide insight into basic physiologic processes that are required for survival and guide
strategies to manage sleep disorders.
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1. Introduction

From Drosophila to mammals, sleep is a conservative biological behavior. While sleep-
ing, animals are at risk of predation, but they still spend a lot of time sleeping, suggesting
that sleep is important to animals. Recent studies have shown that sleep is essential for
replenishing energy after activity, ensuring an optimal physical condition [1], maintain-
ing synaptic stability [2–4], regulating immunity [5,6], memory consolidation [7,8], and
removing neurotoxic waste [9,10]. Sleep disturbances impair the function of the sympa-
thetic nervous system, leading to metabolic dysregulation [11]. Insufficient sleep during
developmental stages can cause a smaller brain and abnormal behavior [12]. In conclusion,
sleep is essential for the development, behavior, and survival of organisms. Although the
molecular and neural circuits involved in sleep regulation have been extensively studied,
the influence of different environmental factors on sleep is not fully understood.

In 1982, Borbely proposed a dual-system model based on previous research results on
sleep and used a mathematical model to describe the sleep mechanism [13]. Borbely pro-
posed that sleep is jointly regulated by the rhythmic system (process C) and the sleep-wake
homeostatic system (process S). Circadian rhythm determines the periods of wakefulness
and sleep over the 24-h daily cycle. Sleep homeostasis preserves physiologic stability;
prolonged wakefulness increases the pressure to fall asleep, whereas prolonged sleep time
relieves sleep pressure and promotes wakefulness [14]. Studies on the regulatory mech-
anisms of sleep have identified distinct neural circuits and multiple neurotransmitters
that are responsible for maintaining sleep homeostasis and circadian rhythm [15–18] using
model animals such as flies, zebrafish, and mice [8,19]. Based on different model animals,
we are increasingly understanding the neural circuits and regulatory molecules that regu-
late sleep. The regulation of sleep by environmental factors remains to be explored. The
brain pathways’ underlying lights impact on sleep have been examined in the current
research work [20,21]. It is still unclear how temperature regulation affects sleep.

There are two commonly used methods: one is based on changes in animal sleep-
related behaviors and the other is based on changes in brain waves. Five characteristics of
sleep in animals include a long period of stillness, higher threshold of response to external
stimuli, arousal when stimulated (to distinguish numbness or coma), a distinctive posture,
and rebound following sleep deprivation [16,22]. The main criterion for identifying sleep
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behavior in Drosophila is immobility; flies that are stationary for 5 or more minutes are
generally judged to be sleeping [23,24]. The simplicity of this behavior-based definition of
sleep makes Drosophila a useful model animal for studying the the complex physiologic
mechanisms involved and for identifying novel genes and neurons that regulate this
process [25–27]. Sleep in mice is analyzed by changes in brain activity [28,29] based on
brain waves, and sleep can be categorized as rapid eye movement (REM) sleep and non-
REM (NREM). Based on well-established research methods and research models, the
researchers explored the effect of temperature on sleep. The present work reviews the
current state of knowledge regarding the neural bases of thermoreception and sleep, and
the effect of temperature on sleep based on studies in Drosophila and mammals.

2. Effect of Temperature on Sleep

Changes in ambient temperature not only affect ectothermic animals, but also affect
the sleep of warm-blooded animals. Many animals build nests or curl up before sleeping
to ensure that their bodies stay warm. In mice and humans, sleep can be triggered when
the skin warms up [30]. In hot environments, the body cools itself, promoting wakefulness
and changing sleep patterns [31]. When exposed to low temperatures, the body produces
heat on its own and promotes arousal [32]. Drosophila has a limited ability to control body
temperature; therefore, variations in ambient temperature can have a strong impact on
behavior. Both prolonged and sudden temperature changes can affect sleep; temperature
fluctuations throughout the day are the basis of the circadian rhythm of the rest-activity
cycle of Drosophila [33]. Drosophila’s sleep was shown to increase during the day and
decrease at night when the ambient temperature shifted from 25 ◦C to 29 ◦C [34–36]; a
suddenly temperature shift from 22 ◦C to 29 ◦C decreased sleep during the day and at
night [34,37]. Therefore, temperature affects the sleep patterns of Drosophila. By monitoring
the sleep of Drosophila species at different latitudes, it was observed that sleep time was
related to annual average temperature [38]. Compared with species at low-latitudes, those
living at high latitudes had a shorter sleep duration [39]. Additionally, low temperature-
dependent splicing increased the transcription level of the daywake (dyw) genes, providing
evidence that sleep is regulated by ambient temperature at the molecular level [40,41].

