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3.1 Epidemiology

3.1.1 Introduction

Although acute leukemias are infrequent diseases, they
are highly malignant neoplasms responsible for a large
number of cancer-related deaths. Acute myeloid leuke-
mia (AML) is the most common type of leukemia in
adults, yet continues to have the lowest survival rate
of all leukemias. While results of treatment have im-
proved steadily in younger adults over the past 20 years,

there have been limited changes in survival among indi-
viduals of age > 60 years [1, 2].

3.1.2 Incidence

It is estimated that 44 240 individuals in the USA will be
diagnosed with one form of leukemia. Approximately
21 790 will die of their disease [6]. Although the inci-
dence of acute leukemias accounts for less than 3% of
all cancers, these diseases constitute the leading cause
of death due to cancer in children and persons younger
than 39 years of age [3–5].

AML accounts for approximately 25% of all leuke-
mias in adults in the West and constitutes the most fre-
quent form of leukemia [3, 6]. Worldwide, the incidence
of AML is highest in the USA, Australia, and Western
Europe. The age-adjusted incidence rate of AML in the
USA is approximately 3.7 per 100 000 persons (= 2.6
per 100 000 when age-adjusted to the world standard
population) [6]. In the USA, 13 410 men and women
(7060 men and 6350 women) are estimated to be newly
diagnosed with AML in 2007 [6]. Figure 3.1 shows age-
standardized incidence rates stratified by various coun-
tries [7].

3.1.3 Age

Leukemia is the most common cancer diagnosis in chil-
dren who are younger than 15 years, with an overall in-
cidence of 4.3/100 000 in the USA [8]. In this age group,
however, acute lymphocytic leukemia (ALL) is about
five times more common than AML, thus accounting
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for about 76% of all childhood leukemia diagnoses.
Conversely, AML makes up only 15–20% of cases in
those aged 15 years or younger [9]. The peak incidence
rate occurs in the first year of life and then decreases
steadily up to the age of 4 years. The incidence rate re-
mains relatively constant in childhood and early adult-
hood [10].

AML is thus a disease of older adults (see Fig. 3.2).
The distribution of prevalent cases of all leukemias in
the UK shows that 42.8% of patients are above the age
of 65 years [11]. Patients newly diagnosed with AML
have a median age of 65 years [12]. It is rare before
the age of 40; thereafter the incidence increases progres-
sively with age.

From 2000–2004, the US incidence rate in people
under the age of 65 was only 1.7 per 100 000, while

the incidence rate in people aged 65 or over was 16.8
per 100 000 (Fig. 3.2) [6]. Therefore, of the estimated
13 400 new AML diagnoses in the US, over half will af-
fect patients 60 years of age or older, a population con-
sidered “elderly” in leukemia literature.

The high incidence and poor prognosis of AML in
the elderly is suspected to be based on the frequent pro-
gression of myelodysplastic syndromes (MDS) to AML,
an increased incidence of MDS with age appears to ex-
plain both. The common AML subtype in the elderly
shares characteristics with AML that follows MDS, Fan-
coni’s anemia, alkylating agent chemotherapy (see also
Sect. “Etiology” below), and an estimated 10–15% of
AML in younger patients. It has been referred to as
MDS-related AML and is characterized by common cy-
togenetic abnormalities shared with MDS, and frequent
multilineage dysplastic morphology in the residual he-
matopoietic precursor cells. A higher frequency of unfa-
vorable biologic and prognostic factors, rather than age
per se, is thus the major determinant for the inferior
prognosis for elderly patients. By contrast, AML with
genotypes typical of younger patients, which may be
considered as true de novo AML, has an approximately
constant incidence throughout lifetime, also in progres-
sive age groups. Five percent of elderly patients with
AML are estimated to belong to the true de novo
AML-group, which shows consistency with the inci-
dence in younger patients [13].

Although incidence rates for AML have been near
stable over time among the different age groups, there
is a slight increase among the oldest group [14].
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Fig. 3.1. Age-standardized world incidence rates of AML 1997 [92].

Fig. 3.2. Age-specific incidence of AML: USA 2000–2004 [6].



3.1.4 Gender and Ethnicity

The incidence of AML varies to a certain degree with
gender and race. In the SEER data base for children aged
1–4 years there is an incidence rate of 0.9 per 100 000 for
boys and 0.8 for girls [6]. In the first few years of life,
the incidence of AML in whites is three-fold higher than
in blacks; however, blacks have slightly higher rates of
AML among children 3 years of age and older [16].

