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Purpose: This study aimed to identify which patients were “unsafe” for outpatient surgery patients and
determine the most predictive demographic and clinical factors contributing to postoperative risk
following open reduction internal fixation for distal radius fractures.
Methods: Adult patients (aged �18 years) who presented with distal radius fracture and underwent open
reduction internal fixation were identified using the American College of Surgeons National Surgical
Quality Improvement Program database for years 2016 to 2021. Patients who were deemed “unsafe”
therefore contraindicated for outpatient open reduction internal fixation of distal radius fracture if they
required admission (length of stay of one or more days) or experienced any complication or required
readmission within 7 days of the index operation. The model with optimal performance was determined
according to area under the curve on the receiver operating characteristic curve and overall accuracy.
Additional model metrics were also evaluated, and predictive factors (ie, features) that were most
important to model derivation were identified.
Results: A total of 2,020 eligible patients underwent open reduction and internal fixation for distal radius
fractures. The majority (78.6%) were women, with a mean age of 57.5 ± 16.0 years. Of these patients,
21.5% experienced short-term adverse events. Gradient boosting was the optimal model for predicting
patients who were “unsafe” for outpatient surgery, with key features including International Classifi-
cation of Diseases, 10th Revision code, preoperative white blood cell count, age, body mass index, and
Hispanic ethnicity.
Conclusions: Using machine learning techniques, a predictive model was developed, which demon-
strated good discrimination and excellent performance in predicting which patients were “unsafe” for
outpatient operative fixation of distal radius fracture. Findings of this study highlight the predictive value
of artificial intelligence and machine learning for the purposes of preoperative risk stratification as well
as its potential to better inform shared decision making and guide personalized fracture care.
Level of evidence/type of study: Prognostic IV.
Copyright © 2024, THE AUTHORS. Published by Elsevier Inc. on behalf of The American Society for Surgery of the Hand.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Distal radius fractures (DRFs) are one of the most common or-
thopedic injuries, accounting for approximately 17.5% of all frac-
tures and occurring most often in older adults via low-energy
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mechanisms.1 Although extra-articular and minimally displaced
injuries may be managed with closed reduction and immobiliza-
tion, surgical intervention with open reduction and internal fixa-
tion (ORIF) is often required to effectively address more unstable or
displaced fractures. In addition to mode of treatment,2 numerous
factors influence patient outcomes following surgical management
of DRFs, including patient characteristics such as age,3 sex,4

comorbidities,5 and fracture complexity.6 Moreover, patients with
multiple comorbidities may be more susceptible to delayed
American Society for Surgery of the Hand. This is an open access article under the

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alexander_l_hornung@rush.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhsg.2024.06.002&domain=pdf
www.sciencedirect.com/science/journal/25895141
http://www.JHSGO.org
https://doi.org/10.1016/j.jhsg.2024.06.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jhsg.2024.06.002
https://doi.org/10.1016/j.jhsg.2024.06.002


A.L. Hornung et al. / Journal of Hand Surgery Global Online 6 (2024) 808e813 809
recovery, leading to prolonged hospitalizations and a greater risk of
complication.7e9 A recent study by Schick et al10 Determined that
congestive heart failure (CHF), hypertension (HTN), American So-
ciety of Anesthesiologist (ASA) class �3, and dependent functional
status were each independent risk factors for complication within
30 days of DRF surgery, with complication rates measuring 1% and
10% following outpatient and inpatient surgery, respectively. As the
United States population ages and the incidence of DRFs rises
accordingly, it is crucial to identify patients at higher risk for
complications and develop tailored treatment strategies aiming to
optimize outcomes following surgical treatment.