Unlike Drosophila, mammals produce heat by regulating their own metabolism and
maintaining their body temperature within a restricted range. Body temperature is regu-
lated by circadian rhythm, and core temperature begins to decline just before sleep and
further decreases upon entering NREM sleep. Abnormal circadian rhythms affect body
temperature and reduce sleep quality [42]. Humans regulate body temperature in response
to elevated temperatures during sleep by increasing the exposed surface area [43,44]. A
study of sleep in three geographically segregated human populations found that a lower
ambient temperature was associated with different times of sleep onset [45]. Sleep often
occurs after sunset when ambient temperature declines; warming of the hands and feet
induces NREM sleep [46–48], and direct warming of the hypothalamus was shown to
promote sleep [49]. Exposure to a warm environment was found to activate hypothalamic
neurons in mice, leading to the induction of sleep [50]. According to existing studies, ani-
mals’ sleep is regulated by temperature as an environmental cue. Therefore, a foundation
for using temperature to treat sleep disorders can be established by comprehending and
researching the relationship between temperature and sleep.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3. Thermoreception and Sleep Regulation in Drosophila
3.1. Thermoreception in Drosophila

Drosophila and mammals have thermoreceptors that sense internal and external tem-
peratures, to prevent physiologic injury caused by extreme cold and hot. Drosophila is an
ectothermic animal, and changes in environment temperature will directly lead to changes
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in body temperature. Drosophila has sensitive thermoreceptors that can sense and activate a
rapid response to temperature changes [51,52]. Drosophila uses distinct systems at different
developmental stages to adapt to temperature variations [53,54], making it an ideal model
system for the study of thermoreception.

Animals sense temperature changes through transient receptor potential (TRP) family
proteins, which are cation channels present on the cell membrane and in organelles [55–57]
that conduct Ca2+ influx upon activation [58–60]. There are 13 TPR genes in Drosophila [61]
(Table 1), that are critical for sensing the external environment and play important roles
in vision, olfaction, and thermoreception. In adult Drosophila, environmental temperature
is detected by temperature-regulated TRP channels that are expressed in different cell
types [62]. dTRPA1 is critical for detecting innocuous temperatures between 20 ◦C and
29 ◦C [63]. Anterior cell (AC) neurons [63] in the head and the hot cell neurons in the
arista [64] express TRP, sense temperature, and transmit signals to different brain areas that
regulate sleep behavior in Drosophila [34,65–67]. dTRPA1 is involved in locomotor behavior
and synchronization of temperature cycling [68]. Drosophila exhibits bimodal behavior at
25 ◦C, with characteristic morning and evening activity peaks (M and E peaks) [69]. At
physiologic temperatures (29–30 ◦C), the phase of M and E peaks is advanced and retarded,
respectively, leading to sleep induction [70]. Drosophila also uses the taste receptor GR28 to
sense temperature changes [71]. The painless and pyrexia gene encode high temperature-
sensing receptors; the former is expressed in central and peripheral sensory neurons with
an activation threshold of 42 ◦C [72], whereas the latter mediates heat-activated currents
with a threshold of 40 ◦C [73]. Drosophila lacking pyrexia are heat intolerant, becoming
paralyzed upon exposure to 40 ◦C for 3 min.

Table 1. Transient receptor potential channels in Drosophila and mammals.