In most countries a slight male predominance of
AML in adults has been documented. In 2004, the US
age-adjusted incidence rate of AML was 3.6 per
100 000 for both sexes, 4.5 per 100 000 for males, and
3.0 per 100 000 for females [6]. The incidence rate of
US males is substantially higher than the incidence rates
of males in all other countries (Fig. 3.1).

In the USA between 2000 and 2004, AML was more
common in whites (3.7 per 100 000) than in blacks (3.2
per 100 000).

3.1.5 Mortality

Untreated AML is a fatal disease. Although it is possi-
ble to support patients for a certain period (median
survival: 11–20 weeks) [16, 17], patients not receiving
specific treatment ultimately succumb to the leading
complications associated with bone marrow failure,
such as infection and hemorrhage. Patients typically
seek medical attention for symptoms related to infec-
tion or bleeding. These patients require immediate
therapeutic intervention. Some patients are not candi-
dates for cytotoxic therapy, because of older age and/
or poor performance status or other active severe
medical comorbidities that complicate their care. In
such settings, a supportive strategy may be most ap-
propriate [18]. Firm stratification criteria for decision-
making in this setting are not uniformly established
and patient- and disease-specific risk assessment has
become an additional area of investigation [19].

After long-term increases or mostly level trends that
date from the 1930s, death rates for all leukemias were
decreasing in the 1990s in the USA and Europe [20,
21]. In 2000–2004, the US age-adjusted mortality rate
of AML was 2.7 per 100 000. As is the case with inci-
dence, the mortality associated with AML varies with
age, gender, and race. Mortality rates in the USA in-
crease with age. Between 1996 and 2000, the age-ad-
justed mortality rate showed its peak at 17.6 per
100 000 in people aged 80–84.

The mortality rate for males is higher than that for
females, with the US age-adjusted mortality rate at 3.5
per 100 000 for males and 2.2 per 100 000 for females
in (2000–2004). AML mortality has for several years
been greater in whites than in blacks. The US age-ad-
justed mortality rate was 2.8 per 100 000 for whites
and 2.2 per 100 000 for blacks in the years 2000–2004
[6]. It is estimated that 7800 adults will have died of
AML in 2003 in the USA [12, 22].

3.1.6 Survivorship I

A comprehensive report on the total leukemia incidence
and survival in the USA covered the period 1973–1990
[23]. Overall survival rates for all leukemia (including
chronic leukemia) patients improved only slightly when
comparing the periods 1974–1976 and 1983–1989, but
were consistently higher in whites compared with
blacks, with little gender difference. When analyzing
survival rates in more detail, it was found that in com-
paring the period 1974–1983 with 1984–1993, overall sur-
vival rates improved steadily among all races/age groups
younger than the age of 45 years. However, for blacks 45
years or older, there was little improvement in overall
survival. In particular, for blacks older than 65 years,
survival rates for leukemia were decreasing, which was
not observed in earlier data [14]. The reasons for these
gender and racial differences seen in leukemia (includ-
ing all subtypes) remain unclear.

The overall US survival rate associated with AML
from 1992–1998 was approximately 20% [22].

Figures 3.3–3.5 depict 5-year survival rates stratified
by age, gender, and race. The 5-year relative survival
rate was highest for those who were younger and female.
In AML, however, as opposed to the entire group of leu-
kemias, blacks had a slightly better 5-year relative sur-
vival rate than whites (20.8 vs. 18.2%) in several areas
of the United States [6].

Survival rates have increased in the last decade
among younger groups (from 9% in the 1980s to 35%
in the 1990s), but have not changed in the older group.
Research now focuses increasingly on improving out-
come in the patient group mainly affected by the dis-
ease.

In a large Italian population-based study (n = 1005),
median survival of patients aged > 60 years with AML
either treated with supportive or aggressive therapy
was 5 and 7 months, respectively. In patients > 70 years,
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median survival was 4 months and this, notably, was re-
gardless of the type of therapeutic effort [18]. Age has
further been shown to be inversely associated with (1)
referral to a treatment center [24], and/or inclusion into
a clinical trial [25], (2) tolerance to induction treatment
(early death or death during the immediate postche-
motherapy phase) [26], and (3) the ability to achieve re-
mission [27, 28]. In older patients (> 60 years), standard
induction therapy achieves complete remission in only
30–50% of treated individuals [29].

