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Abstract

Background: Recent studies have proposed deep learning techniques, namely recurrent neural networks, to
improve biomedical text mining tasks. However, these techniques rarely take advantage of existing domain-specific
resources, such as ontologies. In Life and Health Sciences there is a vast and valuable set of such resources publicly
available, which are continuously being updated. Biomedical ontologies are nowadays a mainstream approach to
formalize existing knowledge about entities, such as genes, chemicals, phenotypes, and disorders. These resources
contain supplementary information that may not be yet encoded in training data, particularly in domains with limited
labeled data.

Results: We propose a new model to detect and classify relations in text, BO-LSTM, that takes advantage of
domain-specific ontologies, by representing each entity as the sequence of its ancestors in the ontology. We
implemented BO-LSTM as a recurrent neural network with long short-term memory units and using open biomedical
ontologies, specifically Chemical Entities of Biological Interest (ChEBI), Human Phenotype, and Gene Ontology. We
assessed the performance of BO-LSTM with drug-drug interactions mentioned in a publicly available corpus from an
international challenge, composed of 792 drug descriptions and 233 scientific abstracts. By using the domain-specific
ontology in addition to word embeddings and WordNet, BO-LSTM improved the F1-score of both the detection and
classification of drug-drug interactions, particularly in a document set with a limited number of annotations. We
adapted an existing DDI extraction model with our ontology-based method, obtaining a higher F1 score than the
original model. Furthermore, we developed and made available a corpus of 228 abstracts annotated with relations
between genes and phenotypes, and demonstrated how BO-LSTM can be applied to other types of relations.

Conclusions: Our findings demonstrate that besides the high performance of current deep learning techniques,
domain-specific ontologies can still be useful to mitigate the lack of labeled data.
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Background
Current relation extraction methods employ machine
learning algorithms, often using kernel functions in con-
junction with Support Vector Machines [1, 2] or based
on features extracted from the text [3]. In recent years,
deep learning techniques have obtained promising results
in various Natural Language Processing (NLP) tasks
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[4], including relation extraction [5]. These techniques
have the advantage of being easily adaptable to multiple
domains, using models pre-trained on unlabeled docu-
ments [6]. The success of deep learning for text mining is
in part due to the high quantity of raw data available and
the development of word vector models such as word2vec
[7] and GloVe [8]. These models can use unlabeled data
to predict the most probable word according to the con-
text words (or vice-versa), leading to meaningful vector
representations of the words in a corpus, known as word
embeddings.
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A high volume of biomedical information relevant to
the detection of Adverse Drug Reactions (ADRs), such as
Drug-Drug Interactions (DDI), is mainly available in arti-
cles and patents [9]. A recent review of studies about the
causes of hospitalization in adult patients has found that
ADRs were the most common cause, accounting for 7% of
hospitalizations [10]. Another systematic review focused
on the European population, identified that 3.5% of hos-
pital admissions were due to ADRs, while 10.1% of the
patients experienced ADRs during hospitalization [11].
The knowledge encoded in the ChEBI (Chemical

Entities of Biological Interest) ontology is highly valu-
able for detection and classification of DDIs, since it
provides not only the important characteristics of each
individual compound but also, more importantly, the
underlying semantics of the relations between com-
pounds. For instance, dopamine (CHEBI:18243), a chem-
ical compound with several important roles in the
brain and body, can be characterized as being a cat-
echolamine (CHEBI:33567), an aralkylamino compound
(CHEBI:64365) and an organic aromatic compound
(CHEBI:33659) (Fig. 1). When predicting if a certain drug
interacts with dopamine, its ancestors will provide addi-
tional information that is not usually directly expressed in
the text. While the reader can consult additional materi-
als to better understand a biomedical document, current
relation extraction models are trained solely on features
extracted from the training corpus. Thus, ontologies con-
fer an advantage to relation extraction models due to the
semantics encoded in them regarding a particular domain.
Since ontologies are described in a common machine-
readable format, methods based on ontologies can be
applied to different domains and incorporated with other
sources of knowledge, bridging the semantic gap between
relation extraction models, data sources, and results [12].