Channels Function Reference

Drosophila

dTRPA1
Monitoring temperature fluctuations [74]

A isoform: >26 ◦C [75–77]
B isoform: >34 ◦C [78–81]

TRPC Cold avoidance (10 ◦C) [74]
TRPV Thermotactic response to cold temperature [82]
TRPP Thermotactic response to cold temperature [64]

Painless Avoidance of noxious heat (>40 ◦C) [72,83]
Pyrexia Noxious heat resistance (40 ◦C) [73,84]

Mammals

TRPV1 Avoidance of noxious heat (>43 ◦C) [85,86]
TRPV2 Avoidance of noxious heat (>52 ◦C) [87]
TRPV3 Avoidance of noxious heat (>33 ◦C) [88]
TRPV4 Avoidance of noxious heat (27–42 ◦C) [89]
TRPM8 Distinguishing between low and medium temperatures (<23–28 ◦C) [90]

ANKTM1 Cool temperature avoidance (<18 ◦C) [91,92]

Similar to other animals, adult flies have a temperature-sensing system comprising
structures and cells that function in thermoreception; these include arista, which detect
warm, hot, and cool temperatures [71,93] as well as anterior cell (AC) neurons in the
head [63], sacculus cells in the antennae [64], and chordotonal organs in the body [94,95]
(Figure 1).

dTRPA1-expressing ACs are a small group of thermally activated thermal sensors; they
are considered as internal thermal sensors because they are in the brain of adult Drosophila,
which are known to be autonomously thermosensitive [96]. Additionally, ACs integrate
temperature information from peripheral sensors located in the antennae [96]. Drosophila
achieves thermorhythmic regulation by aligning physiologic responses to ambient temper-
ature. ACs transmit serotonin signals to small lateral ventral neurons (s-LNvs); these relay
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the temperature signal to dorsal neuron 2 (DN2), which regulates temperature preference
rhythms. The AC-sLNv-DN2 neural circuit sets the preferred temperature before dawn and
s-LNvs regulate motor activity and sleep rhythms; predawn environmental temperature
may be a wake-up signal that regulates body temperature [97]. ACs have been shown detect
changes in environmental temperature and release acetylcholine to activate DN1p and
promote wakefulness. DN1p releases the neuropeptide CNMamide to pars intercerebralis
(PI) neurons, thereby reducing the amount of sleep at night. Thus, the AC-DN1p-PI neural
circuit integrates heat-sensing inputs to promote wakefulness [98].
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Anterior cells (yellow) are found inside the brain, near the antennae. Right: The chordotonal organ
(yellow-black stripes) is located at the root of the Drosophila leg.

The antenna is a temperature-sensing organ containing a variety of sensory structures
that allow Drosophila to detect temperature changes [99]. Each arista contains brav1- and
Gr28b-positive neurons that sense cold and heat [71,100]; temperature signals are transmit-
ted by these cells to different regions of the proximal antennal protocerebrum [64,101], and
then to the mushroom body [102]. In the absence of thermosensitive cells in the antenna, the
normal response of DN1 neurons is attenuated, leading to disruption of sleep timing during
temperature cycling [33]. Temperature signals are transmitted by pyx-expressing neurons
in the antenna to ACs and then to the posterior antennal lobe [64,96], which integrates
temperature-related information for transmission to higher brain centers.

Cold-sensing neurons in the antenna sense and receive signals from low-temperature
stimuli. When the temperature is decreased from 25 ◦C to ~20 ◦C, these neurons relay
the cold signal to the next neuron, which releases factors that inhibit the activity of sleep-
promoting DN1a neurons in the brain [93].

Clock neurons in the brain are synchronized by signals from temperature-responsive
peripheral tissues [103]. Loss of nocte alters the structure and function of the chordotonal
organ and interferes with the synchronization of behavioral activity to temperature [94]. The
nocte mutant flies exhibit abnormal sleep and the expression of PER and TIM in most clock
neurons are abnormal during temperature cycling [33]. The nocte protein expressed in the
chordotonal organs senses changes in environmental temperature and transmits signals to
DNs that regulate activity and sleep by integrating light and temperature signals [104,105].

