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Abstract

The human REL proto-oncogene encodes a transcription factor in the NF-κB family. 

Overexpression of REL is acutely transforming in chicken lymphoid cells, but has not been shown 

to transform any mammalian lymphoid cell type. In this report, we show that overexpression of a 

highly transforming mutant of REL (RELΔTAD1) increases the oncogenic properties of the 

human B-cell lymphoma BJAB cell line, as demonstrated by increased colony formation in soft 

agar, tumor formation in SCID mice, and adhesion. BJAB-RELΔTAD1 cells also show decreased 

activation of caspase in response to doxorubicin. BJAB-RELΔTAD1 cells have increased levels of 

active nuclear REL protein as determined by immunofluorescence, subcellular fractionation, and 

electrophoretic mobility shift assay. Overexpression of RELΔTAD1 in BJAB cells has 

transformed the gene expression profile of BJAB cells from that of a germinal center B-cell 

subtype of diffuse large B-cell lymphoma (GCB-DLBCL) to that of an activated B-cell subtype 

(ABC-DLBCL), as evidenced by increased expression of many ABC-defining mRNAs. Up-

regulated genes in BJAB-RELΔTAD1 cells include several NF-κB targets that encode proteins 

previously implicated in B-cell development or oncogenesis, including BCL2, IRF4, CD40 and 

VCAM1. The cell system we describe here may be valuable for further characterizing the 

molecular details of REL-induced lymphoma in humans.
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Introduction

The human c-rel proto-oncogene (REL) encodes an NF-κB family transcription factor. 

Misregulated REL is associated with B-cell malignancies in several ways (Gilmore et al., 

2004). Overexpression of REL protein can transform chicken lymphoid cells in vitro. 

Additionally, the REL locus is amplified in several types of human B-cell lymphoma, 

including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma and primary 
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mediastinal lymphoma. Moreover, REL mRNA is highly expressed in de novo DLBCLs, and 

this elevated expression correlates with increased expression of many putative REL target 

genes (Rhodes et al., 2005). Nevertheless, REL has not been shown to be oncogenic in any 

mammalian B-cell system, either in vitro or in vivo.

REL contains an N-terminal Rel Homology Domain, which mediates DNA binding, 

dimerization, nuclear localization, and binding to its inhibitor IκB. The C-terminal half of 

REL contains a transactivation domain, which can be divided into two subdomains (Martin 

et al., 2001; Starczynowski et al., 2003). Deletion of either C-terminal transactivation 

subdomain enhances the in vitro transforming activity of REL in chicken spleen cells 

(Starczynowski et al., 2003). Similarly, v-Rel lacks a transactivation subdomain found in 

avian c-Rel, and this deletion contributes to v-Rel’s increased transforming activity as 

compared to c-Rel (Gilmore, 1999). In addition, deletions and mutations that alter the REL 

transactivation domain have been identified in a small percentage of human B-cell 

lymphomas, and one such mutation can enhance the transforming activity of REL in chicken 

lymphoid cells (Kalaitzidis and Gilmore, 2002; Barth et al., 2003; Starczynowski et al., 

2007). Nevertheless, REL’s role in mediating oncogenesis in mammalian cells is not clear.

Herein, we show that overexpression of a REL mutant lacking transactivation subdomain 1 

(RELΔTAD1) enhances certain “transformed” properties of the human B-lymphoma cell 

line BJAB. Furthermore, RELΔTAD1-transformed BJAB cells have an altered gene 

expression profile that is consistent with them having been converted to a more aggressive 

form of DLBCL. As such, these results are the first direct demonstration that REL can 

contribute to human B-cell oncogenesis and describe an in vitro system for studying 

oncogenic conversion of B-cell lymphoma.

Results

Overexpression of RELΔTAD1 increases oncogenic properties of BJAB cells

A REL mutant (RELΔ424-490, or RELΔTAD1 herein) that is missing the first C-terminal 

transactivation subdomain has an enhanced ability to transform primary chicken spleen cells 

in vitro as compared to wild-type REL (Starczynowski et al., 2003). In an effort to establish 

a human cell assay for REL-induced oncogenesis, we first created an MSCV-based 

retroviral vector for expression of RELΔTAD1; as a control for our experiments, we used 

the MSCV vector backbone that contains only the puromycin resistance gene (Figure 1a).

Retroviral stocks of MSCV and MSCV-RELΔTAD1 were used to infect human B-

lymphoma BJAB cells, and these cells were then selected for puromycin resistance to 

establish stable pools of retrovirally transduced cells. By Western blotting, we identified a 

pool of MSCV-RELΔTAD1-transduced cells that expresses high levels of RELΔTAD1, 

which migrates faster than full-length endogenous REL (Figure 1b). The expression of 

RELΔTAD1 is approximately 2.4-fold greater than endogenous REL, which is expressed at 

approximately equal levels in both MSCV-RELΔTAD1-transduced cells and control 

MSCV-transduced cells. The expression of RELΔTAD1 was stable during more than six 

months of continued passage of MSCV-RELΔTAD1-transduced cells (not shown).
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To determine whether overexpression of RELΔTAD1 affects oncogenic properties of the 

BJAB cell line, we first compared the soft agar colony-forming abilities of MSCV-

RELΔTAD1 cells and MSCV-transduced cells. As shown in Figure 1c, BJAB-RELΔTAD1 

cells had an approximately 2.3-fold increased ability to form colonies in soft agar as 

compared to BJAB-MSCV cells. Moreover, colonies formed by BJAB-RELΔTAD1 cells 

were generally larger than those formed by BJAB-MSCV cells (not shown). Similarly, 

BJAB-RELΔTAD1 cells had increased tumor-forming ability in SCID mice (Table 1). 