Fig. 1 An excerpt of the ChEBI ontology showing the first ancestors of
dopamine, using “is-a” relationships

Deep learning for biomedical NLP
Current state-of-the-art text mining methods employ
deep learning techniques, such as Recurrent Neural
Networks (RNN), to train classification models based on
word embeddings and other features. These methods use
architectures composed of multiple layers, where each
layer attempts to learn a different kind of representation
of the input data. This way, different types of tasks can be
trained using the same input data. Furthermore, there is
no need to manually craft features for a specific task.
Long Short-TermMemory (LSTM) networks have been

proposed as an alternative to regular RNN [13]. LSTMs
are a type of RNN that can handle long dependencies,
and thus are suitable for NLP tasks, which involve long
sequences of words. When training the weights of an
RNN, the contribution of the gradients may vanish while
propagating for long sequences of words. LSTM units
account for this vanishing gradient problem through a
gated architecture, which makes it easier for the model
to capture long-term dependencies. Recently, LSTMs
have been applied to relation extraction tasks in vari-
ous domains. Miwa and Bansal [14] presented a model
that extracted entities and relations based on bidirec-
tional tree-structured and sequential LSTM-RNNs. The
authors evaluated this model on three datasets, including
the SemEval 2010 Task 8 dataset, which defines 10 general
semantic relations types between nominals [15].
Bidirectional LSTMs have been proposed for relation

extraction, obtaining better results than one-directional
LSTMs on the SemEval 2010 dataset [16]. In this case, at
each time step, there are two LSTM layers, one that reads
the sentence from left to right, and another that reads
from right to left. The output of both layers is combined
to produce a final score.
The model proposed by Xu et al. [17] combines Shortest

Dependency Paths (SDP) between two entities in a sen-
tence with linguistic information. SDPs are informative
features for relations extraction since these contain the
words of the sentence that refer directly to both entities.
This model has a multichannel architecture, where each
channel makes use of information from a different source
along the SDP. The main channel, which contributes the
most to the performance of the model, uses word embed-
dings trained on the English Wikipedia with word2vec.
Additionally, the authors study the effect of adding chan-
nels consisting of the part-of-speech tags of each word,
the grammatical relations between the words of the SDP,
and the WordNet hypernyms of each word. Using all four
channels, the F1-score of the SemEval 2010 Task 8 was
0.0135 higher than when using only the word embed-
dings channel. Although WordNet can be considered an
ontology, its semantic properties were not integrated in
this work, since only the word class is extracted, and the
relations between classes are not considered.
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Deep learning approaches to DDI classification have
been proposed in recent years, using the SemEval 2013:
Task 9 DDI extraction corpus to train and evaluate their
performance. Zhao et al. [18] proposed a syntax convo-
lutional neural network for DDI extraction, using word
embeddings. Due to its success on other domains, LSTMs
have also been used for DDI extraction [19–22]. Xu
et al. [21] proposed a method that combines domain-
specific biomedical resources to train embedding vectors
for biomedical concepts. However, their approach uses
only contextual information from patient records and
journal abstracts and does not take into account the rela-
tions between concepts that an ontology provides. While
these works are similar to ours, we present the first model
that makes use of a domain-ontology to classify DDIs.

Ontologies for biomedical text mining
While machine learning classifiers trained on word
embeddings can learn to detect relations between enti-
ties, these classifiers may miss the underlying semantics
of the entities according to their respective domain. How-
ever, the semantics of a given domain are, in some cases,
available in the form of an ontology. Ontologies aim at
providing a structured representation of the semantics
of the concepts in a domain and their relations [23]. In
this paper, we consider a domain-specific ontology as a
directed acyclic graph where each node is a concept (or
entity) of the domain and the edges represent known
relations between these concepts [24]. This is a common
representation of existing biomedical ontologies, which
are nowadays a mainstream approach to formalize knowl-
edge about entities, such as genes, chemicals, phenotypes,
and disorders.
Biomedical ontologies are usually publicly available and

cover a large variety of topics related to Life and Health
Sciences. In this paper, we use ChEBI, an ontology for
chemical compounds with biological interest, where each
node corresponds to a chemical compound [25]. The lat-
est release of ChEBI contains nearly 54k compounds and
163k relationships. Note that, the success of exploring a
given biomedical ontology for performing a specific task
can be easily extended to other topics due to the com-
mon structure of biomedical ontologies. For example, the
same measures of metadata quality have been successfully
applied to resources annotated with different biomedical
ontologies [26].
Other authors have previously combined ontological

information with neural networks, to improve the learn-
ing capabilities of a model. Li et al. [27] mapped each
word to a WordNet sense disambiguation to account
for the different meanings that a word may have and
the relations between word senses. Ma et al. [28] pro-
posed the LSTM-OLSI model, which indexes documents
based on the word-level contextual information from

the DBpedia ontology and document-level topic model-
ing. Some authors have explored graph embedding tech-
niques, converting relations to a low dimensional space
which represents the structure and properties of the graph
[29]. For example, Kong et al. [30] combined hetero-
geneous sources of information, such as ontologies, to
perform multi-label classification, while Dasigi et al. [31]
presented an embedding model based on ontology con-
cepts to represent word tokens.
However, few authors have explored biomedical ontolo-

