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1. Introduction
The future potential of using bacteria for therapeutic purposes [1,2] and regenerative medicine
makes the dynamics of such microswimmers highly attractive to study. As an example, to
overcome the penetration limitation of cancer chemotherapy, Toley & Forbes suggest using motile
bacteria which can migrate into solid tumours as carrier of the drug in chemotherapy [3]. In
another example, Felfoul and his co-workers show that magnetotactic bacteria can be used to
transport drug-loaded nanoliposomes into the oxygen-depleted hypoxic region of the tumour [4].
Considering such applications, significant research efforts have been focused on analysing and
modelling bacterial swimming dynamics. Broadly speaking, the mathematical models used to
describe the bacterial swimming dynamics can be classified into two categories. The first category
is based on a microscopic (i.e. cell-level) view of bacterial swimming through a set of equations
where each equation describes the state of a single agent [5–9]. The second category provides a
macroscopic (i.e. population-level) view via continuum-based partial differential equations that
capture the dynamics of population density over space and time, without considering the
intracellular characteristics directly [10–18]. Among the present models, Schnitzer [19] uses the
Smoluchowski equation to describe the biased random walk of the bacteria during chemotaxis
to search for food. To focus on a detailed description of the motion taking place during one
run interval of the bacteria, de Gennes [20] derives the average run length travelled by bacteria
during one counterclockwise interval. Along the same direction, to consider the environmental
condition affecting the biased random walk of bacteria, Croze and his co-workers [21] study
experimentally and theoretically the effect of concentration of soft agar on chemotaxis of
bacteria. To study the effect of obstacles (another environmental condition) on the motion
of bacteria, Chepizhko and his co-workers study the motion of self-propelled particles in a
heterogeneous two-dimensional environment and show that the mean square displacement
of particles is dependent on the density of obstacles and the particle turning speed [22,23].
Building on these models, Cates [24] highlights that bacterial dynamics does not always obey
detailed balance, which means it is a biased diffusion process depending on the environmental
conditions. Moreover, Ariel and his co-workers focus on diffusion of bacteria and show that
the bacteria perform super-diffusion during swarming on a surface [25]. To add to the current
knowledge, in this paper, we take into account realistic conditions like volume exclusion (i.e.
no two bacteria can occupy the same space at the same time), chemical interactions among
bacteria (i.e. autochemotaxis happening when bacteria excrete the converted substrate succinate
molecules in the environment into chemoattractant aspartate molecules [26]), obstacles (e.g.
during the drug delivery task, the existing cells and biological residues act as obstacles and
interfere with the swimming bacteria) and heterogeneous distribution of chemoattractant in
the environment and identify fractal characteristics of single bacterium motion, which could
have a fundamental impact on mathematical modelling of both single bacterium and population
swimming dynamics.

We analyse the motion trajectories of Serratia marcescens [27,28]. Extracting single bacterium
trajectories of motion from computer simulations for S. marcescens (figure 1a,b shows the different
simulation set-ups that we used for the chemoattractant gradient in the environment) and
applying single-cell visual tracking methods to real experiments on S. marcescens (figure 1c)
reveals the fractal characteristics of bacterial motion.

To elucidate the complexity of the bacterial dynamics, we investigate the individual trajectories
of simulated S. marcescens beside trajectories of real S. marcescens at multiple scales in space
and time; this way, we show single bacterium motion has a phase transition from a super-
diffusive behaviour to a normal diffusion and lastly to a sub-diffusive pattern based on
bacterial density and chemoattractant distribution. We also show that bacterial motion exhibits
a multi-fractal behaviour. The multi-fractal feature means that bacterial motion is self-similar,
which is a concept dating back to the pioneering work of Kolmogorov to explain the chaotic
behaviour [29,30]. Consequently, the multi-fractal formalism offers mathematical techniques to
capture this nonlinear self-similarity in their motion.
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Figure 1. Simulation configuration of S. marcescens in BNSim (see §2) and single particle tracking of
S. marcescens during experiments. (a) In case 1 for simulation in BNSim, a cubic environment with dimensions
5000× 5000× 5000 µm3 has been considered. The whole environment subdivided into 106 smaller cubes,
each with a size of 50× 50× 50 µm3. We consider a linear gradient (10−4 mM µm−1) of chemoattractant
(L-aspartate) only in the y-direction and no gradient in other directions. (b) In case 2 for simulation in BNSim, we consider the
same configuration as in case 1 for bacteria and the environment. We only changed the gradient of chemoattractant in the
environment. In this case, we consider a linear gradient of chemoattractant (L-aspartate) from the injection location to the
targets, meaning that there is a linear gradient in 3 different dimensions. (c) Single particle tracking of S. marcescens in an
in vitro environment with dimensions of 10000× 500× 150 µm3 with linear gradient (10−4 mM µm−1) of chemoattractant
(L-aspartate) in the second direction (y-direction).

The remainder of this paper is organized as follows. In the first section of results, we
investigate the swimming dynamics of simulated S. marcescens. We explore the second-order
moment of motion using an ergodicity test under different conditions including bacterial density
and chemoattractant distribution. Then, we explore the third-order moment of motion with a
nonlinearity test. Next, we discuss that focusing on second- and third-order moments of a single
bacterium’s motion cannot capture the entire spatial and temporal complexity of the motion;
therefore, we perform multi-fractal analysis which considers higher-order moments of their
motion. We show that the simulated S. marcescens bacterial swimming displays multi-fractal
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characteristics. In the last section of results, using experimental swimming trajectories of
S. marcescens, we show that their motion is multi-fractal, validating our conclusions for simulated
bacteria. Finally, the discussion section concludes the paper and outlines some future research
directions.

