RSC Advances

CORRECTION

Cite this: RSC Adv., 2022, 12, 5280

Correction: Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid-alt-2-hydroxybutanoic acid)s

Hideto Tsuji,* Kazuya Nakayama and Yuki Arakawa

DOI: 10.1039/d2ra90003c

rsc.li/rsc-advances

Correction for 'Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid-alt-2-hydroxybutanoic acid)s' by Hideto Tsuji et al., RSC Adv., 2020, 10, 39000–39007. DOI: 10.1039/D0RA08351H.

In the original manuscript, incorrect weight- and number-average molecular weights ($M_{\rm w}$ and $M_{\rm n}$, respectively) were shown for the synthesized and used polymers in the 2. Experimental section. The correct $M_{\rm w}$ and $M_{\rm n}$ values of P(LLA-alt-L-2HB) and P(DLA-alt-D-2HB) were 3.00×10^4 , 3.08×10^4 , 1.53×10^4 , and 1.54×10^4 g mol⁻¹, respectively.

Due to the correction of the molecular weight values, the authors would like to remove the following statement regarding the suggested reason for the noncrystallizability of unblended P(LLA-alt-L-2HB) and P(DLA-alt-D-2HB) in the 3.2. Wide-angle X-ray diffractometry section based on the low molecular weight values: "The noncrystallizability of P(LLA-alt-L-2HB) and P(DLA-alt-D-2HB) may be due to their lower M_w values ($M_w = 3.0 \times 10^3$ and 3.1×10^3 , g mol⁻¹, respectively) compared to those of the P(LLA-co-L-2HB) (56/44) and P(DLA-co-D-2HB) (52/48) random copolymers ($M_w = 1.4 \times 10^4$ and $M_w = 1.6 \times 10^4$, g mol⁻¹, respectively) and P(LLA-alt-GA) alternating copolymers ($M_w = 4.8 \times 10^3$ and $M_w = 5.9 \times 10^3$, g mol⁻¹, respectively)."

Due to the same reason, in the 3.3. Differential scanning calorimetry section, the authors would like to remove the statement "The lower $T_{\rm m}$ values of P(LLA-alt-L-2HB) and P(DLA-alt-D-2HB) can be attributable to the low molecular weights compared to those of PLLA and PDLA, P(LLA-co-L-2HB) (56/44) and P(DLA-co-D-2HB) (52/48), and P(LLA-alt-GA) and P(DLA-alt-GA).". Additionally, the authors would like to replace the statement "The $T_{\rm m}$ values for P(LLA-alt-L-2HB)/P(DLA-alt-D-2HB) ($M_{\rm w}=3.0\times10^3$ and 3.1×10^3 , g mol⁻¹, respectively) blends are higher than those for solvent-evaporated and melt-crystallized ($T_c = 70 \,^{\circ}\text{C}$) P(L-2HB)/P(D-2HB) ($M_w = 10^{-1}$), respectively) blends are higher than those for solvent-evaporated and melt-crystallized ($T_c = 70 \,^{\circ}\text{C}$) P(L-2HB)/P(D-2HB) ($M_w = 10^{-1}$). 1.8×10^3 and 3.3×10^3 , g mol⁻¹, respectively) homopolymer blends ($T_{\rm m} = 173.0$ and 172.1 °C, respectively)⁸¹ but lower than those for melt-crystallized ($T_c = 130$ °C) PLLA/PDLA ($M_w = 4.0 \times 10^3$ and 5.4×10^3 , g mol⁻¹, respectively) homopolymer blends ($T_m = 10^{-3}$) for melt-crystallized ($T_c = 130$ °C) PLLA/PDLA ($M_w = 4.0 \times 10^3$) and $M_w = 10^{-3}$, respectively) homopolymer blends ($M_w = 10^{-3}$) and $M_w = 10^{-3}$) and $M_w = 10^{-3}$. 197.5 °C), ⁷⁸ and solvent-evaporated and melt-crystallized ($T_c = 160$ °C) P(LLA-co-L-2HB) (56/44)/P(DLA-co-D-2HB) (52/48) ($M_w = 1.4$ × 10⁴ and 1.6 × 10⁴, g mol⁻¹, respectively) random copolymer blends (203.6 and 198.4 °C), ⁶³ and solvent evaporated and meltcrystallized ($T_{\rm c}=100~^{\circ}{\rm C}$) P(LLA-alt-GA)/P(DLA-alt-GA) ($M_{\rm w}=4.8\times10^3~{\rm and}~5.9\times10^3,~{\rm g~mol}^{-1},~{\rm respectively}$) blends (187.8 and 187.6 °C). 67" with the revised statement "The $T_{\rm m}$ values for P(LLA-alt-1-2HB)/P(DLA-alt-1-2HB) ($M_{\rm w}=3.0\times10^4$ and 3.1×10^4 g mol^{-1} , respectively) blends are lower than those for solvent-evaporated and melt-crystallized ($T_c = 70 \,^{\circ}\text{C}$) P(L-2HB)/P(D-2HB) ($M_w = 100 \,^{\circ}\text{C}$) $M_w = 100 \,^{\circ}\text{C}$ 3.1×10^4 and 3.3×10^4 g mol⁻¹, respectively) homopolymer blends ($T_{\rm m} = 218.9$ and 214.5 °C, respectively)⁸¹ and those for meltcrystallized ($T_c = 130 \,^{\circ}\text{C}$) PLLA/PDLA ($M_w = 4.0 \times 10^3 \,\text{and} \, 5.4 \times 10^3 \,\text{g mol}^{-1}$, respectively) homopolymer blends ($T_m = 197.5 \,^{\circ}\text{C}$), ⁷⁸ and solvent-evaporated and melt-crystallized ($T_c = 160 \,^{\circ}\text{C}$) P(LLA-co-L-2HB) (56/44)/P(DLA-co-D-2HB) (52/48) ($M_w = 1.4 \times 10^4$ and 1.6 × 10⁴ g mol⁻¹, respectively) random copolymer blends (203.6 and 198.4 °C)⁶³, but similar to those of solvent evaporated and meltcrystallized ($T_c = 100$ °C) P(LLA-alt-GA)/P(DLA-alt-GA) ($M_w = 4.8 \times 10^3$ and 5.9×10^3 g mol $^{-1}$, respectively) blends (187.8 and 187.6 and 187.6 mol $^{-1}$) °C).67".

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

 $Department \ of \ Applied \ Chemistry \ and \ Life \ Science, \ Graduate \ School \ of \ Engineering, \ Toyohashi \ University \ of \ Technology, \ Tempaku-cho, \ Toyohashi, \ Aichi \ 441-8580, \ Japan. \ E-mail: htt003@edu.tut.ac.jp$