gies for relation extraction. Textpresso is a project
that aims at helping database curation by automatically
extracting biomedical relations from research articles
[32]. Their approach incorporates an internal ontology to
identify which terms may participate in relations accord-
ing to their semantics. Other approaches measure the
similarity between the entities and use the value as a fea-
ture for a machine learning classifier [33]. One of the
teams that participated in the BioCreative VI ChemProt
task used ChEBI and Protein Ontology to extract addi-
tional features for a neural network model that extracted
relation between chemicals and proteins [34]. To the best
of our knowledge, our work is the first attempt at incor-
porating ancestry information from biomedical ontologies
with deep learning to extract relations from text.
In this manuscript, we propose a newmodel, BO-LSTM

that can explore domain information from ontologies
to improve the task of biomedical relation extraction
using deep learning techniques. We compare the effect of
using ChEBI, a domain-specific ontology, and WordNet,
a generic English language ontology, as external sources
of information to train a classification model based on
LSTM networks. This model was evaluated on a publicly
available corpus of 792 drug descriptions and 233 scien-
tific abstracts annotated with DDIs relevant to the study of
adverse drug effects. Using the domain-specific ontology
in addition to word embeddings andWordNet, BO-LSTM
improved the F1-score of the classification of DDIs by
0.0207. Our model was particularly efficient with docu-
ment types that were less represented in the training data.
Moreover, we improved the F1-score of an existing DDI
extraction model by 0.022 by adding our proposed ontol-
ogy information, and demonstrated its applicability to
other domains by generating a corpus of gene-phenotype
relations and training our model on that corpus. The code
and results obtained with the model can be found on
our GitHub repository (https://github.com/lasigeBioTM/
BOLSTM), while a Docker image is also available (https://
hub.docker.com/r/andrelamurias/bolstm), simplifying the
process of training new classifiers and applying them
to new data. We also made available the corpus pro-
duced for gene-phenotype relations, where each entity is
mapped to an ontology concept. These results support
our hypothesis that domain-specific information is useful

https://github.com/lasigeBioTM/BOLSTM
https://github.com/lasigeBioTM/BOLSTM
https://hub.docker.com/r/andrelamurias/bolstm
https://hub.docker.com/r/andrelamurias/bolstm
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to complement data-intensive approaches such as deep
learning.

Methods
In this section, we describe the proposed BO-lSTMmodel
in detail, as shown in Fig. 2, with a focus on the aspects
that refer to the use of biomedical ontologies.

Data preparation
The objective of our work is to identify and classify
relations between biomedical entities found in natural
language text. We assume that the relevant entities are
already recognized. Therefore, we process the input data
in order to generate instances to be classified by the
model. Considering the set of entities E mentioned in a
sentence, we generate

(E
2
)
instances of that sentence. We

refer to each instance as a candidate pair, identified by
the two entities that constitute that pair, regardless of the

order. A relation extraction model will assign a class to
each candidate pair. In some cases, it is enough to sim-
ply classify the candidate pairs as negative or positive,
while in other cases different types of positive relations are
considered.
An instance should contain the information necessary

to classify a candidate pair. Therefore, after tokenizing
each sentence, we obtain the Shortest Dependency Path
(SDP) between the entities of the pair. For example, in the
sentence “Laboratory Tests Response to Plenaxise1 should
be monitored by measuring serum total testosteronee1
concentrations just prior to administration on Day 29
and every 8 weeks thereafter”, the shortest path between
the entities would be Plenaxis - Response - monitored -
by - measuring - concentrations - testosterone. For both
tokenization and dependency parsing, we use the spaCy
software library (https://spacy.io/). The text of each entity
that appears in the SDP, including the candidate entities,

a b c d

Fig. 2 BO-LSTM Model architecture, using a sentence from the Drug-Drug Interactions corpus as an example. Each box represents a layer, with an
output dimension, and merging lines represent concatenation. We refer to a as the Word embeddings channel, b the WordNet channel and c the
ancestors concatenation channel and d the common ancestors channel

https://spacy.io/
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is replaced by the generic string to reduce the effect of
specific entity names on the model. For each element of
the SDP, we obtain theWordNet hypernym class using the
tool developed by Ciaramita and Altun [35].
To focus our attention on the effect of the ontology

information, we use pre-trained word embedding vec-
tors. Pyysalo et al. [36] released a set of vectors trained
on PubMed abstracts (nearly 23 million) and PubMed
Central full documents (nearly 700k), with the word2vec
algorithm [7]. Since these vectors were trained on a large
biomedical corpus, it is likely that its vocabulary will con-
tain more words relevant to the biomedical domain than
the vocabulary of a generic corpus.
We match each entity to an ontology concept so that

