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Large‑scale genetic correlation 
scanning and causal association 
between deep vein thrombosis 
and human blood metabolites
Pan Luo1, Jiawen Xu2, Shiqiang Cheng3, Ke Xu1, Wensen Jing1, Feng Zhang3 & Peng Xu1*

Deep vein thrombosis (DVT) refers to the abnormal coagulation of blood in a deep vein. Recently, 
some studies have found that metabolites are related to the occurrence of DVT and may serve as 
new markers for the diagnosis of DVT. In this study, we used the GWAS summary dataset of blood 
metabolites and DVT to perform a large‑scale genetic correlation scan of DVT and blood metabolites 
to explore the correlation between blood metabolites and DVT. We used GWAS summary data of 
DVT from the UK Biobank (UK Biobank fields: 20002) and GWAS summary data of blood metabolites 
from a previously published study (including 529 metabolites in plasma or serum from 7824 adults 
from two European population studies) for genetic correlation analysis. Then, we conducted a causal 
study between the screened blood metabolites and DVT by Mendelian randomization (MR) analysis. 
In the first stage, genetic correlation analysis identified 9 blood metabolites that demonstrated a 
suggestive association with DVT. These metabolites included Valine (correlation coefficient = 0.2440, 
P value = 0.0430), Carnitine (correlation coefficient = 0.1574, P value = 0.0146), Hydroxytryptophan 
(correlation coefficient = 0.2376, P value = 0.0360), and 1‑stearoylglycerophosphoethanolamine 
(correlation coefficient = − 0.3850, P value = 0.0258). Then, based on the IVW MR model, we analysed 
the causal relationship between the screened blood metabolites and DVT and found that there 
was a suggestive causal relationship between Hydroxytryptophan (exposure) and DVT (outcome) 
(β = − 0.0378, se = 0.0163, P = 0.0204). Our study identified a set of candidate blood metabolites that 
showed a suggestive association with DVT. We hope that our findings will provide new insights into 
the pathogenesis and diagnosis of DVT in the future.

Abbreviations
DVT  Deep vein thrombosis
US  Ultrasound
LDSC  Linkage disequilibrium score regression
GWAS  Genome-wide association study
MR  Mendelian randomization
IVW  Inverse-variance weighted
FXIII  Factor XIII
5-HTP  5-Hydroxytryptophan
SSRIs  Selective serotonin reuptake inhibitors

Deep vein thrombosis (DVT) refers to the abnormal coagulation of blood in a deep vein. It leads to the obstruc-
tion of blood reflux and causes lower extremity oedema and even pulmonary  embolism1,2. In addition, DVT 
is an important complication of several inherited and acquired diseases, but it can also occur  spontaneously3. 
Currently, there are many methods for the diagnosis of DVT, such as d-dimer and ultrasound (US) imaging, that 
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have been adopted to aid in the diagnosis of DVT  pathways4. Recently, some studies have found that metabolites 
are related to the occurrence of DVT and may be new markers for the diagnosis of  DVT5.

The metabolome is defined as the collection of metabolites and small molecules that are involved in cell 
metabolism. They are produced in cells and can be divided into many  categories6. Approximately 50% of the 
total phenotypic variation in metabolite levels is due to SNP, but estimates of heritability vary by metabolite 
 class7. Genomic and metabolomic analyses of common SNPs in human metabolism have successfully identified 
the metabolites affected by  genetics8. The elucidation of the genetic mechanism of metabolism may provide 
new therapeutic targets or new biomarkers for disease  diagnosis9. Among them, metabolism in human blood is 
controlled by different degrees of genetic effects, complex regulatory effects and nongenetic  effects10.

The genetic control of metabolite levels and their impact on human health is evident in inborn metabolic 
errors. In these errors, rare SNPs disrupt individual genes and then lead to extreme and ultimately toxic levels of 
the related  metabolites8. Genome-wide association studies with metabolomics (mGWAS) that use population-
scale metabolomics and genotypic data can systematically study the less obvious effects of more common and 
less harmful SNPs on human metabolism. This was demonstrated by Gieger et al. in the first  mGWAS11.

Genetic correlation is an important population parameter that can describe the genetic relationships between 
two  traits12–14. Using summary data from genome-wide association studies (GWAS), LDSC can screen for thou-
sands of traits simultaneously and find genetic correlations between  them13. Mendelian randomization (MR) 
refers to studies in observational epidemiology that use SNP to make causal inferences about risk factors for 
disease and health-related  outcomes15,16. MR analysis presents a valuable tool, especially when randomized con-
trolled trials to examine causality are not feasible and observational studies provide biased associations because 
of confounding or reverse causality. These issues are addressed by using genetic variants as instrumental vari-
ables for the tested exposure: the alleles of this exposure-associated genetic variant are randomly allocated and 
not subject to reverse  causation17. Previous studies have used LDSC and MR to analyse the association between 
inflammation pathway and suicide and found that IL-6 signalling is associated with  suicide18. Thus, we hope to 
use LDSC and MR analysis to further dissect the association between blood metabolites and DVT.