IR25a is expressed in a subpopulation of chordotonal organ neurons; loss-of-function
mutants fail to synchronize with temperature cycling under both constant light and con-
stant dark conditions. Rhythmic oscillations of TIM in DN1 and DN2 are also impaired,
suggesting that these neurons receive temperature input from the chordotonal organ and
are involved in circadian regulation [95].

The chordotonal organ participates in temperature sensing for circadian clock syn-
chronization. However, direct evidence of temperature sensitivity of this organ in adult
Drosophila is lacking, and the putative circuits connecting chordotonal organ neurons and
clock neurons in the brain have yet to be described.
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3.2. Neural Circuits That Regulate Sleep in Response to Temperature Changes

DN neurons are a heterogeneous group of neurons that can be classified into different
subgroups according to gene expression and function [106,107]. DNs have a bidirectional
regulatory effect on sleep, promoting both sleep [108] and wakefulness [109] (Figure 2).
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Figure 2. Thermoreceptor circuits in Drosophila. Some thermoreception and circadian neurons in the
brain are shown in different colors. The antennae sense cold temperatures, and the second-order
thermosensory projection neuron TPN-IIs transmit information from the posterior antennal lobe
(PAL) to circadian neurons DN1a to regulate sleep in Drosophila. Arista and AC neurons sense warm
temperatures and transmit information to some of the circadian neurons. One of the AC downstream
neunon types, a subset of DN1ps (green circles with brown outline), transfers heat signals to PIs (red)
to regulate sleep.

Circadian clock activity in different parts of the Drosophila brain is studied by raising
or lowering the ambient temperature. DN1p are circadian neurons that are activated and in-
hibited at low and high environmental temperatures, respectively. In male flies, two distinct
sets of TRPA1-expressing thermosensory neurons transmit signals to DN1p at temperatures
>29 ◦C, which influences morning sleep in response to elevated temperatures [37]. The
activity of DN1a neurons is inhibited at low temperatures (18 ◦C). DN1a neurons release the
neuropeptide CCHa1 to regulate s-LNv clock neuron activity and also receive PDF signals
from s-LNv neurons; this interaction modulates sleep in Drosophila. Thus, DN1a-mediated
temperature input may affect other clock neurons [110]. DN1p neurons can also receive
high temperature signals from ACs that inhibit neuronal activity and promote wakefulness.
Studies have shown that acute heating inhibits CNMa + DN1ps in an AC-independent
manner, whereas prolonged heating may activate CNMa + DN1ps through heat-sensing
input from AC neurons. That is, CNMa + DN1ps are activated by heat-sensing input from
AC neurons to support warmth-induced arousal [98]. The evidence from these studies
suggests that DN1 clock neurons serve as a “hub” for temperature input from the periphery
and central sleep regulation in Drosophila.
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The Drosophila neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing
factor receptor (PDFR) regulate nighttime temperature preference. DH31 and PDFR in
DN2s regulate the preferred temperature for nighttime sleep onset [111]. DN2 neurons also
receive signals from AC cells and sLNvs, with the latter signals peaking before dawn [97].

At the molecular level, temperature regulation involves thermosensitive alternative
splicing of clock genes. A high frequency of excision of dmpi8, the temperature-sensitive
3′-terminal intron of the clock gene period (per), inhibits cold-weather sleep as more sta-
ble per transcript and protein is produced, leading to earlier peaks of nocturnal activ-
ity [112,113]. The dmpi8 splicing efficiency affects the transcription level of dyw [41]. Low
temperature-dependent splicing increases dyw mRNA, which inhibits daytime sleep [40].

4. Thermoreception and Sleep Regulation in Mammals
4.1. Thermoreception in Mammals

TRPV1, the most widely studied temperature receptor in mammals, is expressed in the
dorsal calcaneal ganglion and trigeminal ganglion (TG). High temperatures activate TRPV1
and cause a painful sensation [55,85]. Trpv1 knockout mice have diminished or absent
temperature response [86], underscoring its importance in thermoreception. TRPV2 has
50% sequence similarity to TRPV1 [114,115], is activated at 52 ◦C, and is primarily expressed
in neurons that detect noxious thermal and mechanical stimuli [116]. Loss of TRPV2 did
not impair the response of animals to heat [117], implying that TRPV2 is not required for
thermoreception in adult mice. TRPV3, which is activated at 33 ◦C, is expressed in skin
keratinocytes, sensory nerve cells, dorsal root ganglion (DRG), TG, and the brain [88,118].
TRPV4 is activated at 27 ◦C and is expressed in the hypothalamus, sensory neurons and
skin keratinocytes [89,119]. TRPM8 was the first receptor to be identified that is activated
by cold [120–122], and is expressed in the TG and DRG. In addition to TRP channels,
ANKTM1, which senses lower temperatures, is only found in the DRG [91].