Even though results of major clinical studies report
higher rates of disease-free survival (e.g., 4-year surviv-
al rates of up to 42%) [30], data can differ considerably.
The differences in survival results seen among various
trials using similar chemotherapy may be explained
by the prevalence of negative prognostic characteristics
within a study population [31]. To understand clinical
features and outcomes of that significant number of pa-
tients not meeting inclusion criteria for clinical studies,
population-based evaluations have found increasing at-
tention. Some results on age distribution, treatment de-
cisions, remission rates, and survival in AML do show
quite significant variability to some of the large clinical
investigations. In one report, of a total of 170 AML pa-
tients, 55% were treated outside a study protocol. Non-
study patients differed significantly from patients in-
cluded in clinical trials with respect to age and perfor-
mance status at clinical presentation, comorbidity, and
type of AML. Patients who participated in a clinical trial
had a median age of 46 years (16–73 years), whereas
those not included were significantly older (median
age 63 years; 21–83 years). Survival was significantly bet-
ter in patients treated in a clinical protocol (median OS:
15 vs. 3.4 months) [25]. For survival results in popula-
tion-based studies see Table 3.1. It can be assumed that
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Fig. 3.3. Age associated with 5-year relative survival: USA 1996–2003
[6].

Fig. 3.4. Sex associated with 5-year relative survival: USA 1996–2003
[6].

Fig. 3.5. Race associated with 5-year relative survival: USA 1996–
2003 [6].

Table 3.1. Selected population-based studies of mye-

loid neoplasias in various populations: survival irrespec-

tive of treatment strategy [94]

Population Median

age

Median

survival (weeks)

Northern

Sweden (24)

63 7

Northern

England (93)

71 8

Italy (18) 69 28



part of the increase in median survival in the last years
may be attributed to improved supportive care over past
decades.

3.1.7 Survivorship II

At St. Jude Children’s Hospital, the incidence of and risk
factors for the development of late sequelae of treatment
in patients who survived for more than 10 years (me-
dian: 15 years) after diagnosis of childhood AML have
been evaluated. The most common late effects in adult-
hood consisted in growth abnormalities (51%). Depend-
ing on the treatment modality (chemotherapy only;
combined chemo-, radiotherapy; or combined chemo-,
radiotherapy with consecutive bone marrow or periph-
eral stem cell transplantation), endocrine abnormalities,
cataracts, cardiac abnormalities, academic difficulties,
and secondary malignancies resulted in 14–51%. Besides
physical late effects, psychosocial complications were
observed in long-term survivors [32].

Patients that survived AML and treatment have also
been monitored in a long-term follow-up at the Univer-
sity of Texas M.D. Anderson Cancer Center [33]. Some
very relevant conclusions have been drawn in this re-
port: Only 10% of all 1892 patients entered the poten-
tially cured cohort, which was defined as the patient
population in complete remission after a follow-up of
3 years. Those patients in the potentially cured cohort
were most likely to be able to return to work, suggesting
that the major threat to patients with newly diagnosed
AML is the disease and not the treatment.

3.2 Etiology

The development of AML has been associated with sev-
eral risk factors. Remarkably though, as of yet defined
risk factors account for only a small number of observed
cases [34]. These include age, antecedent hematological
disease, genetic disorders as well as exposures to
viruses, radiation, chemical or other occupational haz-
ards, and previous chemotherapy [9, 35–37] (see Table
3.2).

The development of leukemia is a process consisting
of multiple single steps that requires the susceptibility
of a hematopoietic progenitor cell to inductive agents
at multiple stages. The different subtypes of AML may
have distinct mechanisms, suggesting a functional link

between a particular molecular abnormality or muta-
tion and the causal agent [38]. In most cases of AML
the malignancy arises de novo and no leukemogenic ex-
posure can be deciphered.

3.2.1 Genetics

3.2.1.1 Genetic Factors

Genetic disorders and constitutional genetic defects are
important risk factors associated with AML in children
[37]. Children with Down syndrome have a 10- to 20-
fold increased likelihood of developing acute leukemia
[39, 40]. Other inherited diseases associated with
AML include Klinefelter’s syndrome, Li-Fraumeni syn-
drome [41], Fanconi anemia, and neurofibromatosis
[9]. Furthermore, risk factors for developing AML in
children were identified and include race/ethnicity, the
father’s age at time of conception, and time since the
mother’s last live birth [35]. Specifically, Asian/Pacific
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Table 3.2. Selected risk factors associated with AML

Genetic disorders Down syndrome

Klinefelter’s syndrome

Patau’s syndrome

Ataxia telangiectasia

Schwachman syndrome

Kostman syndrome

Neurofibromatosis

Fanconi anemia

Li-Fraumeni syndrome

Physical and chemical Benzene

exposures Drugs as Pipobroman

Pesticides

Cigarette smoking

Embalming fluids

Herbicides

Drugs as Pipobroman

Chemotherapy Alkylating agents

Topoisomerase II inhibitors

Anthracyclines

Radiation exposure Nontherapeutic,

therapeutic radiation



Islander children had a higher risk than non-Hispanic
white infants; children born to fathers older than 35,
compared to those aged 20–34, had an increased risk;
and longer time since the last live birth (at least 7 years)
resulted in an increased risk.