2. Material and methods

(a) Experiments
Laboratory experiments were conducted to measure the swimming behaviour of live and motile
S. marcescens under two conditions: (i) an isotropic environment (i.e. uniform distribution of
substances) with dimension equal to 10 000 × 500 × 150 µm3 and (ii) a stable linear gradient of
L-aspartate, which is a canonical chemoattractant for bacterial species such as S. marcescens.

(i) Bacterial culture

To conduct the experiments, S. marcescens (ATCC 274, American Type Culture Collection,
Manassas, VA, USA) was cultured using established protocols [28,31–33]. The bacteria were
first grown to reach the exponential state in their growing process (during this state, the
number of bacteria doubles at an approximately constant rate, which is around every 20 min for
S. marcescens) in a liquid culture (25 g of Difco LB Miller Broth and 1 l of deionized (DI) water, pH
7.0) on a shaker at 37°C for 3.5–4 h. Then, an aliquot of 2.0 µl of the liquid culture was placed on an
agar plate (25 g of Difco LB Miller Broth, 6 g of Bacto Agar, 5 g of glucose, 1 l deionized water), and
the agar plate was incubated at 30°C for 16–20 h. For the experiments, bacteria from the leading
edge of the colony were extracted and then diluted in motility buffer (0.01 M KH2PO4, 0.067 M
NaCl, 0.1 mM EDTA, pH 7.0) to appropriate densities for the measurements. Subculturing the
bacterial cells on an agar plate allows the most motile bacterial cells, which have been shown to
be located along the leading edge of a spreading colony [28], to be selectively chosen for the study.

(ii) Experimental set-up

A three-channel microfluidic concentration gradient generator was fabricated to measure
bacterial swimming parameters under chemotaxis and without chemotaxis; detailed descriptions
of the device can be found in Zhuang et al. [27], and a figure of the device is shown in
the electronic supplementary material, figure S10. The gradient generator consisted of three
parallel microfluidic channels within an agarose gel. By controlling the concentration of the
chemoattractant in the outer two channels of the device, a linear chemoattractant concentration
profile could be generated by molecular diffusion in the middle channel in which the bacterial
suspension was placed. The gradient generator was calibrated by observing the diffusion
of 10−4 M fluorescein (Sigma-Aldrich Co.) in the device as described in Zhuang et al. [27]
and Edwards et al. [28]. Fluorescence intensity profiles from these studies revealed that a
stable linear gradient developed within 20 minutes. Given that the diffusion coefficient of
L-aspartate is 9.0 × 10−6 cm2 s−1 and the diffusion coefficient of fluorescein is about half that
of L-aspartate [27], it can be concluded that about 10 min are required to develop a stable
chemoattractant concentration gradient of L-aspartate and the gradient remains stable beyond
10 min. In our study, the bacterial swimming motion was measured after 15 min, ensuring a stable
linear concentration gradient within a quiescent fluid environment.

(iii) Experimental conditions

Chemotaxis of S. marcescens was measured under an L-aspartate gradient of 0.2 mM mm−1, with
an average concentration of 0.1 mM. To measure the bacterial swimming behaviour in an isotropic
environment, we used the same device but with a uniform distribution of motility buffer (without
an L-aspartate gradient). For both cases, with and without the chemoattractant gradient, the
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bacterial swimming parameters were studied for three different cell densities, which were 106

bacteria cm−3, 107 bacteria cm−3 and 108 bacteria cm−3. All the experiments were conducted at
room temperature (19–22°C).

(iv) Imaging and tracking

The bacteria were imaged with an inverted microscope (40× objective, Zeiss AxioObserver.A1,
Carl Zeiss, Oberkochen, Germany), and videos were obtained at 88 frames per second with a
CCD camera (Foculuc FO134SB). All video data were acquired at least 20 µm (approx. 20 body
lengths) from any surface to minimize the wall effects on the bacterial swimming behaviour,
and no obstacles hindered the movement of the bacteria (except for other bacterial cells). The
bacteria were tracked in three dimensions by an in-house visual tracking program developed
in Matlab (R2012a, The MathWorks, Inc, Natick, MA, USA). The tracking program extracts the
x–y positions of bacteria in the video frames using image thresholding techniques, while the z-
position was obtained by making use of the lens aberrations created by out-of-focus bacterial
cells. This defocused optical tracking method has been applied by several groups to track the
three-dimensional motion of bacteria and small particles [28,34–37]. A linear relationship exists
between the radius of the aberration ring appearing around an out-of-focus cell and the cell’s
vertical distance (along z-axis) to the focal plane. The following equation exhibits this relation:

r = c1|z| + c0. (2.1)

In the above equation, c0 and c1 were calibrated by performing an experiment in which the
bacteria were fixed a known distance away from the focal plane. The variables were determined
from Edwards et al. [28]. Therefore, the z-position of a bacterial cell could be determined by
measuring the size of the aberration ring around the cell (for more details see Note 12 in the
electronic supplementary material).