Nevertheless, the growth rates of BJAB-MSCV and BJAB-RELΔTAD1 cells in liquid 

media were similar (Figure 1d). Doxorubin-induced activation of caspase-3 and cleavage of 

the caspase substrate PARP are delayed in BJAB-RELΔTAD1 cells as compared to BJAB-

MSCV cells; however, there is no difference in the ability of doxorubicin to decrease 

viability in these two cell types (Figure 1e).

RELΔTAD1-expressing BJAB cells have increased nuclear REL protein activity

As a first step towards determining the basis for the enhanced transformed properties of 

BJAB-RELΔTAD1 cells, we characterized RELΔTAD1 protein in these cells. By 

biochemical subcellular fractionation, BJAB-RELΔTAD1 cells showed increased nuclear 

REL protein—for both RELΔTAD1 and endogenous REL—as compared to BJAB-MSCV 

cells, in which the low level of endogenous REL is almost exclusively cytoplasmic (Figure 

2a). As controls for these fractionation experiments, we show that two cytoplasmic proteins 

(CD40 and 14-3-3) and a nuclear protein (RNA polymerase) are exclusively present in their 

respective fractions in both cell types. Indirect immunofluorescence showed that BJAB-

RELΔTAD1 cells have increased overall REL staining as compared to BJAB-MSCV cells 

and also have detectable nuclear REL staining (Figure 2b), which is not seen in BJAB-

MSCV cells. Nuclear extracts from BJAB-RELΔTAD1 cells also have increased levels of 

NF-κB p50, but not of RelA (Figure 2c).

BJAB-RELΔTAD1 cells show increased nuclear κB-site DNA-binding activity as compared 

to BJAB-MSCV cells (Figure 2d). The κB site-binding activity in BJAB-RELΔTAD1 cells 

was competed by the relevant unlabelled probe and was almost completely supershifted by 

anti-REL antiserum. Therefore, by three criteria, nuclear REL protein is increased in BJAB-

RELΔTAD1 cells as compared to control BJAB-MSCV cells.

In coimmunoprecipitations from BJAB cells, REL and RELΔTAD1 interact equally well 

with IκBα, suggesting that the changes in DNA binding and nuclear localization seen in 

BJAB-RELΔTAD1 cells are not due to changes in association with IκB (Supplementary 

Figure S1).

The expression of many known REL/NF-κB target genes is increased in RELΔTAD1-
expressing BJAB cells

We next compared the overall gene expression profiles of BJAB-RELΔTAD1 cells and 

BJAB-MSCV cells by using an extensive human microarray, which contains over 41,000 

probes, representing unique gene products. Using a two-fold change and P-value of less than 

0.005 (Holloway et al., 2008), we found that 538 mRNAs were decreased and 663 mRNAs 

were increased in BJAB-RELΔTAD1 cells (Supplementary Table S1). The levels of 67 
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transcripts were increased at least ten-fold in BJAB-RELΔTAD1 cells (Table 2). Serving as 

an internal control, REL mRNA showed approximately 25-fold increased expression in 

BJAB-RELΔTAD1 cells, presumably because the REL probe on the microarray can detect 

both endogenous REL and exogenous RELΔTAD1 mRNA/cDNA.

Several mRNAs that show greatly elevated expression in BJAB-RELΔTAD1 cells are 

known REL/NF-κB targets, including CXCR7 (77-fold increase), IRF4 (32-fold), CD44 (26-

fold), VCAM1 (24-fold), chemokine CCL22 (21-fold) and the anti-apoptotic protein BCL2 

(13.5-fold). However, out of approximately 400 reported REL/NF-κB targets (see www.nf-

kb.org), only approximately 4% were at least two-fold elevated in BJAB-RELΔTAD1 cells, 

94% were unchanged, and 2% were decreased by at least two-fold.

Based on cDNA profiling, DLBCLs have been divided into two main subtypes: GCB 

(germinal center B-cell type) and ABC (activated B-cell type) (Alizadeh et al., 2000; 

Rosenwald et al.,2002; Shipp et al., 2002; Wright et al., 2002; Ngo et al., 2006). This 

division is based on the observation that one subset of DLBCLs has a gene expression 

profile similar to B lymphocytes in the germinal center while another subset has a gene 

expression profile similar to activated peripheral B cells (Alizadeh et al., 2000). 

Furthermore, the ABC subtype has increased expression of several NF-κB target genes as 

compared to the GCB subtype, and survival of ABC cell lines depends on expression of 

these NF-κB target genes (Davis et al., 2001, Lam et al., 2008). BJAB cells have a gene 

expression profile that is consistent with the GCB subtype (Kalaitzidis et al., 2002; Ngo et 

al., 2006). Using the literature, we assembled a comprehensive set of genes that have been 

used to define these two subsets of DLBCL: 102 for ABC and 62 for GCB (see Tables S2 

and S3 for details). We then compared the levels of these ABC- and GCB-defining targets 

between BJAB-MSCV cells and BJAB-RELΔTAD1 cells, using a P-value < 0.005 as a cut-

off. Overall, 30% of the 102 ABC-profile genes were upregulated in the BJAB-RELΔTAD1 

cells (Table 3). We also found that BJAB cells overexpressing RELΔTAD1 showed 

increased expression of many of the ABC-defining genes that are NF-κB targets (Figure 3a): 

17/29 (59%) ABC-specific NF-κB target genes were upregulated in BJAB-RELΔTAD1 

cells (Table 3). Using the same filter criteria (P<0.005), only 6% of total transcripts showed 

increased expression in BJAB-RELΔTAD1 cells as compared to BJAB-MSCV cells.