we can then obtain its ancestors. Ontology concepts con-
tain an ID, a preferred label, and, in most cases, synonyms.
While pre-processing the data, we match each entity to
the ontology using fuzzy matching. The adopted imple-
mentation uses the Levenshtein distance to assign a score
to each match.
Our pipeline first attempts to match the entity string

to a concept label. If the match has a score equal to or
higher than 0.7 (determined empirically), we accept that
match and assign the concept ID to that entity. Otherwise,
we match to a list of synonyms of ontology concepts. If
that match has a score higher than the original score, we
assign the ID of the matched synonym to the entity, oth-
erwise, we revert to the original match. It is preferable
to match to a concept label since these are more specific
and should reflect the most common nomenclature of the
concepts. This way, every entity was matched to a ChEBI
concept, either to its preferred label or to a synonym. Due
to the automatic linking method used, we cannot assume
that every match is correct, but fuzzy matching has been
used for similar purposes [37], so we can assume that the
best match is chosen. We matched 9020 unique entities to
the preferred label and 877 to synonyms, and 1283 unique
entities had an exact match to either a preferred label or
synonym.
The DDI corpus used to evaluate our method has a high

imbalance of positive and negative relations, which hin-
ders the training of a classification model. Even though
only entities mentioned in the same sentence are con-
sidered as candidate DDIs, there is still a ratio of 1:5.9
positive to negative instances. Other authors have sug-
gested reducing the number of negative relations through
simple rules [38, 39]. We excluded from training and auto-
matically classify as negative the pairs that fit the following
rules:

• entities have the same text (regardless of case): in
nearly every case a drug does not interact with itself;

• the only text between the candidate pair is
punctuation: consecutive entities, in the form of lists

and enumerations, are not interacting, as well as
instances where the abbreviation of an entity is
introduced;

• both entities have anti-positive governors: we follow
the methodology proposed by [38], where the
headwords of entities that do not interact are used to
filter less informative instances.

With this filtering strategy, we used only 15,697 of the
27,792 pairs of the training corpus, obtaining a ratio of
1:3.5 positive to negative instances.
We developed a corpus of 228 abstracts annotated with

human phenotype-gene relations, which we refer to as
the HP corpus, to demonstrate how our model could be
applied to other relation extraction tasks. This corpus was
based on an existing corpus that were manually annotated
with 2773 concepts of the Human Phenotype Ontology
[40], corresponding to 2170 unique concepts. The devel-
opers of the Human Phenotype Ontology made available
a file that links phenotypes and genes that are associated
with the same diseases. Each gene of this file was automat-
ically annotated on the HP corpus through exact string
matching, resulting in 360 gene entity mentions. Then, we
assumed that every gene-phenotype pair that co-occurred
in the same sentence was a positive instance if this relation
existed in the file.While the phenotype entities were man-
ually mapped to the Human Phenotype Ontology, we had
to employ an automatic method to obtain the most rep-
resentative Gene Ontology [41, 42] concept of each gene,
giving preference to concepts inferred from experiments.
We applied the same pre-processing steps as for the DDI
corpus, except for entity matching and negative instance
filtering. This corpus is available at https://github.com/
lasigeBioTM/BOLSTM/tree/master/HP%20corpus.

BO-LSTMmodel
The main contribution of this work is the integration of
ontology information with a neural network classification
model. A domain-specific ontology is a formal definition
of the concepts related to a specific subject. We can define
an ontology as a tuple < C,R >, where C is the set
of concepts and R the set of relations between the con-
cepts, where each relation is a pair of concepts (c1, c2)with
c1, c2 ∈ E. In our case, we consider only subsumption rela-
tions (is-a), which are transitive, i.e. if (c1, c2) ∈ R and
(c2, c3) ∈ R, then we can assume that (c1, c3) is a valid
relation. Then, the ancestors of concept c are given by

Anc(c) = a : (c, a) ∈ T (1)

where T is the transitive closure of R on the set E, i.e., the
smallest relation set on E that contains R and is transitive.
Using this definition, we can define the common ancestors
of concepts c1 and c2 as

https://github.com/lasigeBioTM/BOLSTM/tree/master/HP%20corpus
https://github.com/lasigeBioTM/BOLSTM/tree/master/HP%20corpus
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CA (c1, c2) = Anc (c1) ∩ Anc (c2) (2)

and the concatenation of the ancestors of concepts c1 and
c2 as

Conc (c1, c2) = Anc (c1) ⊕ Anc (c2) (3)