In recent years, a growing emphasis on establishing value-based
care models and improving clinical efficiency has heralded a tran-
sition toward greater utilization of outpatient surgery. Accurate risk
stratification is therefore becoming increasingly important to
determine appropriate patient selection, manage patient expecta-
tions, and guide clinical decision making. Methods for predicting
postoperative risk have traditionally relied on inferential statistical
models that are best suited for generalization across populations
rather than for application to individual patient cases. In response
to some of these limitations, the field of machine learning (ML) has
emerged as a promising avenue for improving predictive accuracy
and clinical utility.11 Machine learning constitutes a branch of
artificial intelligence that enhances its performance through
experience, rather than relying solely on explicitly programmed
instructions by humans. The realm of ML encompasses a wide
spectrum of techniques, including highly intricate mathematical
algorithms. These algorithms are trained using external data to
perform tasks such as forecasting the risk of postoperative read-
mission based on baseline radiographs. Subsequently, these trained
algorithms undergo testing against supplementary “test” data sets
to assess their broader applicability. Recent studies have leveraged
these more advanced ML algorithms to identify factors influencing
outcomes following a variety of orthopedic conditions, including
DRFs. Bluthgen et al12 developed an ML algorithm that detected
and localized wrist fractures with performance comparable with
radiologists, whereas another model produced by Liu et al13 was
used to design effective DRF hand therapy programs based on
fracture healing stage. However, prior previous studies have not
leveraged ML techniques to identify patients at risk for adverse
events following surgical management of DRF. Surgeons rather rely
on a combination of clinical judgment and traditional risk stratifi-
cation assessments (eg, ASA class and comorbidity indices) to guide
decisions about the suitability of patients for outpatient surgery.
Application of ML predictive analytics, encompassing predictive
risk models ranging from regression-based approaches to sophis-
ticated artificial intelligence-based network models, could provide
valuable insights into distinguishing appropriate outpatient surgi-
cal candidates from those at greater risk of adverse events in the
early postoperative period.

The purpose of this study was to develop and compare risk
prediction models aiming (1) to identify patients at risk for short-
term adverse events including overnight admission, early compli-
cation, or early readmission, and therefore likely to benefit from a
short inpatient admission following surgery and (2) to determine
the most predictive demographic and clinical factors contributing
to postoperative risk following ORIF for DRF.

Methods

Study design and patient population

This retrospective cohort study used the American College of
Surgeons National Surgical Quality Improvement Program (ACS-
NSQIP) database. The American College of Surgeons National
Surgical Quality Improvement Programwas selected as the primary
data source for this study because of its comprehensive nature and
inclusion of data from various types of medical centers. Because all
data in the ACS-NSQIP database are deidentified and publicly
available, this study was considered exempt from formal institu-
tional review board review. The design and reporting of this study
followed the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis guidelines and the
Journal of Medical Internet Research Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research.14,15 These guidelines were followed to ensure trans-
parency and quality in the design, analysis, and reporting of the
study’s findings.

Adult patients (aged �18 years) who presented with DRFs and
underwent ORIF between 2016 and 2021 were identified using
current procedural terminology codes for open treatment of distal
radial extra-articular fracture or epiphyseal separation, with in-
ternal fixation (25607); open treatment of distal radial intra-
articular fracture or epiphyseal separation, with internal fixation
of two fragments (25608); and open treatment of distal radial intra-
articular fracture or epiphyseal separation, with internal fixation of
three or more fragments (25609). Surgery performed in cases of
polytrauma or malignancy was excluded using current procedural
terminology codes.16
Definition of groups

Patients who were deemed “unsafe” therefore contraindicated
for outpatient open reduction internal fixation of distal radius
fracture if they required admission (length of stay of one or more
days) or experienced any complication or required readmission
within 7 days of the index operation.17
Target outcome and candidate predictive features

Predictive models were developed with the aim of identifying
patients more suitable for inpatient ORIF for DRF because of the risk
of experiencing short-term adverse events including overnight
admission, complication within 7 days of surgery, or readmission
within 7 days of surgery. Specifically, complications included death,
reoperation, respiratory complications (unplanned intubation,
mechanical ventilation >48 hours), pneumonia, cardiac complica-
tions (cardiac arrest, myocardial infarction), renal complications
(progressive renal insufficiency, acute renal failure), thromboem-
bolic complications (deep vein thrombosis/thrombophlebitis, pul-
monary embolism), deep wound complications (deep incisional
surgical site infection, organ space infection, wound dehiscence),
sepsis, superficial surgical site infection, and urinary tract infection.
Model development included consideration of various factors
potentially contributing to adverse event risk, including de-
mographic (age, sex, body mass index [BMI], race, ethnicity,
smoking status, and financial status) and clinical (International
Classification of Diseases, 10th Revision [ICD-10], ASA class, dia-
betes mellitus, steroid use for chronic condition, severe chronic
obstructive pulmonary disease [COPD], CHF, HTN requiring medi-
cation, functional status, bleeding disorders, past transfusion,
wound class, preoperative sodium, blood urea nitrogen [BUN],
creatinine, albumin, bilirubin, serum glutamic-oxaloacetic trans-
aminase [SGOT], alkaline phosphatase, white blood cell count, he-
matocrit, platelets, partial thromboplastin time [PTT], prothrombin
time, and international normalized ratio [INR]) variables. Surgical
time and anesthesia type were also recorded.