We also found that 24% of the GCB-defining genes were downregulated in BJAB-

RELΔTAD1 cells as compared to BJAB-MSCV cells (Table 3). In contrast, only 9% of the 

total transcripts were downregulated in BJAB-RELΔTAD1 cells.

A statistical comparison of the percent change in ABC-subtype genes (30% upregulated, 

12% downregulated) versus GCB-subtype genes (10% upregulated, 24% downregulated) in 

BJAB-RELΔTAD1 cells (as compared to BJAB-MSCV cells) indicates that these two gene 

sets are affected in a significantly different manner (P-value, 0.0009; see Table 3).

To further analyze our gene expression data, we used Gene Ontology (http://

david.abcc.ncifcrf.gov/) to categorize genes upregulated in BJAB-RELΔTAD1 cells. We 

focused on upregulated genes because REL is primarily a transcriptional activator. Using 

this analysis, we were able to classify 563 of the 663 upregulated genes (>2-fold, P<0.005) 
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in BJAB-RELΔTAD1 cells; many of these upregulated genes encode proteins associated 

with cell surface processes/regions, including ones involved in cell-cell communication, the 

plasma membrane, the extracellular matrix, biological adhesion and signal transduction in 

general (Table 4).

In addition, we classified this same set of upregulated genes in BJAB-RELΔTAD1 cells by 

their biological function (www.ingenuity.com); by this analysis we were able to classify 421 

of 663 significantly upregulated genes. This analysis was consistent with our Gene Ontology 

annotation. Namely, over-represented molecular and cellular functions included those 

involved in cell-to-cell communication and cell growth and proliferation (Table 4). 

Furthermore, many genes (75 out of 421 annotated) that are statistically over-represented 

have been associated with immunological diseases (Table 4).

We next used RT-PCR to validate a subset of genes showing increased expression in BJAB-

RELΔTAD1 cells. As controls, we used a primer set that could amplify both endogenous 

REL and RELΔTAD1 to show that REL mRNA expression is increased in BJAB-

RELΔTAD1 cells as compared to BJAB-MSCV cells, whereas GAPDH expression is 

similar in both cell types (Figure 3b). Consistent with the microarray results, there was 

increased expression of BCL2, CCR7, IRF4 and VCAM1 mRNA in BJAB-RELΔTAD1 

cells. In contrast, CD10, a marker for GCB-type DLCBL (van Imhoff et al., 2006), showed 

reduced mRNA expression in BJAB-RELΔTAD1 cells. Western blotting showed that 

protein levels of BCL2, VCAM1, CD40 and REL are all elevated in BJAB-RELΔTAD1 

cells (Figure 3c), whereas CD10 protein is reduced in BJAB-RELΔTAD1 cells (Figure 3c). 

For CD40, the small (1.4-fold), but significant (P≤8.97 × 10−11), increase in CD40 mRNA 

in BJAB-RELΔTAD1 cells seen on the microarray was mirrored by an approximately 1.4-

fold increase in CD40 protein.

BJAB-RELΔTAD1 cells show increased adherence to culture dishes

During passage, we noticed that BJAB-RELΔTAD1 cells appeared to adhere more readily to 

culture plates than BJAB-MSCV cells. To compare the abilities of BJAB-MSCV and BJAB-

RELΔTAD1 cells to adhere, we plated both cell types on petri dishes, and cultured the cells 

for 36 h. We then visualized these cells before and after washing with PBS. As shown in 

Figure 4a, many BJAB-RELΔTAD1 cells remained attached to the culture dish after 

washing, whereas the BJAB-MSCV cells were removed by washing. We quantified this 

difference in adherence by comparing the numbers of floating versus adhering cells for each 

cell type: approximately five-fold more BJAB-RELΔTAD1 cells were attached to the dish 

as compared to the BJAB-MSCV cells (Figure 4b).

BJAB cells have low levels of endogenous REL protein expression

BJAB cells have previously been shown to have a low level of REL mRNA as compared to 

a number of other lymphoma cell lines (Leeman et al., 2008). To determine whether REL 

protein expression was also low in BJAB cells, we compared the expression of endogenous 

REL protein in BJAB cells to five other human B-cell lymphoma cell lines (SUDHL-4, RC-

K8, IB4, BL41 and Daudi). SUDHL-4 cells have been characterized as having a GCB 

profile, whereas RC-K8 cells have an ABC cDNA expression profile (Kalaitzidis et al., 
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2002). Among these six lymphoma cell lines, the expression of REL was lowest in BJAB 

cells (Figure 5a). As such, in BJAB cells, retrovirally transduced expression of RELΔTAD1 

is higher than endogenous REL, whereas in Daudi cells, RELΔTAD1 expression is lower 

than endogenous REL (Figure 5b). Moreover, expression of RELΔTAD1 did not enhance 

the soft agar colony ability of Daudi cells (Figure 5c), at least when expressed at the level in 

the cell line we analyzed here.