(b) Simulations
For completeness of our analysis, we used computer simulations of known mathematical models
for the chemical pathways of S. marcescens to capture their dynamics through simulations in
addition to experimental data. The main reason for using simulations beside real experiments
is the ergodicity test. For performing the ergodicity test and measuring the time-averaged
mean square displacement and the ensemble mean square displacement, we need at least
1000 trajectories of exactly the same bacteria starting with exactly the same initial condition.
Owing to constraints on experimental conditions, we are not able to perform the same
experiment 1000 times exactly with the same initial conditions to track exactly the same
bacteria in all of them. To tackle this issue, we used BNSim [38], an open-source, parallel
multi-scale stochastic modelling platform integrating various simulation algorithms with genetic
circuits and a chemotaxis pathway modelled in a complex three-dimensional environment
(for the detailed mathematical model of chemotaxis pathway, see Note 6 in the electronic
supplementary material). Specifically, to simulate the chemoreceptors, we used the Monod–
Wyman–Changeux model in which the receptor homodimers assemble into fully cooperative
signalling teams that switch rapidly between active and inactive states [39]. The methylation
kinetics is based on the celebrated Barkai and Leibler model for a near-perfect adaptation
system [40,41]. For the signal transduction from chemoreceptor to the flagella motor regulator
Yp, the concentration of phosphorylated CheYp is assumed to be proportional to the kinase
activity without considering the nonlinear dependence [42]. Finally, we used a two-state model
to describe the motor behaviour of bacteria, which sets the clockwise (CW) and counterclockwise
(CCW) states in two potential wells [43,44]. The transition rates have been fitted to experimental
data [27,28,45]. For the interactions among cells, we consider volume exclusion effects and
also autochemotaxis (chemical interaction) between the bacteria inside the swarm in all
of our simulations. Autochemotaxis happens when bacteria excrete the converted substrate
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succinate molecules in the environment into chemoattractant aspartate molecules [26,46–48].
Once the succinate gets depleted, bacteria start consuming the chemoattractant aspartate
excreted by themselves and they may detect each other’s presence through this process [24].
Of note, this form of chemical interaction has been defined as cue in the chapter entitled
Communication in bacteria by Diggle and his co-workers in [49]. (Note 10 in electronic
supplementary material explains how autochemotaxis has been considered in the computational
model).

We performed simulation for S. marcescens with two different speeds considering three
different cases as follows. For some cases we used a higher swimming speed that is more
appropriate to Escherichia coli than to S. marcescens (simulation cases 1 and 2). The simulation
of the chemical pathway is the same for all the cases.

The simulations have been done for three different cases.

(i) Case 1

We used a cubic environment with dimension 5000 × 5000 × 5000 µm3 (figure 1a). The whole
environment was subdivided into 106 smaller cubes, each with a size of 50 × 50 × 50 µm3. The
rationale for using these small cubes was to capture bacterial interaction with nearby bacteria and
the environment efficiently. The three-dimensional space is therefore tessellated in cubes, while a
bacterium is a sphere with a radius of 1 µm. We also used these smaller cubes to model obstacles in
our simulations. The way we implement the obstacles in our simulation is by making these small
cubes impenetrable; thus, when a bacterium approaches one of these cubes, it cannot continue
swimming and so it has to choose a new direction for runs. Simulated bacteria had a constant run
speed of 14 µm s−1 and a rotational diffusion constant of 0.062 rad2 s [50,51]. After each tumble,
cells were reoriented in a new direction that is randomly sampled from a gamma distribution
with a scale parameter of 18.32 and a shape parameter of 4, matching the experimentally observed
distribution of new run angle.

In this set of simulations, different population densities of 8 × 102 bacteria cm−3, 8 × 103

bacteria cm−3 and 8 × 104 bacteria cm−3 in the environment were considered. These population
densities correspond to a total number of 102 bacteria, 103 bacteria and 104 bacteria, respectively.
To study the effect of chemotaxis on the environment, we considered a steady-state linear
gradient (10−4 mM µm−1) of chemoattractant (aspartate) in the y-direction. We simulated each
bacterial density considering two different conditions: with the gradient of chemoattractant in
the environment and without the gradient of chemoattractant in the environment.

Besides population density of bacteria, existence of obstacles will affect bacterial motion.
In realistic scenarios of using bacteria for drug delivery in vivo, the swarm dynamics will be
affected by collisions with existing obstacles. For instance, during the drug delivery task, the
existing cells and biological residues act as obstacles and interfere with the swimming bacteria.
To analyse the effect of obstacles on bacterial motion, we considered 0.01% of the small cubes
uniformly distributed in the environment to be impenetrable (i.e. totally 104 number of cubes
are impenetrable); thus, when the bacterium hits one of these cubes, it cannot continue to enter
the cube and it will continue tumbling to choose a new direction for its run (Note 8 in electronic
supplementary material explains how the obstacles have been applied to BNSim in more detail).

It is important to mention that the obstacles’ effect on single bacterium motion is different from
the impact of bacteria population density based on volume exclusion effects. Each bacterium
tries to avoid collision with the obstacles around it, meaning that the obstacles affect single
bacterium motion. On the other hand, bacteria population density also affects bacterium motion
(directly and indirectly). This means each bacterium modifies its motion to preventing collision
with other bacteria (directly). Moreover, the chemical interaction between the bacteria based on
their population density will affect the motion of each bacterium (indirectly). In other words,
autochemotaxis between the bacteria is dependent on bacteria population density. Therefore, it is
important to investigate the effects of obstacles and bacterial density on single bacterium motion
separately based on the differences in the nature of their effects.
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(ii) Case 2

In this case, we had the same set-up for environment and simulated bacteria as for case 1. The
only difference was in the population densities we simulated and the chemoattractant gradient in
the environment.