We consider two types of representations of a candidate
pair based on the ancestry of its elements: the first consist-
ing of the concatenation of the sequence of ancestors of
each entity; and second, consisting of the common ances-
tors between both entities. Each set of ancestors is sorted
by its position in the ontology so that more general con-
cepts are in the first positions and the final position is
the concept itself. Common ancestors are also used in
some semantic similarity measures [43–45], since they
normally represent the common information between two
concepts. Due to the fact that in some cases there can be
almost no overlap between the ancestors of two concepts,
the concatenation provides an alternative representation.
We first represent each ontology concept as a one-

hot vector vc, a vector of zeros except for the position
corresponding to the ID of the concept. The ontology
embedding layer transforms these sparse vectors into
dense vectors, known as embeddings, through an embed-
ding matrix M ∈ R

D×C , where D is the dimensionality of
the embedding layer and C is the number of concepts of
the ontology. Then, the output of the embedding layer is
given by

f (c) = M · vc
In our experiments, we set the dimensionality of the
ontology embedding layer as 50, and initialized its values
randomly. Then, these values were tuned during training
through back-propagation.
The sequence of vectors representing the ancestors of

the terms is then fed into the LSTM layer. Figure 3 exem-
plifies how we adapted this architecture to our model,
using a sequence of ontology concepts as input. After
the LSTM layer, we use a max pool layer which is then
fed into a dense layer with a sigmoid activation function.
We experimented with bypassing this dense layer, obtain-
ing inferior results. Finally, a softmax layer outputs the
probability of each class.
Each configuration of our model was trained through

mini-batch gradient descent with the Adam algorithm
[46] and with cross-entropy as the loss function, with a
learning rate of 0.001We used the dropout strategy [47] to
reduce overfitting on the trained embeddings andweights.
We used a dropout rate of 0.5 on every layer except the
penultimate and output layers.We tuned the hyperparam-
eters common to all configurations using only the word
embeddings channel on the validation set. Each model
was trained until the validation loss stopped decreas-
ing. The experiments were performed on an Intel Xeon

Fig. 3 BO-LSTM unit, using a sequence of ChEBI ontology concepts as
an example. Circle refers to sigmoid function and rectangle to tanh,
while “x” and “+” refer to element-wise multiplication and addition. h:
hidden unit; m̃: candidate memory cell;m: memory cell; i input gate; f
forget gate; o: output gate

CPU (X3470 @ 2.93 GHz) with 16 GB of RAM and on a
GeForce GTX 1080 Ti GPU with 11GB of RAM.
The ChEBI and WordNet embedding layers were

trained along with the other layers of the network. The
DDI corpus contains 1757 of the 109k concepts of the
ChEBI ontology. Since this is a relatively small vocabulary,
we believe that this approach is robust enough to tune the
weights. For the size of the WordNet embedding layer, we
used 50 as suggested by Xu et al. [17], while for the ChEBI
embedding layer, we tested 50, 100 and 150, obtaining the
best performance with 50.

Baseline models
As a baseline, we implemented a model based on the SDP-
LSTM model of Xu et al. [17]. The SDP-LSTM model
makes use of four types of information: word embeddings,
part-of-speech tags, grammatical relations and WordNet
hypernyms, which we refer to as channels. Each chan-
nel uses a specific type of input information to train an
LSTM-based RNN layer, which is then connected to a
max pooling layer, the output of the channel. The out-
put of each channel is concatenated, and connected to a
densely-connected hidden layer, with a sigmoid activation
function, while a softmax layer outputs the probabilities of
each class.
Xu et al. show that it is possible to obtain high perfor-

mance on a relation extraction task using only the word
representations channel. For this reason, we use a ver-
sion of our model with only this channel as the baseline.
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We employ the previously mentioned pre-trained word
embeddings as input to the LSTM layer.
Additionally, we make use of WordNet as an external

source of information. The authors of the SDP-LSTM
model showed that WordNet contributed to an improve-
ment of the F1-score on a relation extraction task. We
use the tool developed by Ciaramita and Altun [35]
to obtain the WordNet classes of each word accord-
ing to 41 semantic categories, such as “noun.group” and
“verb.change”. The embeddings of this channel were set to
be 50-dimensional and tuned during the training of the
model.
We adopted a second baseline model to make a stronger

comparison with other DDI extraction models, based on
themodel presented by Zhang et al. [48]. Their model uses
the sentence and SDP of each instance to train a hierar-
chical LSTM network. This model is constituted by two
levels of LSTMs which learn feature representations of
the sentence and SDP based on word, part-of-speech and
distance to entity. An embedding attention mechanism is
used to weight the importance of each word to the two
entities that constitute each pair. We kept the architecture
and hyperparameters of their model, and added another
type of input, based on the common ancestors and con-
catenation of each entity’s ancestors. We applied the same
attention mechanism, so that the most relevant ancestors
have a larger weight on the LSTM. We ran the original
Zhang et al. model to replicate the results, and then ran
again with ontology information.