In this study, for the first time, we used a large-scale GWAS summary dataset of blood metabolites and DVT 
to perform a genetic correlation scan of DVT and blood metabolites to explore the genetic relationship between 
blood metabolites and DVT. Our study has the potential to provide new insights into the genetic mechanisms, 
diagnosis and treatment of DVT.

Methods
GWAS summary datasets of DVT. The GWAS summary data of DVT used in this study were obtained 
from the UK Biobank (UK Biobank fields: 20002)19. The DVT cases in the UK Biobank were defined based on 
self-reported diagnosis. The UK Biobank was a large prospective cohort study involving approximately 500,000 
people aged 37 to 76 years (99.5% aged 40 to 69 years) from across the UK. This cohort included 9059 DVT 
patients and 443,205 control  cases20. The UK Biobank has received ethical approval from the Northwest Mul-
ticentre Research Ethics Committee and the informed consent of all participants. All participants provided a 
range of information on their health status, demographics and lifestyle through questionnaires and  interviews19. 
Detailed information on the samples, imputation and genotyping can be found in previously published  studies19.

GWAS summary datasets of human blood metabolites. A previously published large-scale GWAS 
dataset of human blood metabolites was used  here10. The study sample included 529 metabolites in the plasma 
or serum from 7824 adults from two European population  studies10. More than half of the 529 metabolites 
(N = 333, 63%) can be chemically identified as 8 metabolic groups (amino acids, carbohydrates, cofactors and 
vitamins, energy, fat, nucleotides, peptides and xenobiotics)10. After strict quality control, there were 486 subsets 
of metabolites available for genetic analysis, including 309 known metabolites and 177 unknown  metabolites10. 
Detailed descriptions of the quality control, sample characteristics, research design and statistical analysis can 
be found in previously published  studies10.

Statistical analysis. Referring to the methods recommended by the  developers13,14 and previous  studies21, 
we used LDSC software (v1.0.0; https:// github. com/ bulik/ ldsc) to analyse the genetic correlation between each 
blood metabolite and DVT. The basic principle of the LDSC method is to estimate the deviation between the χ2 
test statistics of an SNP and its expected values directly from the GWAS summary data under the null hypothesis 
of no  association22. The study used the European LD score, which was calculated by the developers from 1000 
 genomes23. After correcting for multiple testing, the significance threshold of this study should be P < 9.45 ×  10−5 
(0.05/529 = 9.45 ×  10−5). Since few metabolites reached the significance level after multiple test corrections, 
P < 0.05 was adopted as the suggested significance level.

MR analysis can be used to evaluate the causal relationship between blood metabolites and DVT. The MR 
technique uses SNPs related to modifiable traits/exposures as tools to detect causal associations among the 
 outcomes15. In an MR test, three key assumptions must be met: (1) the SNP is directly associated with the 
exposure; (2) the SNP is not related to factors known to obscure the connection between the exposure and 
the outcome; and (3) the SNP has no effect on outcome. The inverse-variance weighted (IVW) method uses a 
meta-analysis approach to combine the Wald ratio estimates of the causal effect obtained from different SNPs 
and to provide a consistent estimate of the causal effect of the exposure on the outcome when each of the SNPs 
satisfies the assumptions of an instrumental  variable24. Egger regression is a tool to detect small study bias in 
meta-analysis and can be adapted to test for bias from pleiotropy. The slope coefficient from Egger regression 
provides an estimate of the causal  effect25. The weighted median estimate provides a consistent estimate of causal 
effects, even if up to 50 percent of the analytical information comes from SNP of ineffective  IVs26. In addition, 

https://github.com/bulik/ldsc
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MR-Egger and weighted median can be used as sensitivity analysis. Particularly, MR-Egger and weighted median 
could provide a more valid MR estimates if their assumptions are met and if multiple SNPs are pleiotropic. To test 
whether there was a weak instrumental variable bias, namely genetic variants selected as instrumental variables 
had a weak association with exposure, we calculated the F statistic (F = R2(n − k − 1)/k(1 − R2); R2, variance of 
exposure explained by selected instrumental variables, and we got the value of R2 in MR Steiger directionality 
test; n, sample size; and k, number of instrumental variables). If the F statistic is much greater than 10 for the 
instrument-exposure association, the possibility of weak instrumental variable bias is small.

In the absence of pleiotropy, the IVW estimator is the gold standard method. The main analysis was IVW, 
and the sensitivity analysis was the Leave-one-out test. When the effect SNP of the metabolite is more than 3, 
we test the MR results by Leave-one-out test. We used the Wald estimator when there is only one instrument 
available, the IVW method when at least two instruments were selected, and the IVW, the MR-Egger, and the 
weighted median methods with more than 3 instruments.

We used the MR basic platform (http:// app. mrbase. org/) to analyse the causal relationship between the 
screened blood metabolites and DVT. After correcting for multiple testing, the significance threshold of this 
study should be P < 0.005 (0.05/9 = 0.005). Since few metabolites reached the significance level after multiple test 
corrections, P < 0.05 was adopted as the suggested significance level.