In response to heat or cold stimuli, somatosensory neurons in the skin send signals
to the brain which perceives the change in temperature. In mammals, these neurons are
distributed in the DRG [123,124] and are pseudounipolar with a single axon that bifurcates
into two branches, one extending to the skin or viscera (detecting changes in environmental
and internal core temperature, respectively) [124,125] and the other projecting to the dorsal
horn of the spinal cord or spinal trigeminal nucleus in the brainstem.

DRG neurons are the primary afferent neurons of the somatosensory system and
convert signals from the external and internal environment into neural activity [126–128].
Loss of FGF13 in sensory neurons abolishes the perception of thermal pain without affect-
ing that of mechanical pain [129]. Likewise, ablation of sensory neurons expressing the
cold receptor TRPM8 resulted in an inability to perceive cold [130–132]. Thus, different
temperature receptors in sensory neurons sense temperature changes.

There are four main types of sensory neuron that can be categorized as Aα, Aβ, Aδ,
and C fibers, or classified according to the type of stimulus that is detected (mechanical or
thermal). Aδ and C fibers include the sensory nerves involved in thermosensation [124,133].
Branches of Aδ and C fibers are widely distributed in the skin and sense different ranges of
temperature [134–137]; this information is encoded as an action potential and transmitted to
another axon branch. Aδ axon terminals are distributed in layers I and V of the dorsal horn,
while those of C fibers are distributed and form synapses in layers I and II. Temperature
information is transmitted via the ascending spinothalamic tract to the thalamus and so-
matosensory cortex, where temperature perception occurs [125]. Temperature information
is also transmitted to the pre-optic area (POA) of the hypothalamus via lateral parabrachial
neurons [138,139].

Neurons in the DRG sense temperature changes in most areas of the body, while
primary sensory neurons of the TG are mainly distributed in the head and face [140–143].
The TG is a sensory ganglion that expresses various neuropeptides and signaling molecules
and senses temperature changes with a higher temperature threshold and slower action
potential conduction velocity than the DRG [142,144].
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Warm, hot, and cold stimuli are sensed by different groups of neurons in the
TG [121,145,146]. Hypothermia induces the activation of about 15% of non-cold-sensing
neurons in the TG [147] that are also involved in temperature perception. The TG con-
tains distinct populations of spinothalamic projection neurons that transmit temperature
information to the primary somatosensory cortex [138].

4.2. Association between Temperature and Sleep Regulation

Mammals, unlike Drosophila, are homeotherms, which means that their core body
temperature is kept within a specific range. The brain regulates body temperature by
boosting heat generation or heat dissipation based on temperature information transmitted
from the skin and organs by skin receptors. Mammals’ core and skin temperatures are
frequently separated into two categories. Animals’ skin, which is on the outside of them,
frequently varies in response to variations in the surrounding temperature, whereas the
internal organs and central nervous system have temperatures that are more or less con-
stant [125,148]. Internal organs, the brain, and the spinal cord all keep track of variations in
core temperature, and skin receptors send information about environmental temperature
to the brain, which regulates body temperature by boosting either heat generation or heat
dissipation. The inner core and the skin both communicate temperature data to the POA.
Clinical studies have demonstrated that excessively high or low environmental temperature
can affect the amount and quality of sleep [149–153].