Discussion

This paper represents the first direct demonstration of an oncogenic effect of REL protein 

expression in a human B-lymphoid cell system. That is, we show that overexpression of an 

activated REL mutant, RELΔTAD1, increases the oncogenic properties of the human B-cell 

lymphoma BJAB cell line, as measured by increased soft agar colony-forming ability, tumor 

formation in immunocompromised mice, and adhesion. Moreover, the mRNA expression 

profile of BJAB cells overexpressing RELΔTAD1 is substantially altered; in particular, 

there is increased expression of many NF-κB target genes whose expression is associated 

with the more aggressive ABC subtype of diffuse large B-cell lymphoma. Furthermore, 

many of the up-regulated genes in BJAB-RELΔTAD1 cells can be classified as genes 

implicated in immunological diseases (Table 4), suggesting that BJAB-RELΔTAD1 cells 

have a phenotype that is more similar to aggressive DLBCL than is the GCB-like phenotype 

of control BJAB cells. As such, the cell system we describe here may provide an in vitro 

model system for understanding DLBCL transition from a low-grade (GCB-like) to a high-

grade (ABC-like) oncogenic state.

Although v-Rel, c-Rel and their derivatives have been shown to be oncogenic in avian and 

mouse systems (Gilmore, 1999; Gilmore et al., 2004), there has been controversy about 

whether REL is a true oncoprotein for human B-lymphoid cells (Shaffer et al., 2002; 

Houldsworth et al., 2004). For example, the REL gene is amplified in a high percentage of 

GCB-type DLBCLs, but these cells do not have particularly high levels of nuclear κB site-

binding activity (Davis et al., 2001). Moreover, the lack of oncogenic activity by 

overexpressed REL in mouse B-lymphoid cells in vitro or in vivo has cast doubt on whether 

REL acts as an oncoprotein in human B-cell malignancies, which are the sole human cancer 

cell type wherein the REL gene has been found to undergo amplification and mutation 

(Gilmore et al., 2004). The results we present herein strongly suggest that REL can exert an 

oncogenic effect in human B-lymphoma cells, and indicate that REL or certain REL target 

genes may be suitable therapeutic targets for some human B-cell lymphomas.

There are several likely explanations for the susceptibility of BJAB cells to the transforming 

activity of RELΔTAD1. First, BJAB cells express relatively low levels of endogenous REL 

protein (Figure 5a) as compared to several other human B-lymphoma cell lines. Thus, in 

BJAB cells it is possible to achieve a higher ratio of RELΔTAD1 protein to endogenous 

REL, and this relatively high level of RELΔTAD1 may be required for its transforming 

effect in human B cells. Second, BJAB cells have a GCB mRNA profile (Ngo et al., 2006), 

which is correlated with a better clinical outcome in DLBCL patients (Rosenwald et al., 

2002; Shipp et al., 2002), suggesting that BJAB cells are not as “transformed” as some other 

human B-cell lines. Third, in soft agar and tumor-forming assays similar to those we have 
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conducted here, BJAB cells have been shown to be susceptible to oncogenic effects of other 

factors, including the Epstein-Barr virus (EBV) LMP1 protein (Enberg et al., 1983; 

Wennborg et al., 1987), EBV small RNAs (Yamamoto et al., 2000) and the AP12-MALT1 

fusion protein from MALT lymphomas (Ho et al., 2005). Interestingly, LMP1 and AP12-

MALT1 are both inducers of NF-κB (Hammarskjold et al., 1992; Lucas et al., 2007) and 

both can increase the resistance of BJAB cells to inducers of apoptosis (Stoffel et al., 2004; 

Ho et al., 2005; Lucas et al., 2007). In addition, LMP1 can induce expression of BCL2 and 

IRF4, which are required for apoptosis resistance (Henderson et al., 1991; Finke et al., 1992; 

Snow et al., 2006), enhanced adhesion (Mainou and Raab-Traub, 2006), and cell motility 

(Mainou and Raab-Traub, 2006). Moreover, MALT1 chromosomal gains are also associated 

with ABC-subtype gene expression, including high levels of BCL2 expression and poorer 

prognosis (Dierlamm et al., 2008).

Many of the upregulated genes in BJAB-RELΔTAD1 cells are connected with processes 

that involve the plasma membrane, i.e., cell-to-cell communication, the extracellular matrix, 

adhesion, and membrane binding (see Table 4). These genes include VCAM1, CD44, CD40, 

ITGAX, and many chemokines and chemokine receptors including CCL22, CCR7, CXCR4 

and CXCL10. Additionally, BJAB-RELΔTAD1 cells are more adherent to a culture dish 

than control BJAB-MSCV cells (Figure 4). This is consistent with the large cohort of 

increased cDNAs in RELΔTAD1 cells that are classified as related to adhesion (Table 4). 

NF-κB signaling is also known to be downstream of many adhesion-related signaling 

pathways (Perez et al., 1994; Lee et al., 1999; Zarnegar et al., 2004). Furthermore, CD40 

and VCAM1 mRNA and protein expression are upregulated in the BJAB-RELΔTAD1 cells. 

