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Abstract

Anandamide (AEA) is the prominent member of the endocannabinoid family and its biological action is mediated through
the binding to both type-1 (CB1) and type-2 (CB2) cannabinoid receptors (CBR). The presence of AEA and CBR in the
gastrointestinal tract highlighted their pathophysiological role in several gut diseases, including celiac disease. Here, we
aimed to investigate the expression of CBR at transcriptional and translational levels in the duodenal mucosa of untreated
celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also biopsies from treated
celiac patients cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our data show higher levels of both
CB1 and CB2 receptors during active disease and normal CBR levels in treated celiac patients. In conclusion, we demonstrate
an up-regulation of CB1 and CB2 mRNA and protein expression, that points to the therapeutic potential of targeting CBR in
patients with celiac disease.
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Introduction

Cannabinoid receptors (CBR) belong to the large superfamily of

heptahelical Gi/o protein coupled receptors [1]. Type-1 (CB1) and

type-2 (CB2) cannabinoid receptors act as main molecular targets

of anandamide (AEA) and mediate the biological action of this

lipid by activating distinct signalling pathways [2]. CB1 has been

mainly found in cells and tissues of central nervous system [3],

whereas CB2 is localized preferably on peripheral and immune

cells [4], but it has been identified also in neuronal cells [5,6].

Experimental studies demonstrated the presence of CBR in

various sections of the gastrointestinal tract and a dysregulation

of their expression has been reported in several gut pathologies,

including diarrhoea [7], colon cancer [8], inflammatory and

irritable bowel diseases [9,10]. High AEA levels in the duodenal

mucosa of untreated celiac disease (UCD) patients in comparison

to treated celiac disease (TCD) patients and control subjects (CS)

[11] are likely due to an altered N-acylphosphatidyl-ethanolamine

specific phospholipase D (NAPE-PLD) activity [12], and might

self-induce an increase of CBR, as a fine mechanism of regulation

common to many diseases [11,13,14]. Indeed, immunofluores-

cence analyses showed that CB1 protein is strongly expressed in

duodenum biopsies from UCD patients [11], whereas CB2 is up-

regulated, both at transcriptional and translational levels, in small

bowel biopsies obtained from children with celiac disease [15].

Here, we investigated CBR mRNA and protein as well as

functional activity levels in the duodenal mucosa of UCD and

TCD patients, and CS. Moreover, we explored the effect of the

peptic-tryptic digest of gliadin (PT-gliadin) on CBR expression in

organ culture biopsies taken from TCD patients.

Materials and Methods

5 - (1,10 - Dimethylheptyl) - 2 - [(1R,5R) - hydroxy - (2R) - (3-

hydroxypropyl) - cyclohexyl]phenol (CP55940) was purchased

from Sigma Chemicals (St. Louis, MO, USA) and [3H]CP55940

(174.6 Ci/mmol) was from PerkinElmer Life Sciences (Boston,

MA, USA).

Ethics statement
This study was approved by the Ethical Committee of Spedali

Civili of Brescia. Informed written consent to participate in this

study was given by patients.
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Patients and tissues
Biopsy samples were collected from the second part of the

duodenum of 16 patients affected by uncomplicated UCD (9 males

and 7 females, mean age 40.6 years, range 19–71). The diagnosis

was based on positivity of serum antiendomysial antibodies

associated with the typical histopathological lesions, namely villous

atrophy, increased intraepithelial lymphocyte infiltration and crypt

hyperplasia. Six patients showed a Marsh IIIc lesion and 10

showed a Marsh IIIb lesion. Duodenal biopsies were also collected

from 17 patients affected by uncomplicated celiac disease on a

gluten-free diet for at least 12 months (7 males and 10 females,

mean age 32.4 years, range 18–81), all negative for serum

antiendomysial antibodies and with a substantially normal

duodenal mucosal architecture. Finally, duodenal biopsies were

also collected from 19 CS (8 males and 11 females, mean age 46.7

years, range 18–69) undergoing endoscopy for functional dyspep-

sia, negative for antiendomysial antibodies and with normal

histology. Some of the biopsies were processed for routine

histology or were embedded in OCT Tissue-Tek (Sakura Finetek,

Torrance, CA, USA) snap frozen and then stored at 270uC;

others were used for organ culture or were homogenized for

immunoblotting analysis.

Organ culture
Biopsy specimens from TCD patients, placed on grids in the

central well of an organ culture dish, were cultured in an airtight

container with 95% O2/5% CO2 at 37uC in the absence or

presence of 1 mg/ml PT-gliadin (Frazer III fraction, Sigma-

Aldrich) in RPMI-1640 medium (Gibco, Invitrogen, Paisley, UK)

supplemented with 10% HL-1 (Lonza BioWhittaker, Verviers,

Belgium), 100 U/ml penicillin and 100 mg/ml streptomycin [16].