In this case, we considered a wider range of population densities than in case 1, namely
8 × 102 bacteria cm−3, 8 × 103 bacteria cm−3, 8 × 104 bacteria cm−3, 8 × 105 bacteria cm−3 and
8 × 106 bacteria cm−3 in the environment. These population densities correspond to the total
number of bacteria, from 102 bacteria up to 106 bacteria in the simulations. The other significant
difference between this case and case 1 was that we considered a steady-state radial gradient (10−4

mM µm−1) of chemoattractant (aspartate) from the injection location towards the targeted region,
namely ((x2 + y2 + z2)0.5 × 10−4 mM µm−1). We simulated each bacterial density considering two
different conditions: with the gradient of chemoattractant in the environment and without the
gradient of chemoattractant in the environment.

(iii) Case 3

In this case of simulation, we used a different swimming speed for bacteria compared to that of
cases 1 and 2. Moreover, we used a different dimension for the environments. We used a three-
dimensional environment with dimensions 10 000 × 500 × 150 µm3. The whole environment was
subdivided into smaller cubes each with a size of 50 × 50 × 50 µm3. For the simulation, densities of
104 bacteria cm−3, 105 bacteria cm−3, 106 bacteria cm−3 and 107 bacteria cm−3 in the environment
were considered. These population densities correspond to total numbers of 7 bacteria, 75
bacteria, 750 bacteria and 7500 bacteria, respectively. To study the effect of chemotaxis in the
environment, we considered a steady-state linear gradient (10−4 mM µm−1) of chemoattractant
(aspartate) in the y-direction. We simulated each bacterial density considering two different
conditions: with the gradient of chemoattractant in the environment and without the gradient
of chemoattractant in the environment.

3. Results

(a) Investigation of simulated S. marcescens swimming dynamics
(i) Exploring the second-order moment of motion with the ergodicity test

The dynamics of a bacterial population is affected by numerous factors, such as the spatio-
temporal gradient of chemoattractant within the environment [52,53], bacteria density, volume
exclusion [54], the intensity of autochemotaxis [55] and saturation of bacteria receptors. One
important consequence of the mentioned dependencies is that the collective motion of bacteria
is non-ergodic in nature [56–58]. To investigate this, we performed an ergodicity-breaking test
which checks that long-time averages differ from ensemble averages of bacterium displacement.
Simply speaking, if the dynamics of a bacterium’s motion is non-ergodic, the time-averaged mean
square displacement (TAMSD) (i.e. limT→∞ δ2(� = t, T) = (1/T − �)

∫T−�
0 |r(t + �) − r(t)|2dt) is

not equal to the ensemble mean square displacement (EMSD) (i.e. 〈r2(t)〉 = ∫
r2P(r, t)d3r = 〈|r(t) −

r(0)|2〉). In mathematical terms, the system is non-ergodic if limT→∞ δ2(� = t, T) �= 〈r2(t)〉 [59–61].
In the TAMSD formula, � and T represent the lag time and the overall measurement time,
respectively. In the EMSD formula, P(r, t) is the probability density function to find bacteria
at position r at time t (in the TAMSD formula, the overline denotes the time average). It is
important to mention that in silico simulation of bacteria provides the opportunity of performing
the same simulation with exactly the same initial condition over 1000 times and of monitoring
the behaviour of an identical bacterium in all simulations. This helps us to calculate the ensemble
mean square displacement of a bacterium and to investigate the ergodicity test. Such analysis
cannot be done for experiments in vitro, which is an advantage of in silico simulations to study the
dynamics of bacteria.
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Figure 2. Mean square displacement (MSD) plots for simulated S. marcescens in BNSim. (a) Time-averaged
MSD of one S. marcescens bacterium motion simulated in BNSim as a function of lag time �(δ2(�, T)=
(1/T − �)

∫T−�

0 |r(t + �) − r(t)|2dt) for a density of 8× 104 (bacteria cm−3) in an environment with a linear
gradient of chemoattractant andwithout obstacles. This plot shows super-diffusion behaviour (MSD( t) = kα tα , 1< α < 2)
(configuration case 1 in §2). (b) Ensemble average MSD of S. marcescens motion simulated in BNSim versus time t calculated
from the formula (MSD( t) = 〈|r(t) − r(0)|2〉) over 100 trajectories for a density of 8× 104 (bacteria cm−3) with a linear
gradient of chemoattractant and without obstacles. This plot also shows super-diffusion behaviour. The observed difference
between these two plots (a,b) shows an ergodicity-breaking behaviour in the system and demonstrates the non-ergodicity of
bacterial dynamics (configuration case 1 in §2). (c) The TAMSD of the centre of the whole population for S. marcescensmotion
simulated in BNSim shows the effect of population density and chemoattractant on the centre of the bacteria population
motion (configuration case 2). (d) The TAMSD of one S. marcescens trajectory simulated in BNSim for different cases shows the
effect of chemoattractant and density on single bacterium motion (configuration case 2 in §2). By increasing the population
density, we observe a phase transient in bacterial behaviour from super-diffusion to normal diffusion and then sub-diffusion
(configuration case 2 in §2).