Table 1
Summary of Patient Demographic and Clinical Characteristics

Demographics n ¼ 2,020

Count (%)

Sex (F) 1,587 (78.6 %)
Race (White) 1,392 (68.9%)
Age (y) 57.5 ± 16.0
BMI 27.7 ± 6.7
Diabetes (YES) 145 (7.2%)
Smoker (YES) 403 (20.0%)
Functionally Independent (YES) 1,956 (96.8%)
ASA Class (1dNo Disturb) 279 (13.8%)
COPD (YES) 80 (4.0%)
CHF (YES) 8 (0.4%)
Hypertension on Medication (YES) 653 (32.3%)
Dialysis (YES) 4 (0.2%)
Steroid (YES) 48 (2.4%)
Bleeding Disorder (YES) 42 (2.1%)
Transfusion (YES) 4 (0.2%)

Preoperative Laboratories Mean ± SD

Sodium 138.8 ± 3.1
BUN 15.8 ± 7.2
Creatinine 0.9 ± 0.5
Albumin 4 ± 0.5
Bilirubin 0.6 ± 0.9
SGOT 27.4 ± 25.9
Alkaline Phosphatase 84.6 ± 30.8
WBC 8.1 ± 3
Hematocrit 39.3 ± 4.4
Platelet Count 255.5 ± 74.5
PTT 29.1 ± 6.1
INR 1.1 ± 0.3
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Data Pre-processing

Variables with <20% missing data were imputed as categorical
or continuous variables using the variable mode or variable mean
strategies, respectively. Variables with >20% missing data were
excluded from model development.

Statistical analyses, predictive modeling, and validation

Categorical variables were reported as frequencies and per-
centages, whereas continuous variables were presented as mean ±
standard deviation (SD). Group differences for categorical variables
were assessed using chi-square or Fischer exact tests depending on
the variable count. For continuous variables, parametric data were
analyzed using Student t tests, whereas nonparametric data were
analyzed using Mann-Whitney U tests. Odds ratios and 95% confi-
dence intervals (95% CI) were calculated for each binomial variable.
All P values were two-tailed, and statistical significance was set at
P < .05.

Machine learning predictive models were developed using Py-
thon version 3.8.5 (Python Software Foundation). Patients were
first divided into training (70%) and testing (30%) cohorts. The
training cohort was used to develop models predicting short-term
adverse events using support vector machine (SVM), random for-
est, logistic regression, gradient boosting, and extreme gradient
boostingmethods. Models were subsequently applied to the testing
cohort to validate their predictive efficacy.

To identify the optimal predictive model, the performance of
each model was assessed using various metrics. The area under the
curve (AUC) on the receiver operating curve (ROC) and model ac-
curacy were used as primary evaluation measures. Additionally,
several supplementary metrics including precision, recall, F1-score,
and Brier score were employed. The F1-score, ranging from 0.0 to
1.0, was used as a measure of the harmonic mean of model preci-
sion and recall, providing a balanced assessment of the model’s
ability to correctly identify positive cases while minimizing false
positives and false negatives. The Brier score represents an addi-
tional indicator of overall model performance, assigning a score of
zero for perfect prediction and a score of one for the poorest pre-
diction. By considering the squared differences between predicted
probabilities and actual outcomes, the Brier score provides a
comprehensive evaluation of the model’s calibration and accuracy.