After 24 h culture, biopsies were snap frozen and stored at 270uC.

Quantitative real-time reverse transcriptase-polymerase
chain reaction (qRT-PCR) analysis

Total RNA was extracted from biopsies using the RNeasy

extraction kit (Qiagen, Crawley, UK), as suggested by the

manufacturer. QuantiTect Reverse Trascription kit (Qiagen,

Crawley, UK) was used to produce cDNA from 1 mg of purified

RNA. 40 ng of the first strand of cDNA was used for amplification

(in triplicate) in 15 ml reaction solution, containing 7.5 ml

QuantiFast SYBR Green PCR (Qiagen) and 10 pmol of each

primer (Table 1). The following qRT-PCR program was used:

95uC for 5 min PCR initial activation step; 40 amplification cycles

at 95 uC for 10 s, 60uC for 30 s. The target transcripts were

amplified by means OpticonTM 2 continuous fluorescence

detection system (MJ Research, San Francisco, CA, USA). b-

Actin was used as housekeeping gene for quantity normalization.

Western blotting
Western blotting was performed according to standard proce-

dures [17]. In brief, tissue samples were lysed in ice-cold lysis

buffer (10 mM EDTA, 50 mM pH 7.4 Tris-HCl, 150 mM

sodium chloride, 1% Triton-X-100, 2 mM phenylmethylsulfonyl

fluoride, 2 mM sodium orthovanadate, 10 mg/ml leupeptin and

2 mg/ml aprotinin) and the amount of protein was determined by

the Bio-Rad Protein assay (Bio-Rad Laboratories, Hemel Hemp-

stead, UK). Equivalent amounts of protein were loaded in each

lane and run on 10% sodium dodecyl sulphate-polyacrylamide gel

electrophoresis under reducing conditions. Proteins were trans-

ferred to nitrocellulose membranes (Bio-Rad Laboratories, Her-

cules, California, USA), that were blocked with 10% non-fat dried

milk and 5% bovine serum albumin for 2 h, and then incubated

overnight at 4uC with the rabbit polyclonal antibodies specific for

CB1 (1:200 dilution) or CB2 (1:1000 dilution) receptors (both from

Abcam, Cambridge, UK). Membranes were rinsed and incubated

with the appropriate horseradish peroxidase-conjugated secondary

anti-rabbit antibody (diluted 1:4000; Dako, High Wycombe, UK)

in blocking solution. Detection was performed using ECL Plus

detection reagents (Amersham, Little Chalfont, UK). Blots were

stripped and analyzed for b-actin, as an internal loading control,

using a rabbit anti-human b-actin antibody (Abcam). Protein

expression levels were quantified by densitometric analysis, using

the ImageJ software after quantity normalization with b-actin.

Confocal microscopy
Immunofluorescence staining of 4 mm thick cryostat sections of

OCT-embedded biopsy specimens fixed in cold acetone was

performed using the same anti-CB1 or CB2 antibodies used in

Western blotting (1:100 dilution), followed by a FITC-conjugated

secondary goat anti-rabbit antibody (1:500 dilution; Abcam).

Nuclei were counterstained by DAPI (1:1000 dilution; Sigma-

Aldrich, Poole, UK). Appropriate isotype control antibody was

included on parallel sections. The sections were mounted with

coverslips using Glycergel Mounting Medium (Dako), and were

analyzed using a laser scanning confocal microscope (FluoView

FV1000; Olympus, Center Valley, PA, USA). Images

(1,02461,024 pixels) were acquired using an oil immersion lens

(6061.4 NA Plan-Apochromat; Olympus).

Enzyme-linked immunosorbent assay (ELISA)
Biopsy homogenates (20 mg/well) were coated overnight and

were reacted with rabbit anti-CB1 or anti-CB2 polyclonal

antibodies (1:250 dilution) (both from Cayman Chemicals, Ann

Arbor, MI, USA). Goat anti-rabbit antibody conjugated to

horseradish peroxidase (1:5000 dilution, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA) was used as second antibody, and

color development of the horseradish peroxidase reaction was

followed at 405 nm using 1-Step Ultra TMB ELISA substrate

(Pierce, Rockford, IL, USA).