Results
We evaluated the performance of our BO-LSTM model
on the SemEval 2013: Task 9 DDI extraction corpus [49].
This gold standard corpus consists of 792 texts from
DrugBank [50], describing chemical compounds, and 233
abstracts from the Medline database [51]. DrugBank is a
cheminformatics database containing detailed drug and
drug target information, while Medline is a database
of bibliographic information of scientific articles in Life
and Health Sciences. Each document was annotated with
pharmacological substances and sentence-level DDIs. We

refer to each combination of entities mentioned in the
same sentence as a candidate pair, which could either be
positive if the text describes a DDI, or negative other-
wise. In other words, a negative candidate is a candidate
pair that is not described as interacting in the text. Each
positive DDI was assigned one of four possible classes:
mechanism, effect, advice, and int, when none of the
others were applicable.
In the context of the competition, the corpus was sepa-

rated into training and testing sets, containing both Drug-
Bank andMedline documents. We maintained the test set
partition and evaluated on it, as it is the standard proce-
dure on this gold standard. After shuffling we used 80% of
the training set to train the model and 20% as a validation
set. This way, the validation set contained both DrugBank
andMedline documents, and overfitting to a specific doc-
ument type is avoided. It has been shown that the DDIs
of the Medline documents are more difficult to detect and
classify, with the best systems having almost a 30 point
F1-score difference to the DrugBank documents [52].
We implemented the BO-LSTM model in Keras, a

Python-based deep learning library, using the TensorFlow
backend. The overall architecture of the BO-LSTMmodel
is presented in Fig. 2. More details about each layer can
be found in the “Methods” section. We focused on the
effect of using different sources of information to train the
model. As such, we tuned the hyperparameters to obtain
reasonable results, using as reference the values provided
by other authors that have applied LSTMs to this gold
standard [18, 19]. We first trained the model using only
the word embeddings of the SDP of each candidate pair
(Fig. 2a). Then we tested the effect of adding theWordNet
classes as a separate embedding and LSTM layer (Fig. 2b)
Finally, we tested two variations of the ChEBI channel:
first using the concatenation of the sequence of ancestors
of each entity (Fig. 2c), and second using the sequence of
common ancestors of both entities (Fig. 2d).
Table 1 shows the DDI detection results obtained with

each configuration using the evaluation tool provided by
the SemEval 2013: Task 9 organizers on the gold stan-
dard, while Table 2 shows the DDI classification results,

Table 1 Evaluation scores obtained for the DDI detection task on the DDI corpus and on each type of document, comparing different
configurations of the model

DDI test DrugBank Medline

Configuration P R F P R F P R F

Word embeddings 0.7551 0.6865 0.7192 0.7620 0.7158 0.7382 0.6389 0.377 0.4742

+ WordNet 0.716 0.6936 0.7046 0.7267 0.7143 0.7204 0.5800 0.4754 0.5225

+ Common Ancestors 0.7661 0.6738 0.7170 0.7723 0.7003 0.7345 0.6667 0.3607 0.4681

+ Concat. Ancestors 0.7078 0.7489 0.7278 0.7166 0.7578 0.7366 0.6032 0.623 0.6129

+ WordNet + Ancestors 0.6572 0.8184 0.7290 0.6601 0.8385 0.7387 0.5574 0.5574 0.5574

Evaluation metrics used: Precision (P), Recall (R) and F1-score (F). Each row represents the addition of an information source to the initial configuration
Boldface indicates the configuration with highest score for each measure
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Table 2 Evaluation scores obtained for the DDI classification task on the DDI corpus and on each type of document, comparing
different configurations of the model

DDI test DrugBank Medline

Configuration P R F P R F P R F

Word embeddings 0.5819 0.5291 0.5542 0.5868 0.5512 0.5685 0.5000 0.2951 0.3711

+ WordNet 0.5754 0.5574 0.5663 0.5845 0.5745 0.5795 0.4600 0.3770 0.4144

+ Common Anc. 0.5968 0.5248 0.5585 0.6045 0.5481 0.5749 0.5152 0.2787 0.3617

+ Concat. Anc. 0.5282 0.5589 0.5431 0.5286 0.5590 0.5434 0.4921 0.5082 0.5000

+ WordNet + Anc. 0.5182 0.6454 0.5749 0.5171 0.6568 0.5787 0.4590 0.4590 0.4590

Evaluation metrics used: Precision (P), Recall (R) and F1-score (F). Each row represents the addition of an information source to the initial configuration
Boldface indicates the configuration with highest score for each measure

using the same evaluation tool and gold standard. The
difference between these two tasks is that while detec-
tion ignores the type of interactions, the classification task
requires identifying the positive pairs and also their cor-
rect interaction type.We compare the performance on the
whole gold standard, and on each document type (Drug-
Bank and Medline). The first row of each table shows the
results obtained using an LSTM network trained solely on
the word embeddings of the SDP of each candidate pair.
Then, we studied the impact of adding each information
channel on the performance of the model, and the effect
of using all information channels, as shown in Fig. 2.
For the detection task, using the concatenation of ances-

tors results in an improvement of the F1-score in theMed-
line dataset, contributing to an overall improvement of the
F1-score in the full test set. The most notable improve-
ment was in the recall of the Medline dataset, where the
concatenation of ancestors increased this score by 0.246.