Results

A total of 2,020 eligible patients underwent ORIF for DRF dur-
ing the study period. The majority of the patients were women,
accounting for 78.6% of the total sample, and the mean age of the
patients was 57.5 ± 16.0 years. Overall, 435 (21.5%) experienced a
short-term adverse event, with 420 (20.8%) instances of overnight
admission, 9 (0.5%) instances of complication within 7 days of
surgery, and 21 (1.0%) instances of readmission within 7 days of
surgery. Compared with those who underwent uncomplicated
outpatient surgery, patients experiencing a short-term adverse
event were significantly older (61.6 ± 17.1 years vs 56.4 ± 15.5
years, P < .001) and were more commonly women (82.8% vs 77.4%,
P¼ .016). They also exhibited significantly higher rates of ASA class
�3 (5.0% vs 1.4%, P < .001), HTN requiring medication (38.9% vs
30.5%, P ¼ .018), bleeding disorder (3.7% vs 1.6%, P < .001), pre-
operative sepsis (3.2% vs 0.9%, P < .001), and a history of requiring
a transfusion (0.7% vs 0.06%, P < .001). Furthermore, several pre-
operative laboratory values differed between patients who
experienced short-term adverse events and those who did not.
Patients experiencing short-term adverse events had lower pre-
operative levels of sodium (138.3 ± 3.4 vs 139.0 ± 3.0; P ¼ .002),
albumin (3.8 ± 0.6 vs 4.2 ± 0.5; P < .001), hematocrit (38.1 ± 4.9 vs
39.8 ± 4.1; P < .001), and platelets (241.4 ± 69.5 vs 261.7 ± 75.8;
P < .001). However, average preoperative white blood cell
counts were higher than among patients undergoing uncom-
plicated outpatient surgery (8.5 ± 2.9 vs 7.9 ± 3.0; P ¼ .003).
Surgical time was also found to be longer among patients who
experienced short-term adverse events, with a mean duration
of 73.1 ± 36.1 minutes comparedwith 68.1 ± 34.7 minutes (P¼ .015).
A complete summary of demographic, clinical, and surgical charac-
teristics for each group is provided in Tables 1 and 2.

Relative frequencies of included procedures significantly
differed between patients who did and did not experience a short-
term adverse event (P < .001). The incidence of short-term adverse
events was highest among patients undergoing ORIF for intra-
articular fracture with three fragments (34.9%), followed by ORIF
for intra-articular fracture with two fragments (30.0%) and ORIF for
extra-articular fracture (17.9%).

Model performance and feature importance

Area under the curve values ranged from 0.653 to 0.830, and
Brier scores ranged from 0.176 to 0.205 among all algorithms
developed. Measures of accuracy were between 0.795 and 0.824,
precision values were between 0.532 and 0.750, recall values were
between 0.230 and 0.356, and F1-scores were between 0.126 and
0.466 (Table 3). Gradient boosting was found to produce the
optimal model for predicting short-term adverse events following
ORIF for DRF, achieving an AUC of 0.830 (Fig. 1) and a Brier score of
0.176. Measures of accuracy (0.824), precision (0.674), recall (0.356),
and F1-score (0.466) also indicated fair to food discrimination. The
features determined by the model to be most important in
contributing to short-term adverse event risk included ICD-10
code, preoperative white blood cell count, age, BMI, and ethnicity
(Hispanic; Fig. 2).



Table 2
Summary of Patient Demographic and Clinical Characteristics Stratified by Those Deemed Unsuitable for Outpatient Versus Those Suitable for Outpatient Surgery

Unsafe for Outpatient
Surgery (n ¼ 435)

Safe for Outpatient
Surgery (n ¼ 1,585)

P Value 95% CI

Odds Ratio Lower Limit Upper Limit

Sex (F) 360 1,227 .016* 0.714 0.542 0.94
Race (White) 226 1,166 .724 0.919 0.573 1.472
Diabetes (YES) 38 107 .155 1.322 0.898 1.946
Smoker (YES) 90 313 .663 1.06 0.815 1.379
Functionally independent (YES) 410 1,546 <.001* 0.414 0.247 0.692
Anesthesia (Yes) 405 1,422 .033* 1.547 1.032 2.319
ASA Class (>¼3) 22 22 <.001* 3.785 2.075 6.901
COPD (YES) 33 47 <.001* 2.686 1.698 4.249
CHF (YES)y 3 5 .271 2.194 0.522 9.219
Hypertension on medication (YES) 169 484 .001* 1.445 1.159 1.802
Dialysis (YES)y 1 3 1 1.215 0.023 15.172
Steroid (YES) 13 35 .344 1.364 0.715 2.602
Bleeding disorder (YES) 16 26 .008* 2.29 1.217 4.308
Transfusion (YES)y 3 1 .033* 10.98 0.879 575.816
Preoperative sepsis (YES) 14 15 <.001* 3.481 1.667 7.268
Age (y)z 61.6 ± 17.1 56.4 ± 15.5 <.001*

BMI 28.0 ± 7.4 27.6 ± 6.6 .31
Sodiumz 138.3 ± 3.4 139.0 ± 3.0 .002*

BUNz 16.4 ± 7.9 15.6 ± 6.9 .297
Creatinine 0.8 ± 0.3 0.9 ± 0.6 .272
Albuminz 3.8 ± 0.6 4.2 ± 0.5 <.001*