The hypothalamus receives signals pertaining to temperature changes and partici-
pates in thermoregulation; damage to the hypothalamus can also seriously affect sleep.
Neurons involved in sleep and temperature regulation are located in the POA [154–156]
and their activity increases with temperature [157]. The POA is divided into lateral (lPOA),
median (MnPOA), and medial (mPOA) nuclei. Activation of GABAergic or galaninergic
neurons in the POA promotes sleep [158,159], whereas activation of glutamatergic neu-
rons promotes wakefulness [158,160]. The mPOA is involved in sleep and temperature
regulation [161,162]; impaired mPOA function in rats decreased sleep, increased brain
temperature, and abolished the ability of the rats to regulate body temperature in a cold
environment [161,163]. Elevated orexin levels in the mPOA of lactating rats promoted
wakefulness and increased body temperature [164]. Upon exposure to a warm temperature,
thermoreceptors in the skin transmit signals to glutamatergic neurons in the LPB nucleus,
which activates glutamatergic neurons in the MnPOA and mPOA. MnPOA GABAergic
neurons inhibit wakefulness-inducing neurons to promote sleep, while mPOA GABAergic
neurons promote hypothermia [50,165]. The lPOA and mPOA regulate sleep in different
ways; disruption of the former in rats was shown to reduce sleep while brain temperature
was unaffected, although the rats exhibited defects in thermal defense behaviors [161].

During sleep, the temperature of the skin and brain changes. During NREM sleep,
the brain and skin temperature decrease; during REM, brain temperature increases. It is
suggested that body temperature and sleep stage are closely related. Recording changes
in brain temperature while recording neuronal activity found that brain temperature was
closely related to changes in sleep at different scales [166,167].

5. Outlook and Discussion

For Drosophila and mammals, temperature provides basic information regarding the
environment. A major advance in our understanding of temperature perception was
the identification of distinct thermoreceptors in different species and the cloning and
characterization of molecular thermosensors. Drosophila is highly sensitive to temperature
changes, and it also has a limited number of neurons and multiple genetic tools available,
making it amenable to the study of the relationship between temperature and sleep. The
current study shows that the transmission of temperature signals in Drosophila has been
elucidated. There might, however, yet be undiscovered ways for sensing temperature.
The temperature loop can be more clearly described by studying the transmission of
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temperature signals in different ways [168,169]. It also lays the foundation for exploring
the neural circuits of temperature regulation and sleep.

Sleep and body temperature are also closely related in mammals, with both environ-
mental and body temperatures affecting sleep. The POA receives temperature information
from the skin and participates in temperature and sleep regulation. Multiple distinct neuron
types with different properties and molecular profiles that regulate sleep or body tempera-
ture have been identified in the POA. The extent of overlap between temperature-sensing
and sleep-regulating POA neuron populations and associated neural circuits are unknown.
The current study demonstrates the heterogeneity of POA’s neurons and suggests that
various neurons may control various biological processes. Recent single-cell sequencing
techniques classify POA neurons more precisely. From there, researchers can manipulate a
particular type of POA neuron using light activation or virus injection to better understand
how different POA neuron types work in concert to control body temperature and sleep.
Most of the current research on sleep in mammals is conducted using mice; as they are
nocturnal animals, it is unclear whether the mechanisms of temperature and sleep regula-
tion reflect those in humans. Examining how temperature affects sleep in other species can
provide insight into whether the mechanisms that have been described in model organisms
are conserved across all animals.

In recent years, researchers have discovered and characterized the networks and
neural circuits involved in temperature transmission. However, our understanding of
animal thermal sensations still lags behind our understanding of other senses such as sight,
smell, and so on. In Drosophila and mammals, many key temperature-sensing neurons
and thermoreceptor molecules have not been discovered, and little is known about the
roles of known molecules in sleep regulation. Mammalian research advances slowly due
to the enormous number of neurons and limited technological capabilities. Given the
complexity of mammals’ thermoregulatory systems and temperature sensing networks, it
is difficult to fully understand their regulatory processes in the present studies. This makes
it challenging to determine how temperature regulation affects sleep. It is anticipated that
as technology advances, new neurological pathways controlling sleep through temperature
will be discovered, allowing humans to alter the environment’s temperature to enhance
sleep quality.
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