Figure 2a–d summarizes the ergodicity investigations on the simulated bacterial swimming
dynamics under various bacterial densities, chemoattractant gradient and autochemotaxis effects.
For instance, figure 2a,b show the difference between TAMSD and EMSD plots for a simulated
bacterium in a population of 8 × 104 bacteria cm−3 in an environment with a linear gradient of
chemoattractant and without obstacles except other bacteria. More precisely, the TAMSD for this
case when the lag time t = 10 (s) is δ2(t = 10, T = 1000) = 15 631 (µm2), while the EMSD obtained
over 100 trajectories for the same timing conditions is 〈r2(t = 10(s), T = 1000(s))〉 = 12961 (µm2).
The difference between the TAMSD and the EMSD in this case is 20%. The TAMSD for a lag
time t = 10 s is independent of the initial time reference, which means that bacteria will move a
distance equal to 125.02 (µm) on average. In contrast, the EMSD for the same time t = 10 (s) implies
that bacteria will travel (on average) a distance of 113.84 (µm), which has a 10% difference. The
significant difference between the TAMSD and the EMSD shows that, for simulated bacteria, the
motion is non-ergodic and time-dependent [58]. Comparing the slopes of the lines fitted to both
TAMSD and EMSD plots confirms that the single bacterium motion is non-ergodic (the slope of
the line fitted to the TAMSD plot is 1.198 (±0.007), while that for the EMSD plot is equal to 1.290
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(±0.009)). For completeness, we test all cases for different points in time (electronic supplementary
material, table S2). The cases we analysed cover different bacterial densities and chemoattractant
distribution in the environment. In all of these cases, the equality between the TAMSD and the
EMSD does not hold; this confirms the non-ergodicity of the bacterial motion. In conclusion, the
non-ergodicity finding holds for both case studies considered: (i) the effect of bacterial density
and (ii) the effect of chemoattractant distribution in the environment.

The non-ergodicity of single bacterium motion follows anomalous diffusion behaviour based
on EMSD plots. Generally speaking, the anomalous diffusion is a diffusion process characterized
by a nonlinear relationship of the EMSD with time [62–66]. In contrast, a normal diffusion process
has an EMSD that varies linearly with time. Figure 2b shows bacteria-driven motion displays a
super-diffusion type of behaviour [67], which can be modelled using a power law form of the
second moment with exponent ranging between 1 and 2 (i.e. 〈δ2(�, T)〉 = Kα�α , 1 ≤ α ≤ 2) for
different bacterial density cases. The super-diffusive behaviour of non-ergodic bacterium motion
cannot be modelled with a Brownian random walk with an average drift which has ergodic
characteristics.

Figure 2c,d shows that the single bacterium trajectory and the movement of the centre of
the group exhibit super-diffusion behaviour for some cases in our simulations. The super-
diffusion behaviour predicts that its corresponding random walk is characterized by a stable
distribution [68,69]. To further elucidate this behaviour of the simulated bacteria, we investigate
the histogram of the distance travelled by bacteria P(r, τ ) in a specific lag time τ (figure 3a). It
can be observed that it exhibits a stable type of distribution (electronic supplementary material,
table S4). The origin of this behaviour is the lack of nutrient concentration in our simulation
model, which leads to a high level of noise in the methylation model. This noisy fluctuation in the
methylation model is the reason for the power-law run-length distribution in simulated bacterium
motion [68]. Figure 3a shows that the side peak of the bacterium displacement histogram
P(r, τ ) shifts towards the right-hand side and broadens with time. Based on the Generalized
Central Limit Theorem, the histogram will converge to a stable distribution as the lag time τ

increases [70,71].
Figure 2c,d shows the effect of population density on the TAMSD for different bacterial density

cases. The TAMSD variation of the centre of the entire bacterial population as a function of time
lag � (figure 2c) shows that increasing the bacterial density makes the population less motile.
Volume exclusion effects and chemical interactions caused by autochemotaxis between bacteria
are the main reasons of this behaviour (Note 7 in electronic supplementary material explains how
volume exclusion effects have been considered in the computational model).

Figure 2d shows the TAMSD of a single bacterium, which is in agreement with the results
obtained from the TAMSD of the entire swimming trajectory. One reason for this behaviour is
that increasing their population causes a significant increase in the autochemotaxis (Note 10
in electronic supplementary material explains how autochemotaxis has been considered in the
computational model). In turn, this may cause receptor saturation which can ‘confuse’ bacteria
in choosing its preferred direction of motion in the environment; this means that their motion
may become restricted due to their high accumulation in the environment. Hence, the TAMSD of
bacterial motion decreases (for the same time interval) with the increase in bacterial density.

Figure 2d magnifies the volume exclusion effect for the case of 8 × 106 bacteria cm−3 (purple
and magenta lines). As one can see, in this case, the bacterium is not able to move and therefore
it remains in the neighbourhood of its original location. By increasing the bacterial population
up to 8 × 105 bacteria cm−3, we observe a phase transition in their motion from a super-diffusive
behaviour to a normal diffusion and lastly to a sub-diffusive pattern (electronic supplementary
material, table S3).

Besides the TAMSD plots, the displacement histogram P(r, τ ) shows a higher probability for
a longer displacement in the same time interval related to lower bacterial densities (figure 3b).
When constraints like other bacteria in the environment limit a bacterium’s motion, then the
bacterium tends to oscillate more and randomly move in the environment rather than moving
directionally.
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Figure 3. Effects of time, bacteria population density and chemoattractant on S. marcescens motion simulated in BNSim. (a)
Effect of time on bacterial motion. Log–log plot of P(r, τ ) as a function of distance r for different lag times τ = 100 s, 500 s,
1000 s. This result is for 8× 102 bacteria cm−3 in an environment without chemoattractant and obstacles. This plot shows
that the bacteria move more with time and get further away from their initial locations. The peak of the plot decreases more
(configuration case 1 in §2). This plot exhibits a stable type of distribution (electronic supplementary material, table S4). (b)
Effect of density on bacterial motion. Log–log plot of P(r, τ ) for lag time τ = 1000 s compared for different bacterial densities
simulated in BNSim in an environment with chemoattractant gradients and without obstacles. By increasing the bacterial
population, their motion will be restricted and they are able to move less freely in the environment (configuration case 1 in
§2). (c) Effect of chemoattractant on bacterial motion. Log–log plot of P(r, τ ) for lag time τ = 1000 s compared for the case
with andwithout chemoattractant in the environment for the population of 8× 102 bacteria cm−3. By adding chemoattractant
in the environment, the bacteria tend to move more and oscillate less, so they get further away from their initial conditions in
the direction of increasing gradient of chemoattractant (configuration case 1 in §2).