Bilirubinz 0.8 ± 1.3 0.6 ± 0.6 .215
SGOT 30.7± 38.3 25.9 ± 17.8 .056
Alkaline phosphatase 87.6 ± 35.9 83.2 ± 28.2 .14
WBC 8.5 ± 2.9 7.9 ± 3.0 .003*

Hematocritz 38.1 ± 4.9 39.8 ± 4.1 <.001*

Platelet countz 241.4 ± 69.5 261.7 ± 75.8 <.001*

INR 29.5 ± 6.5 28.78 ± 5.7 .321
PTT 1.01 ± 0.2 1.1 ± 0.3 .464
Operative timez 73.1 ± 36.1 68.1 ± 34.7 .015

* Significant results are indicated in bold font.
y Fisher Exact test.
z Mann-Whitney test.

Table 3
Comparative Analysis of ML Models Predicting Short-Term Adverse Events Following Open Reduction Internal Fixation of Distal Radius Fracture

Model SVM Random Forest Logistic Regression Decision Tree Gradient Boosting

AUC 0.795 0.817 0.795 0.797 0.824
Brier Score 0.755 0.823 0.768 0.653 0.830
Accuracy 0.750 0.644 0.556 0.532 0.674
Precision 0.069 0.333 0.230 0.471 0.356
Recall 0.126 0.439 0.325 0.500 0.466
F1-score 0.205 0.183 0.205 0.203 0.176
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Discussion

This retrospective investigation used predictive modeling and
ML methods to create innovative tools to assist health care pro-
fessionals in their clinical decision making process regarding the
eligibility of patients for outpatient ORIF following DRF. The
resulting computational model, incorporating various preoperative
demographic and clinical factors, demonstrated fair to good
discrimination and excellent overall performance. The five features
identified as most important in determining short-term adverse
event risk were ICD-10 code, preoperative white blood cell count,
age, BMI, and ethnicity (Hispanic). This study establishes a pre-
dictive model aiming to identify patients suitable for outpatient
ORIF of DRF. These findings underscore the potential of ML tech-
niques to enhance predictive accuracy and offer valuable insights
for patient selection and preoperative counseling.

The current study identified postoperative ICD-10 code as the
single most important feature in determining prediction of patients
likely to experience a short-term adverse event following ORIF for
DRF. International Classification of Diseases-10 codes are a
standardized system of alphanumeric codes used worldwide for
classifying diseases, medical conditions, and various health-related
issues. Although there is limited research surrounding ICD-10 code
and outcomes after DRF, the codes do provide fundamental initial
injury details that the resulting algorithm may have used a surro-
gate for overall fracture severity. Recent studies have highlighted
the impact of initial fracture position, presence of comminution,
and intra-articular involvement on postoperative outcomes.18 A
study by Wadsten et al18 of 406 patients noted worsened patient-
reported outcomes as well as range of motion in patients with
greater initial fracture displacement. Unfortunately, radiographic
data are not included in the ACS-NSQIP database, thus precluding
assessment of fracture severity to be included in these analyses.
Furthermore, Wei and colleagues used the ACS-NSQIP database to
conduct a retrospective analysis of 11,272 patients and determined
that that prolonged operation times were linked to an elevated risk
of reoperation following DRF repair.19 In many cases, prolonged
operative times are a result of greater difficulty in achieving
adequate fracture visualization, reduction, and fixation of more
complex fractures, which itself may also increase the likelihood of



Figure 1. Overall logistic regression model performance as measured by AUC on the
ROC curve. Area under the curve indicates the ability of the model to discriminate
between patients who did and did not experience a short-term adverse event
following ORIF for DRF.

Figure 2. Feature importance calculated according to usefulness within the logistic
regression model for predicting incidence of short-term adverse events following ORIF
for DRF.
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reoperation. Additional research investigating the correlation be-
tween DRF and the complexity of surgical procedures would
enhance surgeons’ decision making and help in setting realistic
patient expectations.