In this context, acute promyelocytic leukemia (APL)
has been investigated in more detail. Representing an
example of a unique AML subtype (FAB M3) with a
characteristic morphology associated with distinct
chromosomal and gene-rearrangement aberrations, it
has been shown to also have separate epidemiological
features. For yet unknown reasons, an increased inci-
dence of APL has been recognized in adult patients ori-
ginating in Latin America and in children in Southern
Europe. Of interest, the APL-specific gene rearrange-
ment is different in patients of Latin American decent,
with the majority of breakpoints in the RAR� gene in
the PML/RAR� transcript in intron 6 (called bcr 1). It
is therefore speculated that this particular breakpoint
site may be determined genetically [42–45].

3.2.1.2 Acquired Genetic Abnormalities

Acquired (“somatic”) clonal chromosomal abnormali-
ties are found in 50–80% of AML [24, 46–49] with rising
incidences in patients with secondary leukemia [50]
or older age [13, 51, 52]. Frequently found abnormali-
ties include loss or deletion of chromosome 5, 7, Y,
and 9, translocations such as t(8;21)(q22;q22); t(15;17)
(q22;q11), trisomy 8 and 21, and other abnormalities in-
volving chromosomes 16, 9, and 11.

Cytogenetic abnormalities constitute at present the
most important predictors of short- [53–55] and long-
term [33] outcome. To name selected examples, patients
with a good prognosis are those with functional inacti-
vation of the core binding factors (CBFs): AML1 and
CBF�. These cases include patients with AML and
t(8;21) (q22;q22) or inv(16) (p13;q22), two of the most
frequent recurrent cytogenetic abnormalities in de novo
AML in younger patients [56].

Poor-risk cytogenetics have a loss of all or part of
chromosome 5 or 7, translocations involving 11q23, or
abnormalities of chromosome 3 [57].

A model of a “two-hit-hypothesis” for the AML phe-
notype by so-called class I and II mutations has been es-
tablished. It describes the cooperativity of activating
mutations in FLT3 (Fms-like tyrosine kinase 3) (= class
I) and gene rearrangements involving hematopoietic

transcription factors (=class II). The expression of both
classes may result in the AML phenotype. FLT3 muta-
tions can appear in all subtypes of AML and with the
majority of known chromosomal translocations asso-
ciated with AML. In this hypothesis, FLT3 mutations
serve as exemplary of class I mutations that, alone, con-
fer a proliferative and survival advantage to hemato-
poietic progenitors but do not affect cell differentiation.
Further examples of class I mutations are activating mu-
tations in N-RAS or K-RAS in AML. In contrast, class II
mutations would be exemplified by AML1/ETO, CBF�/
SMMHC, PML/RAR�, and MLL-related fusion genes.
They appear to impair hematopoietic differentiation,
but are not solely sufficient to cause leukemia. This
new hypothesis may have important implications to
novel treatment approaches (e.g., molecular targeting
of both, FLT-3 and fusion proteins) [58].

Data has been published showing that individuals
with certain polymorphisms in genes metabolizing car-
cinogens have an increased risk of developing AML [59].
NAD(P)H:quinone oxidoreductase 1 (NQO1), for exam-
ple, is a carcinogen-metabolizing enzyme that detoxifies
quinones and reduces oxidative stress. A polymorphism
at nucleotide 609 of the NQO1 complementary DNA re-
sults in a lowering of the enzymes’ activity. This poly-
morphic variant is associated with a predisposition to
therapy-related AML [60] and selected cytogenetic sub-
groups of de novo AML [61].

3.2.2 Physical and Chemical Factors

A variety of environmental and chemical exposures are
assumed to be associated with a variably elevated risk of
developing AML in adults. A selection of hazards will be
mentioned here.

Exposure to ionizing radiation is linked to AML
[62]. Among survivors of the atomic bomb explosions
in Japan, an increased incidence of AML was observed
with a peak at 5–7 years after exposure. Also, therapeu-
tic radiation has been found to increase the risk of sec-
ondary AML [63].