We also study the effect of L-aspartate gradient on the TAMSD of bacterial motion trajectory.
Figure 2c,d shows that by adding L-aspartate gradient (configuration case 2 in §2) to the
environment, independent of bacterial density, the TAMSD will increase for both a single
bacterium and an entire population for simulated bacteria. Moreover, figure 3c presents the
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histogram of displacement of bacteria after lag time τ (i.e. P(r, τ )) for the case with/without
L-aspartate gradient in the environment. This figure shows that the probability of covering longer
displacements (after the same time lag) by bacteria is higher in the case of L-aspartate gradient
in the environment, meaning that bacteria tend to move directionally along a targeted direction
and oscillate less when they sense a chemoattractant gradient in their environment while their
instantaneous speed stays the same (figure 3c).

Up to this point, we focus on the non-ergodicity of single bacterium motion by investigating
the second-order moment of their motion under different environmental condition. In what
follows, we shift our focus to the third-order moment of their motion by performing a
nonlinearity test.

(ii) Exploring the third-order moment of motion with nonlinearity test

Details about the first and second moments of the bacterial trajectory (corresponding to
mean square displacement of bacterial motion) do not provide enough information regarding
the complexity of their dynamics. Consequently, we analyse the higher-order moments of a
bacterium’s trajectory by investigating the skewness metric. Skewness represents the third-order
moment of bacterium motion and helps to investigate whether or not the motion increments (i.e.
changes in the spatial position of the bacterium in three-dimensional space between two different
time instances) obtained from the bacterium trajectory obey a multivariable normal distribution
in the three-dimensional environment. Non-zero skewness shows that the probability density
function of motion increment does not follow the normal distribution and this is a signature of
nonlinearity [72].

Using the Mardia method [72–74], we measured the multivariate skewness of our data for
simulated bacteria (see electronic supplementary material, equation (2)). The non-zero highly
variable skewness plots demonstrate that bacterial motion cannot be modelled by a multivariable
normal distribution for all the cases under consideration (i.e. with and without chemoattractant
and obstacles in the environment); this confirms the nonlinear behaviour (skewness plot in
electronic supplementary material, figure S1).

To provide a more comprehensive analysis on the existence of nonlinear behaviour, we
employed several statistical methods like Henze–Zirkler’s multivariate normality test [75–
77], Royston’s multivariate normality test [78–80] and Doornik–Hansen omnibus multivariate
normality test [81,82]. Electronic supplementary material, table S1 summarizes the results for
these tests and further demonstrates the nonlinearity of simulated bacterium dynamics.

(iii) Exploring higher-order moment of motion using multi-fractal analysis

Traditional analysis of bacterial motion has focused on measuring the root mean squared
fluctuations of the displacement and thus is limited to first- and second-order moment
analysis. However, relying on the second-order statistics not only is inconsistent with the
observed non-Gaussian behaviour, but also it does not capture the entire spatial and temporal
complexity structure of the interactions among bacteria and the environment. Consequently,
we employ concepts from statistics (e.g. higher-order moments) and fractal theory (e.g. multi-
fractal spectrum, generalized Hurst exponent) to perform a multi-fractal [83,84] analysis and
quantify the correlation structure and complexity of bacterium trajectories (see Note 5 in
electronic supplementary material for more details). More precisely, we compute the generalized
Hurst exponent as a function of the higher-order moment q and the multi-fractal spectrum.
The generalized Hurst exponent of a bacterium trajectory measures the scaling and memory
properties of the qth order moment of the distribution of fluctuations. For example, the
generalized Hurst exponent for q = 2 coincides with the autocorrelation function. In addition,
the generalized Hurst exponent helps us distinguish between mono-fractal and multi-fractal
behaviour. If the generalized Hurst exponent proves to be independent of the order q of
the moments, then the bacterium motion can be classified as mono-fractal. In contrast, if the
generalized Hurst exponent exhibits any dependence on order q, then the bacterium motion
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Figure 4. (Caption opposite.)