Perhaps unsurprisingly, those who experienced short-term
adverse events demonstrated elevated white blood cells
compared with their counterparts. Initial elevation of white blood
cell count is often part of the normal physiological stress response
to injury.20 Moreover, a recent study by Chisalita et al21 noted that
in a cohort of 38 womenwith DRF, fracture healing, as measured by
the Hammer et al22 classification of fracture healing on serial ra-
diographs, was associated with initial leukocytosis and a lower
thrombocyte count, suggesting that inflammation and
thrombocytes are important components in fracture healing.
However, it can be difficult to determine whether the leukocytosis
is secondary to a post-traumatic inflammatory response, which
may be favorable for DRF healing or if it is a consequence of
infection, bacteremia, or sepsis. Ninety-two patients exhibited an
elevated white blood cell count (greater than 12,000) and fulfilled
the criteria for experiencing a short-term adverse event, rendering
them “unsuitable” for outpatient surgery according to the param-
eters established in this study. This was likely due to these patients
being scheduled for surgery as inpatients to better address con-
current infection. Nevertheless, elevated preoperative white blood
cell count may represent a future research avenue to potentially
establish a theoretical cutoff differentiating normal physiologic
responses that are beneficial to fracture healing from levels that
ultimately affect surgical outcomes.

Patient age was identified as the third most important factor for
identifying those who were at risk of short-term adverse event
following ORIF for DRF. Historically, a study by Lafontaine and
colleagues noted that age, specifically age greater than 60 years,
was associated with instability, and as such these fractures should
be treated operatively23 despite multiple studies demonstrating
that outcomes and self-reported disability are not correlated with
radiographic appearance or malunion.24e26 Past studies across
various surgical specialties have highlighted that elderly patients
have multiple risk factors, including their general condition,
comorbidities, and pathophysiological changes, that may result in
more adverse outcomes after surgery.27 Mosenthal et al28 reiter-
ated these sentiments in a study of 155,353 DRFs, demonstrating
that the prevalence of comorbidities tended to correlate with age in
patients with DRF. Interestingly, our findings diverge from more
recent literature, as both Mosenthal et al28 and Navarro et al29 re-
ported decreased complications and no appreciably greater risk for
reoperationwith increasing patient age, respectively. In contrast, in
a study of complications after DRF, Jiang et al30 noted a trend to-
ward older age (P ¼ .06) in patients who developed complications
after surgical fixation after DRF; however, this trend was not
appreciated in a more recent ACS-NSQIP study investigating com-
plications and reoperations among patients treated for DRF be-
tween 2005 and 2020.31 Moreover, a systematic review by
MacIntrye and Dewan32 noted poorer health outcomes after DRF
are associated with older age, further convoluting the impact of age
on DRF. In sum, patient age at injury represents a complicated
variable in regard to postoperative outcomes. Although age may
represent a surrogate measure for fragility and has been associated
with increased complications, readmission, and reoperation, this
study determined increasing age to increase risk for short-term
adverse events following ORIF for DRF and suggests older pa-
tients may be more suited to undergo surgery in the inpatient
setting.

This study has several limitations that should be considered.
First, although the sample size is substantial, it is crucial to
acknowledge that the algorithm’s development was based solely on
patients from the ACS-NSQIP database. Therefore, the generaliz-
ability of the findings relies on robust external validation studies
conducted using similar databases. The lack of detailed breakdowns
within the ACS-NSQIP data set hindered the ability to analyze
specific factors such as radiographic findings (eg, fracture pattern or
severity), which have been shown to alter postoperative outcomes
after DRF, thus limiting the current model. Although certain
modifiable risk factors like BMI, WBC, or platelet count were
identified, it is important to note that many of the predictive factors
are nonmodifiable; as such, there is limited potential to intervene
on these factors to possibly improve outcomes. In addition, the
ACS-NSQIP database captures data only for patients treated in a
hospital setting (both inpatient and outpatient) and excludes
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patients who were treated at an ambulatory surgery center.
Furthermore, when using a comprehensive database like the ACS-
NSQIP, it is essential to acknowledge certain limitations, including
coding errors, missing data points, and inaccuracies within the
provided information. The presence of sample bias implies that the
predictions of the ML model are only as reliable as the training data
set. To address this, in our analysis, we opted to use imputation
techniques as numerous studies in the literature have shown the
advantages of multiple imputations over complete case analysis.
Complete case analysis can result in inefficient utilization of data,
potentially exacerbating existing health care disparities, and pro-
ducing biased models. To enhance the robustness of the algorithm,
future investigations should focus on externally validating this
model using distinct populations, which would provide further
insights into its performance and generalizability.
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