Chemotherapeutic agents, such as alkylating agents
and topoisomerase II inhibitors, have been reported to
increase the incidence of AML [64, 65] and will be dis-
cussed in detail below. A number of other substances
(therapeutic [66] and occupational [9]) have been
linked to an increased risk of AML. Chronic exposure
to certain chemicals clearly shows an increased risk
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for the development of AML. Benzene is the best studied
and widely used potentially leukemogenic agent [67].
Persons exposed to embalming fluids, ethylene oxides,
and herbicides also appear to be at increased risk
[68]. Furthermore, smoking has been discussed to be
associated with an increased risk of developing AML
(particularly of FAB subtype M2), especially in those
aged 60–75 [69]. For summary see Table 3.2.

3.2.3 Viruses

Viruses – particularly RNA retroviruses – have been
found to cause many neoplasms in experimental animal
models, including leukemia [70]. As of now, a clear ret-
roviral cause for AML in humans has not been identified
even though an association between the exposure to cer-
tain viruses and the development of AML has been sug-
gested. Parvovirus B19 could thus play a role in the
pathogenesis of AML [71]. It has so far not been demon-
strated, however, that simple infection with either a
RNA- or DNA-based virus alone is a cause of AML.

3.2.4 Secondary AML

As mentioned, the cause of the disease is unknown for
most patients with acute myeloid leukemia. “The true
secondary AML” has been recommended to be referred
to patients who have a clear clinical history of prior
myelodysplastic syndrome (MDS), myeloproliferative
disorder, or exposure to potentially leukemogenic thera-
pies or agents; it is thus a rather broad category [56].
Secondary leukemias are in more than 90% of myeloid
origin. Patients have a particularly poor outcome, with
a lower incidence of achieving complete remission and
shorter duration of survival than for patients with de
novo AML [72–74].

Treatment-related secondary leukemia was first ob-
served in survivors of successfully treated Hodgkin’s
disease [75]. Later on, survivors of ALL [76] and other
disease entities such as ovarian or breast cancer and
multiple myeloma [77] were included. The development
of secondary AML shows a maximum in the 5–10 years
following therapy. The distinct pattern of cytogenetic
and genetic abnormalities in secondary or treatment-re-
lated AML is worthy of notice [78]. AML arises after
previous therapy for other malignancies in a subset of
10–20% of patients. The risk of therapy-related AML

after intensive chemotherapy may be increased to more
than 100 times [79].

Specific cytogenetic abnormalities currently serve as
the most important factor in distinguishing differences
in AML biology, response to treatment and prognosis
[49]. The different abnormalities result in gene rearran-
gements that may reflect the etiology and pathogenesis
of the disease [80]. Treatment-related or secondary leu-
kemias are examples in which genetic aberrations pro-
vide information on its specific etiology. In understand-
ing the mechanisms associated with the development of
secondary AML, general facts about the possible etiol-
ogy of leukemia can been elucidated.

In this context, genetic pathways with different etiol-
ogy and biologic characteristics have been proposed for
cytogenetic changes that can be related to previous ex-
posure to different chemically well-defined cytostatic
agents with a known mechanism of action [81]. Among
those are for alkylating agents: deletions or loss of 7q or
monosomy 7 with normal chromosome 5 [82–84], and
deletions or loss of 5q or monosomy 5 [85]. For epipo-
dophyllotoxins, balanced translocations to chromosome
bands 11q23, primarily in children, have been described
[76]. Topoisomerase II inhibitors have been linked to
t(8;21), inv(16) [86]. Topoisomerase II inhibitors, an-
thracyclines, mitoxantrone [87], as well as radiotherapy
[88] may be associated with therapy-related acute pro-
lymphocytic leukemia with t(15;17) and chimeric rear-
rangements between PML and RARA genes as well as
different translocations to chromosome bands 11q15
and chimeric rearrangement between the NUP98 gene
and its partner genes [89].

Another subgroup includes 10–15% of all patients
with secondary AML, with normal karyotype or various
chromosome aberrations uncharacteristic of t-AML or
at least not identified as such as of now [90].

It is to be expected that in the future, many more ge-
netic and epigenetic changes may be discovered. As of
now, methylation of the p15 promoter is the only ab-
normality observed in a high percentage of patients
with AML, especially in patients with secondary AML
[91].

In current times there is a rapid gain in insight re-
garding epi-/genetic changes associated with the devel-
opment of hematological malignancies like AML. It can
be hoped for that many epidemiological and etiological
findings may be explained and the development of new
specific treatment strategies can further be enhanced on
this basis.
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