is regarded as multi-fractal. Alternatively, we can investigate the existence of a multi-fractal
behaviour by analysing the wideness of the multi-fractal spectrum (i.e. W = h(q)max − h(q)min
estimating the range of present Holder exponents in the data). A wider multi-fractal spectrum
shows that the multi-fractality degree is stronger, meaning that the motion structure is more
complex and inhomogeneous. Therefore, a wider range of fractal exponents are needed to cover
the complex structure of the bacterium motion. Another measure for multi-fractality degree is the
most probable Holder exponent h(q) corresponding to the peak of the multi-fractal spectrum (i.e.
h0(q)). Low h0(q) shows that the motion of bacteria is more correlated and regular in appearance,
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Figure 4. (Opposite.) Multi-fractal analysis of motion for simulated S. marcescens in BNSim and S. marcescens in vitro
experiments. (a) Multi-fractal spectrum of the simulated S. marcescens position in the direction of the linear gradient of
chemoattractant for different cases with and without chemoattractant and different bacterial densities (configuration case
2 in §2). (b) Generalized Hurst exponent of the simulated S. marcescens position in the direction of the linear gradient of
chemoattractant for different cases with and without chemoattractant and different bacterial densities (configuration case 2 in
§2). (c) Multi-fractal spectrum of the simulated S. marcescens position in the direction of the linear gradient of chemoattractant
with a density of 8× 104 bacteria cm−3 for different caseswith andwithout chemoattractant and obstacles in the environment
(configuration case 1 in §2). (d) Generalized Hurst exponent of the simulated S. marcescens position in the direction of the linear
gradient of chemoattractant with a density of 8× 104 bacteria cm−3 for different cases with andwithout chemoattractant and
obstacles in the environment (configuration case 1 in §2). (e) Multi-fractal spectrum of the experiments in vitro on S. marcescens
position in the direction of the linear gradient of chemoattractant for different cases with and without chemoattractant and
different bacterial densities. (f ) Generalized Hurst exponent of the experiments in vitro on S.marcescens position in the direction
of the linear gradient of chemoattractant for different caseswith andwithout chemoattractant and different bacterial densities.
(g) Multi-fractal spectrum of simulated S. marcescens position in the direction of the linear gradient of chemoattractant for
different cases with and without chemoattractant and different bacterial densities (configuration case 3 in §2). (h) Generalized
Hurst exponent of simulated S. marcescens position in the direction of the linear gradient of chemoattractant for different cases
with and without chemoattractant and different bacterial densities (configuration case 3 in §2).

meaning that the motion is mono-fractal. Overall, multi-fractal analysis is an applicable tool to
characterize the variability and heterogeneity in bacterium motion structure [85,86].

Figure 4a–d presents our results from the multi-fractal detrended fluctuation analysis [87,88]
on motion trajectories of simulated S. marcescens in BNSim for different bacterial densities with
and without the L-aspartate gradient in the environment (see simulation section in §2). Based on
the simulation results (figure 4a), we observe that increase in the density of bacteria decreases
the width of the multi-fractal spectrum (W) and decreases (h0(q)) as two different measures of
the degree of multi-fractality. For instance, in the case of chemoattractant in the environment,
the wideness (W) of the multi-fractal spectrum is shrinking from W = 0.851 to W = 0.182 as the
population of bacteria increases from 8 × 102 (bacteria cm−3) to 8 × 106 (bacteria cm−3). Similarly,
we observe that the most probable Holder exponent h0(q) is shifting from 1.06 to 0.02 by increasing
bacterial density from 8 × 102 (bacteria cm−3) to 8 × 106 (bacteria cm−3). The comparison shows
that by increasing bacterial density, the width of the multi-fractal spectrum decreases; this implies
that the bacterium motion dynamics transitions from a multi-fractal behaviour to a mono-
fractal behaviour. Simply speaking, the bacterium oscillates more than exhibiting a directional
motion. This transition translates into a reduction in h0(q). The lower h0(q) shows that the
process is correlated, meaning that the underlying structure in bacterium motion becomes
more regular by increasing the bacterial population. The increase in bacterial population makes
their multi-fractal spectrum asymmetric, which captures the dominance of low- or high-fractal
exponents with respect to medium fractal exponents. In the case of 8 × 106 (bacteria cm−3) with
chemoattractant in the environment, the right-skewed spectrum shows relatively strong weight
for low-fractal exponents.

From figure 4a,b, we can conclude that adding chemoattractant to the environment has exactly
the opposite effect on a single bacterium’s motion compared to the effect of the increase in density.
For example, we considered the two cases of bacterial population equal to 8 × 102 (bacteria cm−3)
without and with chemoattractant in the environment. The wideness (W) increases from 0.822
to 0.851 when we add chemoattractant to the environment. Similarly, the most probable Holder
exponent h0(q) shifts from 0.78 to 1.06 by adding the chemoattractant. This implies that in an
environment rich in chemoattractant, the multi-fractal spectrum related to a bacterium motion
gets a wider shape with higher values of h0(q), and this is true for all the density cases we
analysed except the highest density equal to 8 × 106 (bacteria cm−3). In this case, because of
the very high density of bacteria in the environment, the volume exclusion effects and the
receptor saturations, there is no significant difference in h0(q) between the cases with and without
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chemoattractant and both of them are mono-fractal. In other words, adding chemoattractant to
the environment impacts bacterial motion in a way that makes their motion more directional and
less oscillatory. Figure 4c,d demonstrates the effect of obstacles in the environment for simulated
bacteria (Note 8 in the electronic supplementary material discusses the importance of studying
the effects of obstacles and also how they are considered in the computational model). We
compared the case of bacterial density 8 × 104 bacteria cm−3 without chemoattractant and with
obstacles (W = 1.004 and h0(q) = 0.88) with the case of the same density with chemoattractant
gradient and without obstacles (W = 0.6918 and h0(q) = 0.72). In an environment with obstacles,
the multi-fractal spectrum shifts towards lower values of h0(q) and narrower spectrum widths.
In such an environment, the bacterium has the tendency to oscillate more than to follow a
directional motion.