While CD40 mRNA was only modestly increased (1.4-fold) in BJAB-RELΔTAD1 cells, 

this did translate into similarly increased CD40 protein levels (Figure 3c). CD40 has been 

shown to be important in B-cell aggregation (Lee et al., 1999), and both VCAM1 and CD40 

play roles in adhesion (Springer and Vonderheide, 1992; Lee et al., 1999). Taken together, 

these results suggest that overexpression of RELΔTAD1 in BJAB cells causes upregulation 

of many adhesion-associated genes, which results in a phenotype of the cells being more 

adherent, which may contribute to their enhanced ability to form colonies in soft agar and 

tumors in SCID mice.

BCL2 and IRF4, genes whose expression is up-regulated in BJAB-RELΔTAD1 cells, are 

markers for ABC DLBCL, whereas CD10 is down-regulated in both ABC DLBCLs and 

BJAB-RELΔTAD1 cells (Alizadeh et al., 2000; Wright et al., 2003). The increased 

expression of BCL2 in ABC DLBCLs correlates with a poorer clinical prognosis (Iqbal et 

al., 2006). The transcription factor IRF4 can synergize with v-Rel in the transformation of 

chicken fibroblasts and knockdown of IRF4 expression reduces the soft agar colony-forming 

ability of v-Rel-transformed cells (Hrdlicková et al., 2001). Of note, multiple myelomas are 

dependent on IRF4 for growth, whereas the growth of GCB-DLCBL does not require IRF4 

(Shaffer et al., 2008). Taken together, these results are consistent with BCL2 and IRF4 

playing a role in the enhanced transformed phenotype that we describe for BJAB-

RELΔTAD1 cells.

We also found that many other ABC-defining genes (including several not known to be NF-

κB targets) are significantly upregulated in BJAB-RELΔTAD1 cells. These ABC genes 
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include MARCKS, BATF, BMI1, LITAF and others (see Tables 2 and S2). Some of these 

ABC-type upregulated genes may reflect an overall shift in gene expression, induced 

indirectly by NF-κB/REL. In addition, some GCB-subtype genes are significantly down-

regulated in BJAB-RELΔTAD1 cells (Tables 3 and S3). These genes are, for the most part, 

non-NF-κB targets, suggesting that these decreases in GCB-type gene expression are also 

indirectly affected by RELΔTAD1.

Approximately 4% of total NF-κB targets (www.nf-kb.org) were up-regulated in BJAB-

RELΔTAD1 cells as compared to 59% of ABC-specific NF-κB targets (Table 2). The 

selective increase in expression of only a small number of NF-κB target genes in BJAB-

RELΔTAD1 cells suggests that the BJAB cells have been transformed to a more aggressive 

form of DLBCL by RELΔTAD1 through activation of a minor subset of NF-κB/REL 

targets. These ABC-specific NF-κB target genes may be poised for activation by 

RELΔTAD1 in B-lymphoma cells, possibly due to their chromosomal state or to cooperation 

of RELΔTAD1 with other B cell-specific transcription factors.

There are 40 genes whose expression is reduced by at least ten-fold in BJAB-RELΔTAD1 

cells (Table S1). The reduced expression of CD10 mRNA and protein in BJAB-RELΔTAD1 

cells (Figure 3) is consistent with the enhanced transformed properties of these cells, given 

that reduced CD10 expression correlates with a poorer prognosis in the clinic (van Imhoff et 

al., 2006). Gupta et al. (2008) have shown that expression of two B-cell proteins BLNK and 

BCAP are down-regulated directly by Rel in v-Rel-transformed avian cells. In our study, the 

level of only BLNK was significantly reduced in BJAB-RELΔTAD1 cells. Such results raise 

the possibility that down-regulation of gene expression is important for REL-induced effects 

on B-cell oncogenesis, and that some of these genes are specifically repressed by 

RELΔTAD1.

BJAB-RELΔTAD1 cells show a reduced induction of caspase-3 activity following treatment 

with 1 μg/ml doxorubicin, although the ability of doxorubicin to decrease viability is 

unchanged in BJAB-RELΔTAD1 cells (Figure 1e). These data are consistent with previous 

results showing that CD40 ligand, an inducer of NF-κB, can reduce the ability of this 

concentration of doxorubicin to induce caspase activity in BJAB cells without affecting its 

ability to induce apoptosis (Voorzanger-Rousselot et al., 1998). These results indicate that 

doxorubicin induces apoptosis in BJAB cells through a caspase-independent mechanism, 

which is not blocked by increased Rel/NF-κB activity.

The majority of the nuclear κB site-binding activity in RELΔTAD1-BJAB cells contains 

REL protein, whereas in control BJAB-MSCV cells, only a small fraction of the binding 

activity is supershifted by REL antiserum (Figure 2d). In addition, there are increased 

nuclear levels of NF-κB p50 in BJAB-RELΔTAD1 cells, presumably because RELΔTAD1 

and p50 readily interact (Figure S1). Taken together, these data suggest that a shift in the 

composition of nuclear NF-κB/REL dimers occurs upon overexpression of RELΔTAD1.

Only a small number of the genes upregulated by more than ten-fold in BJAB-RELΔTAD1 

cells are ABC-defining (5 genes) or known NF-κB targets (8 genes) (Table 2). As such, 

some of these genes may be novel ABC DLBCL markers or NF-κB/REL targets. In 
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addition, there are 14 ABC-defining genes that are significantly up-regulated in BJAB-

RELΔTAD1 cells that have yet to be classified as NF-κB/REL targets (Tables 3 and S2). 