Receptor binding assay
CBR functional activity was evaluated by using the Multi-

ScreenHTS 96-well Plates for binding assays [18]. Briefly, biopsies

were homogenated in 50 mM Tris–HCl (pH 7.4) and 20 mg of

Table 1. Oligonucleotide sequences of CB1, CB2 and b-actin used for detection by qRT-PCR analysis.

mRNA target Forward Reverse

CB1 59- CCTTTTGCTGCCTAAATCCAC-39 59-CCACTGCTCAAACATCTGAC-39

CB2 59-TCAACCCTGTCATCTATGCTC-39 59-AGTCAGTCCCAACACTCATC-39

b-actin 59-TGACCCAGATCATGTTTGAG-39 59-TTAATGTCACGCACGATTTCC-39

doi:10.1371/journal.pone.0062078.t001
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lisate were incubated with [3H]CP55.940 (2.5 nM). Incubations

were performed in 0.2 ml reaction buffer (50 mM Tris-HCl,

2 mM Tris-EDTA, 3 mM MgCl2, 5 mg/ml BSA, pH 7.4). The

filters were washed and transferred to vials, containing 0.1%

Triton X-100 (0.5 ml) in 3.5 ml liquid scintillation cocktail (Ultima

Gold XR, Perkin Elmer Life Sciences, Boston, MA, USA).

Unspecific binding was determined in the presence of cold agonists

(1 mM CP55940), and all binding data were expressed as fmol per

mg of protein.

Statistical analysis
Results were expressed as mean6SEM of at least triplicate

experiments. Data were analyzed by means of Prism 5 program

(GraphPad Software, San Diego, CA, USA) using the one-way

analysis of variance (ANOVA) followed by Bonferroni’s post hoc

analysis. A level of p,0.05 was considered statistically significant.

Results

In situ mucosal CB1 and CB2 expression by
immunofluorescence

We first determined the expression of CB1 (Figure 1A) and CB2

(Figure 1B) by confocal immunofluorescence in the duodenal

mucosa of UCD and TCD patients, and CS. Numerous CB1- and

CB2-positive cells were evident both in the epithelium and lamina

propria of UCD patients, while in TCD patients and CS positivity

for CB1 and CB2 was limited to a few mononuclear cells scattered

in the lamina propria.

Mucosal CB1 and CB2 mRNA and protein levels
CB1 and CB2 mRNA and protein expression was investigated

through qRT-PCR (Figure 2A) and ELISA (Figure 2B), respec-

tively. These analyses demonstrated the presence of both CBR in

biopsies collected from the duodenum of UCD, TCD and CS.

Remarkably, CB1 mRNA levels increased significantly in the

mucosa of UCD and TCD patients compared to CS (p,0.0001),

although CB1 decreased in patients after remission following a

gluten-free diet (p,0.001). Additionally, the expression of CB2

mRNA was almost 10-fold higher in UCD patients than in healthy

mucosa (p,0.0001), and was lower than that of TCD patients

(p,0.0001). In keeping with the qRT-PCR results, ELISA analysis

revealed an higher expression of CB1 protein in UCD patients

with respect to CS (p,0.05), and lower CB1 protein levels in TCD

patients compared with UCD subjects (p,0.01). Incidentally, no

statistically significant difference was found between TCD and CS

groups. CB2 protein expression showed a similar trend compared

to CB1 protein, showing an increased level in UCD patients

compared with CS (p,0.0001) and a significant reduction in TCD

patients (p,0.0001), where CB2 protein levels were comparable to

those of CS.

CBR binding assay
Binding assays were performed with the synthetic agonist

[3H]CP55.940, that has high affinity for both CB1 and CB2

receptors [4]. The results reported in Figure 2C show that biopsies

obtained from the three patients’ groups were able to bind the

radioligand to similar extents: 186621 fmol per mg of protein

(CS), 200654 fmol per mg of protein (UCD) and 193632 per mg

of protein (TCD).

Ex vivo mucosal CB1 and CB2 expression
To investigate the effect of PT-gliadin on mucosal CB1 and CB2

expression, we measured by immunoblotting CB1 and CB2 protein

levels in mucosal biopsies from TCD patients cultured ex vivo in the

absence or presence of PT-gliadin. Mucosal biopsies cultured with

PT-gliadin showed significantly (p,0.001) higher levels of CB1 (up

to ,4-fold) in comparison to biopsies treated with medium only

(Figure 3A, B). Similarly, mucosal biopsies cultured with PT-

Figure 1. CB1 and CB2 immunofluorescence by confocal miscroscopy. Expression of CB1 (A) and CB2 (B) in the duodenal mucosa of a patient
with untreated celiac disease (UCD), a patient with treated celiac disease (TCD) and a control subject (CS). Numerous CB1- and CB2-positive cells were
evident both in the epithelium and lamina propria of UCD patients, while only few mononuclear cells were scattered in the lamina propria of TCD
patients and CS. Data are representative of staining performed in 10 UCD patients, 10 TCD patients and 10 CS. Original magnification 640.
doi:10.1371/journal.pone.0062078.g001
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gliadin showed significantly (p,0.001) higher levels of CB2 in

comparison to biopsies treated with medium only (Figure 3C, D).

Discussion

In this study, we demonstrated that CB1 and CB2 expression is

up-regulated, both at transcriptional and translational level, in

active celiac mucosa. In addition, we reported that the ex vivo

incubation of treated celiac biopsies with PT-gliadin significantly

increased the expression of mRNA and protein of both receptors.