The usage of ontology ancestors did not improve the
F1-score of detection of DDIs in the DrugBank dataset.
In every test set, it is possible to observe that the con-
catenation of ancestors results in a higher recall while
considering only the common ancestors is more benefi-
cial to precision. Combining both approaches with the
WordNet channel results in a higher F1-score.
Regarding the classification task (Table 2), the F1-score

was improved on each dataset by the usage of the ontol-
ogy channel. Considering only the common ancestors
led to an improvement of the F1-score in the DrugBank
dataset and on the full corpus, while the concatenation
improved the Medline F1-score, similarly to the detection
results.
To better understand the contribution of each channel,

we studied the relations detected by each configuration
by one or more channels, and which of those were also
present in the gold standard. Figures 4 and 5 show the

Fig. 4 Venn diagram demonstrating the contribution of each configuration of the model to the results of the full test set. The intersection of each
channel with the gold standard represents the number of true positives of that channel, while the remaining correspond to false negatives and false
positives
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a b

Fig. 5 Venn diagram demonstrating the contribution of each configuration of the model to the DrugBank (a) and Medline (b) test set results. The
intersection of each channel with the gold standard represents the number of true positives of that channel, while the remaining correspond to
false negatives and false positives

intersection of the results of each channel in the full,
DrugBank, and Medline test sets. We compare only the
results of the detection task, as it is simpler to ana-
lyze and show the differences in the results of different
configurations. In Fig. 4, we can visualize false negatives as
the number of relations unique to the gold standard and
the false positives of each configuration as the number of
relations that does not intersect with the gold standard.
The difference between the values of this figure and the
sum of their respective values in Fig. 5 is due to the sys-
tem being executed once for each dataset. Overall 369
relations in the full test set were not detected by any con-
figuration of our system, out of a total of 979 relations in
the gold standard. We can observe that 60 relations were
detected only when adding the ontology channels.
In the Medline test set, the ontology channel identi-

fied 7 relations that were not identified by any other
configuration (Fig. 5b). One of these relations was the
effect of quinpirole treatment on amphetamine sensitiza-
tion. Quinpirole has 27 ancestors in the ChEBI ontology,
while amphetamine has 17, and they share 10 of these
ancestors, with the most informative being “organonitro-
gen compound”. While this information is not described
in the original text, but only encoded in the ontology, it
is relevant to understand if the two entities can partic-
ipate in a relation. However, this comes at the cost of
precision, since 10 incorrect DDIs were classified by this
configuration.
To empirically compare our results with the state-of-

the-art of the DDI extraction, we compiled the most

relevant works on this task in Table 3. The first line refers
to the system that obtained the best results on the original
SemEval task [38, 53]. Since then, other authors have pre-
sented approaches for this task, most recently using deep
learning algorithms. In Table 3 we compare the machine
learning architecture used by each system, and the results
reported by the authors. Since some authors focused only
on the DDI classification task, we could not obtain the
DDI detection results for those systems, hence themissing
values. We were only able to replicate the results of Zhang
et al. [48]. Since this system followed an architecture simi-
lar to ours, we adapted themodel with our ontology-based
channel, as described in the “Methods” section. This mod-
ification to the model resulted in an improvement of 0.022

Table 3 Comparison of DDI extraction systems

System Architecture Best F1-score

FBK-irst [38] SVM 0.651

SCNN [18] CNN 0.686

Joint AB-LSTM [19] LSTM 0.6939

Att-BLSTM [22] LSTM 0.773

DLSTM [20] LSTM 0.6839

BR-LSTM [21] LSTM 0.7115

Zhang et al. 2018 [48] LSTM 0.729

Zhang et al. 2018 + BO-LSTM LSTM 0.751

The architectures mentioned are Support Vector Machines (SVM), Convolutional
Neural Networks (CNN) and LSTMs
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to the F1-score. Our version of this model is also available
on our page along with the BO-LSTMmodel.
We used the HP corpus to demonstrate the generaliz-

ability of our method. This case-study served only as a
proof-of-concept, it was not our intent to measure the
performance of the model, given the limited number of
annotations and the dependence on the quality of using
exact string matching to identify the genes. For exam-
ple, we may have missed correct relations in the corpus,
because they were not in the reference file or the gene
name was not correctly identified.
Therefore, we used 60% (137 documents) of the corpus

to train the model and 40% (91 documents) to manu-
ally evaluate the relations predicted with that model. For
example, in the following sentence:

Mu l t i p l e ang io f ib romas , co l lagenomas ,
l ipomas , c o n f e t t i − l i k e hypopigmented
macules and mu l t i p l e g i n g i v a l

papu l e s a re cutaneous man i f e s t a t i o n s
o f MEN1 and should be looked f o r in
both f am i l y members o f p a t i e n t s

with MEN1 and i n d i v i d u a l s with
hype rpa ra thy ro id i sm of o ther MEN1−
a s s o c i a t e d tumors .

the model identified the relation between the phenotype
“angiofibromas” and the gene “MEN1”. One recurrently
identified relation by our model that was not present
on the phenotype-gene associations file is between the
phenotype ’neurofibromatosis’ and the gene ’NF2’:

C l i n i c a l and g en e t i c da ta o f 10
p a t i e n t s with neu ro f i b r oma to s i s 2
(NF−2) a re p re sen ted .

Despite this relation not being described in the pre-
vious sentence, it is predicted given its presence in the
phenotype-gene associations files. With a larger number
of annotations in the training corpus, we expect this error
to disappear.

Discussion
Comparing the results across the two types of documents,
we can observe that our model was most beneficial to the
Medline test set. This set contains only 1301 sentences
from 142 documents for training, while the DrugBank set
contains 5675 sentences from 572 documents. Naturally,
the patterns of the DrugBank documents will be easier to
learn than the ones of the Medline documents because
more examples are shown to the model. Furthermore,
the Medline set has 0.18 relations per sentence, while the
DrugBank set has 0.67 relations per sentence. This means
that DDIs are described much more sparsely than in the
DrugBank set. This demonstrates that our model is able to
obtain useful knowledge that is not described in the text.

One disadvantage of incorporating domain information
in a machine learning approach is that it reduces its appli-
cability to other domains. However, biomedical ontologies
have become ubiquitous in biomedical research. One of
the most successful cases of a biomedical ontology is the
Gene Ontology, maintained by the Gene Ontology Con-
sortium [54]. The Gene Ontology defines over 40,000
concepts used to describe the properties of genes. This
project is constantly updated, with new concepts and rela-
tions being added every day. However, there are ontologies
for more specific subjects, such as microRNAs [55], radi-
ology terms [56] and rare diseases [57]. BioPortal is a
repository of biomedical ontology, currently hosting 685
ontologies. Furthermore, while manually labeled corpora
are created specifically to train and evaluate text min-
ing applications, ontologies have diverse applications, i.e.,
they are not developed for this specific purpose.
We evaluate the proposed model on the DDI corpus

because it is associated with a SemEval task, and for this
reason, it has been the subject of many studies since its
release. However, while applying our model to a single
domain, we designed its architecture so it can fit any other
domain-specific ontology. To demonstrate this, we devel-
oped a corpus of gene-phenotype relations annotated
with Human Phenotype and Gene ontology concepts,
and applied our model to it. Therefore, the methodol-
ogy proposed can be easily followed to apply to any other
biomedical ontology that describes the concepts of a par-
ticular domain. For example, the Disease Ontology [58],
that describes relations between human diseases, could
be used with the BO-LSTM model on a disease relation
extraction task, as long as there is an annotated training
corpus.
While we studied the potential of domain-specific

ontologies based only on the ancestors of each entity,
there are other ways to integrate semantic information
from ontologies into neural networks. For example, one
could consider only the ancestors with the highest infor-
mation content, since those would be the most helpful
to characterize an entity. The information content can be
estimated either by the probability of a given term in the
ontology or in an external dataset. Alternatively, a seman-
tic similarity measure that accounts for non-transitive
relations could be used to find similar concepts to the enti-
ties of the relation [59], or one that considers only the
most relevant ancestors [60]. The quality of the ontology
embeddings could also be improved by pre-training on
a larger dataset, which would include a wider variety of
concepts.

Conclusions
This work demonstrates how domain-specific ontologies
can improve deep learning models for classification of
biomedical relations. We developed a model, BO-LSTM
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which combines biomedical ontologies with LSTM units
to detect and classify relations in text. In this manuscript,
we demonstrate that ontologies can improve the perfor-
mance of deep learning techniques for biomedical rela-
tion extraction, in particular for situations with a limited
number of annotations available, which was the case of the
Medline dataset. Furthermore, we explored how it can be
adapted to other relation extraction domains, for example,
gene-phenotype relations. Considering that biomedical
ontologies are openly available and regularly updated as
the knowledge on the domain progresses, they should
be considered important information sources for relation
extraction.
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