Future work will be directed at determining which genes are direct RELΔTAD1 targets and 

which contribute to the phenotypic changes that occur in RELΔTAD1 “transformed” BJAB 

cells.

Material and methods

Plasmids, cell culture and infections

pMSCV has been described previously (Gilmore et al., 2003). pMSCV-RELΔTAD1 was 

created by subcloning a BglII to XhoI fragment containing the RELΔTAD1 cDNA into 

pMSCV.

Human A293T cells and BJAB or Daudi lymphoma cells were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10 or 20% fetal bovine serum 

(Biologos, Montgomery, IL), respectively, as described (Starczynowski et al., 2005). Virus 

stocks were generated by transfecting A293T cells with pMSCV or pMSCV-RELΔTAD1 

plus helper plasmid pcL10a1, essentially as described previously (Gilmore et al., 2003). 

Approximately two days later, virus was harvested. One ml of virus (in the presence of 4 

μg/ml polybrene) was used to infect 106 BJAB or Daudi cells using the spin infection 

method (Gilmore et al., 2003). Two days later, cells were selected with 2.5 μg/ml puromycin 

(Sigma) for 2-4 weeks.

Soft agar colony assays and tumor formation assays

For soft agar assays, equal numbers of the indicated BJAB or Daudi cells (250, 500, 1000 or 

2000 cells) were placed in soft agar containing DMEM, 20% FBS and 0.3% bacto agar 

(Difco, Franklin Lakes, NJ), and plates were placed at 37°C in a humid incubator with 5% 

CO2. To confirm cell counts, total cell protein assays (Bio-Rad) were performed on the cell 

dilutions used for plating. Macroscopic soft agar colonies were counted 14 days after 

plating.

Tumor studies were performed essentially as described previously (Yamamoto et al., 2000; 

Gapuzan et al., 2002). 5 × 106 cells were injected subcutaneously into SCID mice (Taconic 

Farms, Germantown, NY). Once tumors appeared, mice were monitored 3× weekly and 

animals were sacrificed when tumors reached 2.25 mm2. All animal studies were performed 

in accordance with NIH guidelines and with approval of the Boston University Institutional 

Animal Care and Use Committee.

Caspase-3 and cell viability assays

Caspase-3 activity and cell viability following doxorubicin treatment were performed as 

described in Supplementary Material.
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Western blotting, indirect immunofluorescence, biochemical fractionation and 
electrophoretic mobility shift assays

Western blotting and indirect immunofluorescence were performed as described previously 

(Starczynowski et al., 2003, 2005). Details of antisera are in Supplementary Material. 

Indirect immunofluorescence was visualized using a confocal microscope (Olympus 

FLUOVIEW Laser Scanner Microscope BX 50, Center Valley, PA) (Starczynowski et al., 

2003).

Cytoplasmic and nuclear extracts were prepared as described previously (Liang et al., 2003), 

and were used either for Western blotting of equalized fractions or in electrophoretic 

mobility shift assays (nuclear extracts). EMSAs for κB-site binding were performed using 5 

μg of nuclear extracts as described previously (Kalaitzidis et al., 2002). For supershift 

assays, 1 μl of REL antiserum (#1507, gift of Nancy Rice) was added after protein/DNA 

complex formation, and samples were then incubated for an additional hour on ice 

(Kalaitzidis et al., 2002).

mRNA analysis: microarrays, data analysis and reverse transcriptase-PCR

The Agilent Whole Human Genome Microarray platform (product number G4112, Agilent 

Technology, Santa Clara, CA). This array contains 43,376 human oliognucleotide probes 

and also 1,468 positive controls and 153 negative controls. Within the array there are 

approximately 41,000 unique probes, which represent a smaller number of genes, reflecting 

the redundancy of the array platform. RNA was isolated from ~ 5 × 106 BJAB-MSCV and 

BJAB-RELΔTAD1 cells from four separate dishes for each on four separate days using 

Trizol reagent (Invitrogen Life Technologies, Carlsbad, CA). RNA integrity was measured 

using an Agilent 2100 Bioanalyzer (Agilent Technology, Santa Clara, CA), and all samples 

had integrity values over 8.0. Samples from two RNA aliquots for each cell type were 

pooled, creating four pooled RNA samples: two of BJAB-MSCV and two of BJAB-

RELΔTAD1 cells. Sample labeling, hybridization to microarrays, scanning and calculation 

of normalized expression ratios were performed as previously described (Holloway et al., 

2008) at the Wayne State University Institute of Environmental Health Sciences microarray 

facility. As part of the platform, a dye swapping experiment was performed, where Alexa 

555-labeled cDNA from one of the BJAB-MSCV pools was mixed with Alexa 647-labeled 

cDNA from one of the BJAB-RELΔTAD1 pools. In a reciprocal dye swap, Alexa 647-

labeled cDNA from BJAB-MSCV cells was mixed with Alexa 555-labeled cDNA from 

BJAB-RELΔTAD1 cells.