These in vivo and ex vivo data are in agreement with previous

studies, showing an alteration of the endocannabinoid system in

the duodenal mucosa of UCD patients [11,12]. Moreover, we

have recently reported that mRNA, protein and activity levels of

the main enzyme responsible for AEA synthesis, NAPE-PLD, are

increased in UCD mucosa compared to TCD and normal mucosa

[12], a finding that could provide a possible explanation for the

increased AEA concentration previously shown in the mucosa of

UCD patients [11]. The presence of CB1 and CB2 receptors has

been demonstrated in different segments of the gastrointestinal

tract and their involvement in disorders where intestinal inflam-

mation and gut dysfunctions take place has been confirmed in

several in vitro human studies [19,20]. In particular, it has been

ascertained that CBR tone is relevant in controlling important

intestinal functions [19,21] and that a number of gastrointestinal

diseases are related to genetic alterations of CBR [10,15,22–23].

Indeed, a polymorphism of CB1-encoding Cnr1 gene was found to

modulate the susceptibility to Crohn’s disease and ulcerative colitis

[22], and was associated with patients affected by inflammatory

bowel disease [10,23]. More recently, in a cohort of children the

Q63R variant of the CB2-encoding Cnr2 gene was shown to

increase more than 6-fold the risk of celiac disease [15]. Based on

these studies and considering that alterations in CBR expression

might be a specific response to a pathological condition, we

investigated the presence of CB1 and CB2 in the duodenal mucosa

of celiac patients through molecular, immunochemical and

functional analyses. Our in vivo data showed that mRNA and

protein levels of both CB1 and CB2 receptors are remarkably

increased in UCD mucosa compared to TCD mucosa and normal

mucosa. It is noteworthy that in TCD patients CB2, but not CB1,

levels were reverted to normal values, pointing to CB2 rather than

CB1 as main molecular target in celiac disease. Moreover, ex vivo

experiments on organ culture confirmed that gluten-induced

damage is responsible for this increase, at least at the protein level.

Higher levels of CB1 in the duodenal mucosa of UCD patients

have been already reported in a previous study, suggesting that

their up-regulation could be an adaptative mechanism to

counteract the inflammation [11]. Here, we also point to the role

of CB2 in the control of gut inflammation, and this is in keeping

with the notion that this receptor is mainly expressed on immune

cells and is implicated both in infectious [24,25] and inflammatory

[26] diseases of the gastrointestinal tract. The relevance of CB2 in

celiac disease has been highlighted in a recent investigation

performed on biopsies from Italian children [15]. Although the

results are in line with ours, the authors evidenced only a slight

increase of CB2 mRNA, likely due to the age range of patients.

Indeed, it is not surprising that during human development CBR

expression is age-, as well as gender-, dependent [27]. Although it

remains to be explained why CBR functionality is similar in all

three groups, our results open perspectives to future investigations

on epigenetic mechanisms, such as DNA methylation and histone

modification, in the regulation of CBR expression in celiac disease.

In this context, we should recall that our group has recently

reported a correlation between selective faah gene expression

alteration and DNA methylation in Alzheimer’s disease patients

[28], highlighting how epigenetic studies might be helpful in the

identification of new therapeutic targets within the endocannabi-

noid system. Moreover, according to very recent papers [15,29–

31], it would be interesting to ascertain whether CBR gene-by-

phenotype associations can be found also in this pathology, or

CBR polymorphism in childhood might be considered a symptom

of predisposition for celiac disease risk. In conclusion, our findings

Figure 2. CB1 and CB2 gene and protein expression levels. A)
qRT-PCR analysis of CB1 and CB2 in the duodenal mucosa of untreated
celiac disease (UCD) patients, treated celiac disease (TCD) patients and
control subject (CS) (n = 6). ***p,0.0001 vs CS, 11p,0.001 vs UCD, for
CB1; ###p,0.0001vs UCD, for CB2. B) CB1 and CB2 levels measured by
ELISA in the biopsies of untreated celiac disease (UCD) patients, treated
celiac disease (TCD) patients and control subjects (CS) (n = 6). *p,0.05
vs CS, ##p,0.01 vs UCD, for CB1@@@p,0.0001 vs CS, ###p,0.0001 vs
UCD, for CB2. C) CB1 and CB2 binding activity in the duodenal mucosa of
untreated celiac disease (UCD) patients, treated celiac disease (TCD)
patients and control subjects (CS) (n = 4).
doi:10.1371/journal.pone.0062078.g002
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together with those published in a previous study [12], suggest that

an abnormal modulation of the endocannabinoid system, both at

CBR and AEA levels, may be implicated in the pathogenesis of

celiac disease. Further studies are needed to ascertain whether

targeting these changes might have a therapeutic role, at least in

those patients who are no longer responsive to gluten-free diet.
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