(b) Investigation of real S. marcescens swimming dynamics through in vitro experiments
We extract the S. marcescens motion trajectories from real experiments by the single particle
tracking method and analyse them. The results from skewness analysis show the same nonlinear
behaviour for the bacterium motion (electronic supplementary material, figure S1). This is in
agreement with the previously presented results for simulated S. marcescens, meaning that the
motion of S. marcescens is highly nonlinear in the environment.

Figure 4e,f shows the multi-fractal analysis for motion trajectories of S. marcescens from
experiments in vitro. The results elucidate that S. marcescens has a multi-fractal motion in these
environments. For the same population density, by adding chemoattractant to the environment
the spectrum moves towards the right, which is a sign of multi-fractal behaviour. We observe a
similar but not identical multi-fractal behaviour from real S. marcescens compared to simulated
S. marcescens. The reason the results do not match exactly is that for the simulated S. marcescens
we have control over most of the internal and environmental parameters. In contrast, real
S. marcescens like other biological systems in nature show a higher degree of adaptation such
as adjustment to environmental conditions, self-organization and complexity in their behaviour.
Another reason for the difference between the simulation and experiment could be attributed to
other forms of interactions that happen in the biological world and are not captured in the current
computational model. However, if someone discovers new forms of interaction, they could be
included in the computational model. This remains for future work.

4. Discussion
Bacteria like S. marcescens perform an efficient diffusive search (based on the status of their
receptor signals) to find food in a complex environment [27]. In this study, we investigate
the fractal characteristics of the bacterium motion while swimming in a three-dimensional
environment. We first analyse the second- and third-order moment of the single bacterium motion
trajectory with the ergodicity and nonlinearity tests under different conditions including bacterial
density and chemoattractant distribution. These tests help building the bases for higher-order
moment analysis of single bacterium motion through the MFDFA method to capture the entire
spatial and temporal complexity of single bacterium motion. Based on MFDFA analysis, we
show that bacterial swimming dynamics has multi-fractal characteristics. Moreover, we study
how bacterial density and complexity of the environment (i.e. obstacles and chemoattractant)
influence the multi-fractal characteristics of bacterial swimming dynamics. Consequently, our
results contribute to the current state of knowledge by demonstrating that bacterial dynamics
exhibits multi-fractal characteristics.

The effect of chemoattractant is one of the main environmental conditions affecting the
multi-fractal characteristics of bacteria. Multi-fractal analysis shows that in the presence of an L-
aspartate gradient in the environment, the multi-fractal spectrum gets wider and moves towards
the right, meaning that bacteria tend to move directionally and oscillate less compared to the case
without a chemoattractant gradient being present in the environment.
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We also consider the effect of bacterial density as another important factor that affects
the multi-fractal characteristics of bacteria. Our results show that increasing the density of
bacteria makes the multi-fractal spectrum of their motion shift towards the left and transit to
a mono-fractal behaviour. Moreover, further studies would be needed to relate these multi-fractal
properties with the observed dependency between shear viscosity and density of the motile
bacteria [89].

Previous research has shown that bacterial colonies display spatial fractal properties [90]. Ben-
Jacob & Levine studied the spatial fractal properties of Paenibacillus dedritiformis bacteria colonies
under the effect of the antibiotic Septrin [91]. They show that, in some patterns, the members of
the colony stay closer together and form large vortices, which can increase the colony’s ability
to dilute the antibiotic with the lubricating fluid secreted by individual microbes; on the other
hand, in some patterns their colony organizes into narrow and straight branches. This pattern
happens when the food is scattered in the environment and will maximize bacterial contact with
the limited nutrients in their environment. It is essential to emphasize on the point that, in contrast
to previous research, we investigate the multi-fractal characteristics of the bacterium motion while
swimming in a three-dimensional environment in this study.

This multi-fractal characteristic of the bacterium dynamics can get affected by continuous
interactions among bacteria within the population. Moreover, this multi-fractal dynamic
characterization of bacterial motion can allow us to quantify the effects of molecular (drugs) and
gene-based therapies by investigating whether or not cells exhibit a directed movement as a result
of the detection and transduction of external stimuli or continue to perform random wanderings.
Interestingly, stem cell dynamics also exhibit a rich multi-fractal behaviour, although stem cells
do not use flagella or cilia for locomotion. This suggests that this mathematical framework can be
possibly used for identifying universal mathematical characteristics for cell motion irrespective
of the size, scale and nature of interactions [92].

A comprehensive understanding of individual and collective movement of cells can be
important for developing mathematical models of cell growth that can abstract and account for
biologically relevant features such as cell density and volume exclusion effects, mechanical forces
acting on cells surface, environmental conditions (e.g. pH, temperature), chemical factors (e.g.
chemo-attractants, chemo-repellents), as well as factors that affect the internal state (e.g. cell-
cell communication, mitotic phase, cell health state, cell age). For instance, the above-mentioned
mathematical characterization can help decide the type of dynamical models (short-term memory
versus long-term memory), the level of detail at which individual cells must be described (how
much of the internal state needs to be modelled), or the effect of various external stimuli on an
individual cell and collections of cells.

Overall, this newly identified mathematical property can enable the microscopic description
of the motion of individual cells through concepts and tools from non-equilibrium statistical
physics (e.g. multi-fractal master equation). Integrating over the population density and the
characterized effect of internal and external stimuli could enable us to construct macroscopic
models and propose control strategies for the population of cells in complex environments to
reach specific targets [93–95]. An equally important research problem is to understand not only
how the multi-fractal features allow for a compact multi-scale mathematical description, but
also how they enable and simplify the controllability of complex systems [96,97]. This is left for
future work.
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