The false discovery rate (FDR) was calculated as described previously (Clodfelter et al., 

2007). Briefly, a filter of P<0.005 was applied for statistical significance. Of the total probes 

on the array, 1592 met the two-fold expression difference cut-off criterion between the two 

cell types. The number of genes predicted to meet the combined threshold (P<0.005 and a 

greater than two-fold change in expression) by type I errors is 0.005 × 1592, or 8 genes. In 

our array, the actual number of genes having a two-fold expression change and a P<0.005 is 

1274. This corresponds to an FDR of 0.63% (8/1274). To eliminate duplicates in this 

analysis, we removed those genes with identical sequence names.
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RT-PCR was performed as described (Leeman et al., 2008). See Supplementary Material for 

details of primers and PCR conditions.

Adhesion assay

BJAB-MSCV and BJAB-RELΔTAD1 cells (1 × 106) were plated on petri dishes and were 

cultured for 36 h at 37°C and imaged. Cells were then washed once with PBS and the same 

field was imaged again using the same magnification (200 ×). To quantify the number of 

attached and floating cells, cells from triplicate dishes of each cell type were also isolated 

directly from the media and cells that remained adhered were collected separately. Both 

pools of cells were then lysed, and total protein was quantified from these lysates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overexpression of RELΔTAD1 increases the soft agar colony-forming ability of BJAB 

cells. (a) Structure of MSCV retroviral vectors used in these studies. (b) Anti-REL Western 

blotting of cells stably transduced with MSCV or MSCV-RELΔTAD1 (RELΔTAD1). 

Endogenous REL and introduced RELΔTAD1 are indicated. (c) Relative soft agar colony 

formation of BJAB-MSCV cells (1.0) and BJAB-RELΔTAD1 cells. Values are the averages 

of four assays performed in triplicate; error bars indicate standard error. (d) Comparison of 

the proliferation of BJAB-MSCV cells and BJAB-RELΔTAD1 cells. Cells were plated at 

105 cells/well and were counted each day following plating. (e) BJAB-MSCV cells (MSCV) 

and BJAB-RELΔTAD1 cells (ΔTAD1) were treated with 1 μg/ml doxorubicin (DOX) for 

the indicated times and caspase-3 activity was measured or PARP cleavage was monitored 

by Western blotting (bottom panel). For each cell type, caspase activity is relative to the 

activity seen with untreated cells at the same time point (1.0). Cell viability was measured 

after treatment with 1.0 μg/ml of doxorubicin at the indicated time points (right panel). 

Values are the averages of four (caspase-3 activity) or three experiments (cell viability), 

each performed with triplicate samples.
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Figure 2. 
BJAB-RELΔTAD1 cells have increased nuclear REL protein activity as compared to BJAB-

MSCV cells. BJAB-RELΔTAD1 cells and BJAB-MSCV cells were compared by 

subcellular fractionation (a, c), indirect immunofluorescence using an anti-REL primary 

antiserum (b), and by EMSA analysis of nuclear extracts (d). In (a) and (c), nuclear (N) and 

cytoplasmic fractions (C) were subjected to Western blotting using equal proportions of 

each fraction for analysis of REL, p50, RelA, and 14-3-3 and CD40 proteins (as cytoplasmic 

controls) or RNA polymerase II (as a nuclear control). In (b), the indicated BJAB cells were 

stained with an anti-REL antibody and viewed by confocal microscopy. The left panel 

contains BJAB-RELΔTAD1 cells; the middle and right panels show BJAB-MSCV cells. 

The left and middle panels were imaged using the same exposure time (Exp), while the right 

panel was imaged using a longer exposure time to detect the low level of endogenous REL 

in BJAB-MSCV cells. In (d), an EMSA was performed on equalized amounts (5 μg) of 

nuclear extracts using a κB-site probe from the human MHC1 enhancer. Where indicated, 

competitions were performed using an excess of cold probe or samples were supershifted 

(SS) using anti-REL antiserum. The relevant complexes are indicated.
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Figure 3. 
Analysis of mRNA and protein from select genes in BJAB-MSCV and BJAB-RELΔTAD1 

cells. (a) Heat map of NF-κB-specific ABC-target gene expression in BJAB-RELΔTAD1 

cells as compared to BJAB-MSCV cells. The map was created using the matrix2png 

program (Pavlidis and Noble, 2003). The expression scale is shown below the map. (b) RT-

PCR of the indicated mRNAs: BCL2, IRF4, CCR7, CD10, VCAM1, REL (as a positive 

control), and GAPDH (as a normalization control). Water control (-); BJAB-MSCV 

(MSCV); BJAB-RELΔTAD1 (RELΔTAD1). (c) Western blotting for REL, VCAM1, BCL2, 

CD40, CD10 and β-actin (as a normalization control) of extracts from BJAB-MSCV cells 

(MSCV) and BJAB-RELΔTAD1 cells (RELΔTAD1).
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Figure 4. 
BJAB-RELΔTAD1 cells show increased adherence to culture dishes. (a) BJAB-MSCV and 

BJAB-RELΔTAD1 cells (1×106) were grown in petri dishes for 36 h and imaged at 200 × 

magnification (top panel); dishes were then washed with PBS and cells in the same field 

were imaged again (“Washed” panels). The arrows point to a clump of BJAB-RELΔTAD1 

cells that adhere to the culture dish. (b) The percentage of attached cells was determined by 

measuring the total protein content of floating cells isolated directly from the media and 

from cells that remained attached to the culture dish. The assay was performed with 

triplicate plates; error bars represent standard error.
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Figure 5. 
Expression of REL in several human B-lymphoma cell lines. (a) The following human B-

lymphoma cell lines were used: BJAB (EBV-negative Burkitt-like lymphoma), SUDHL-4 

(DLBCL), RC-K8 (DLBCL), IB4 (umbilical cordblood B-cell lymphoblastoid line infected 

with EBV), Daudi (EBV-positive Burkitt’s lymphoma), and BL41 (Burkitt’s lymphoma). 

Lysates were prepared from actively growing cells, and 20 μg of total protein was analyzed 

by anti-REL Western blotting (top). At the bottom is shown a Coomassie blue-stained gel of 

equalized total protein extracts. Rel. Amt. indicates the relative amount of REL in each cell 

type, as compared to BJAB cells (1.0), determined by scanning of the film in the top panel. 

(b) Anti-REL Western blotting of control BJAB cells, BJAB-RELΔTAD1 cells, control 

Daudi cells, and a Daudi-RELΔTAD1 cell line. (c) Relative soft agar colony forming ability 

of control vs Daudi-RELΔTAD1 cells. Assays were performed as in Figure 1c, values are 

the averages of 5 experiments performed with triplicate plates, and were normalized to the 

number of colonies obtained with control Daudi cells (1.0).
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Table 1

Tumor-forming abilities of BJAB-RELΔTAD1 and BJAB-MSCV cells in SCID mice

Cell type Number of mice injecteda Number of tumorsb % Tumors formedc

BJAB-MSCV 7 6 43%

BJAB-RELΔTAD1 7 11 79%

Using a chi-square test, a P-value = 0.05 was obtained for the difference in tumor number between control BJAB-MSCV and BJAB-RELΔTAD1 
cells.

a
Mice were injected above both right and left hind limbs (two injections/mouse) with 5 × 106 cells/site.

b
Tumors were monitored for up to 7 weeks post-injection.

c
Percentage of tumor formation (tumors/14 injection sites × 100).
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Table 3

ABC and GCB genes whose expression is altered in RELΔTAD-BJAB cells

Gene type Total number
of genes No.upregulated No.

downregulated
No.
unchanged

All ABC-specific genes 102 31 (30%) 12 (12%) 59 (58%)

ABC-NF-κB targets 29 17 (59%) 2 (7%) 10 (34%)

All GCB-specific genes 62 6 (10%) 15 (24%) 41 (66%)

GCB-NF-κB targets 3 2 (67%) 1 (33%) 0 (0%)

Gene lists were obtained using previously classified ABC and GCB-specific genes (Alizadeh et al., 2000; Rosenwald et al., 2002; Wright et al., 
2002; Feuerkhake et al., 2005; Ngo et al., 2006) and NF-κB targets were obtained from www.nf-kb.org. See Tables S2 and S3 for complete gene 
lists, references and annotations. Listed are the numbers of genes that are upregulated, downregulated or unchanged in RELΔTAD1 cells compared 
to BJAB-MSCV cells within a given subset. The genes with altered expression were classified based on a P-value cut-off of 0.005. Genes were 
grouped into ABC-specific genes, ABC-specific NF-κB targets, GCB-specific genes and GCB-specific NF-κB target genes. To validate the 
patterns of ABC and GCB gene expression distribution in BJAB-RELΔTAD1 cells, we calculated the P-value of the two gene sets (ABC, 31 and 
12 versus GCB, 6 and 15) using a two-tailed chi-square test at 95% confidence using Graphpad Prism 4 software (Graphpad Prism Software, San 
Diego, CA). These two gene sets differed with a highly significant P-value (0.0009). That is, the percentage of upregulated ABC-genes and the 
percentage of downregulated GCB-genes in BJAB-RELΔTAD1 cells are significantly different from one another.
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Table 4

Gene Ontology classifications for upregulated genes in the BJAB-RELΔTAD1 cells

Gene ontology No. of genes P-value

Protein function

Intrinsic to plasma membrane 73 2.80 × 10−10

Extracellular region part 52 9.70 × 10−9

Cell communication 157 3.10 × 10−8

Signal transduction 144 1.30 × 10−7

Biological adhesion 45 7.60 × 10−7

Immune response 50 2.00 × 10−6

Membrane part 205 5.50 × 10−6

Protein binding 227 3.60 × 10−6

Biological function

Diseases and disorders

   Immunological disease 75 1.12 × 10−10− 1.99 × 10−3

   Connective tissue disorder 52 5.07 × 10−9− 1.50 × 10−3

Molecular and cellular functions

   Cellular growth and proliferation 144 4.88 × 10−10− 1.88 × 10−3

   Cell to cell signaling and interaction 114 1.73 × 10−9− 1.50 × 10−3

Physiological system development and function

   Immune and lymphatic system development and function 84 2.01 × 10−10− 1.98 × 10−3

   Tissue morphology 71 2.01 × 10−10− 1.88 × 10−3

Gene Ontology grouping of the functions of the upregulated genes (563 annotated total) in RELDTAD1 cells. Shown at the top are the protein 
functions of the GO-terminology groupings with the lowest P-values (http://david.abcc.ncifcrf.gov/). In the bottom half of the table are the 
biological groupings of 421 significantly upregulated genes that were annotated in the Ingenuity Pathways Analysis program 
(www.ingenuity.com). Shown are the classifications based on the lowest P-values. Ranges of P-values refer to the fact that multiple subcategories 
are included in these classifications.
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