All methods were performed in accordance with the relevant guidelines and regulations (for example—Dec-
larations of Helsinki).

Results
In the first stage, genetic correlation analysis identified 9 suggestive blood metabolites that were significantly 
associated with DVT (Fig. 1, Table 1), including Valine, Carnitine, Hydroxytryptophan, 1-stearoylglycerophos-
phoethanolamine, X-11317, X-11550, X-12465, X-12644, and X-13741. The LDSC results of those that do not 
reach the level of significance are shown in the Supplementary Table S1 and Supplementary Table S2.

We conducted instrumental variable screening strictly in accordance with the three core assumptions of 
Mendelian randomization analysis. First, SNP must be strongly correlated with exposure factor, so we screened 
SNPs with P < 5 ×  10−8, R2 = 0.001, KB = 10,000. We used the PhenoScanner platform to exclude SNPs associated 
with DVT and risk factors associated with DVT to show that there is no horizontal pleiotropy in our analysis 
from a biological point of view. Based on the IVW MR model, we analysed the causal relationship between the 
screened blood metabolites and DVT and found that there was a suggestive inverse causal relationship between 
Hydroxytryptophan (exposure) and DVT (outcome) (Table 2, Fig. 2). In addition, we also found that there was 
a suggestive inverse causal relationship between X-12644 (exposure) and DVT (outcome) (Table 2, Fig. 3). The 
Egger intercept did not deviate significantly from zero (intercept = 0.0021, SE = 0.0017, P = 0.423). Thus, there was 
no evidence for unbalanced pleiotropy, which would suggest that the IVW estimates were unbiased. However, the 
results of the MR–Egger and weighted median methods did not support this conclusion (MR–Egger: β = − 0.1452, 
se = 0.0889, P = 0.3498; weighted median: β = − 0.0265, se = 0.0146, P = 0.0694). In addition, the difference between 
Q and Q′ (Q − Q′ = 0.2327) is not sufficiently extreme under a χ1

2 distribution, which means that the MR–Egger 
model does not fit our data better than the IVW model. Because some metabolites included fewer instruments, 
we evaluated the instruments included in Table 3. According to the above results, we found that the F values of 
the instrumental variables included in X-12644 and Hydroxytryptophan were all more than 10, which effectively 

Figure 1.  Detailed flowchart of the result. We analyzed the genetic correlation between DVT and 529 blood 
metabolites by LDSC, and found that 9 blood metabolites may had genetic correlation with DVT. Then the 
causal relationship between these 9 blood metabolites and DVT was analyzed by MR, and it was found that 2 
blood metabolites had causal correlation with DVT.

http://app.mrbase.org/
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reduce the likelihood of weak instrument bias. In addition, sensitivity analysis was performed on the results 
(leave-one-out test). As the other 7 blood metabolites were included in fewer instruments, the leave-one-out 
test could not be used to test them. Only Carnitine and X-12644 were subjected to the leave-one-out method for 
sensitivity analysis. The results are shown in Fig. 4. According to the result of the leave-one-out test, we found 
that the MR analysis of Carnitine was stable, while the MR analysis of X-12644 was not. (Fig. 4).

Then, we performed a reverse MR analysis. However, when DVT was used as the exposure variable, we found 
no causal relationship between DVT and 9 blood metabolites, as shown in Table 4.

Discussion
DVT is a disease that is affected by many factors and is caused by the interaction of a series of acquired and hered-
itary risk  factors27. Major hereditary thrombotic diseases include a lack of natural anticoagulants, antithrombin 
and proteins C and S in  plasma28. The clinical diagnosis of DVT mainly depends on clinical symptoms, d-dimer 
levels and ultrasonic  examination29,30. Although the plasma level of d-dimer is highly sensitive, its deletion may 
help to exclude  DVT31. However, d-dimer levels are easily altered by cancer, surgery and other factors, so its 
specificity and positive predictive value are very  low32. Therefore, more appropriate biomarkers are needed to 

Table 1.  Genetic correlation between human blood metabolites and deep vein thrombosis. LD score 
regression software (https:// github. com/ bulik/ ldsc) was used here to evaluate the genetic correlation between 
deep vein thrombosis and each of the human blood metabolites. So far, no genes related to the other five blood 
metabolites (X-11317, X-12465, X-12644, 1-stearoylglycerophosphoethanolamine, X-13741) have been found.

Blood metabolites Gene Genetic correlation P value

Deep vein thrombosis

Valine PPM1K 0.2440 0.0430

Carnitine PEX5L 0.1574 0.0146

X-11317 − 0.2181 0.0377

X-11550 SLC5A11 − 0.2855 0.0435

Hydroxytryptophan IDO1 0.2376 0.0360

X-12465 0.3643 0.0353

X-12644 − 0.4936 0.0057

1-stearoylglycerophosphoethanolamine − 0.3850 0.0258

X-13741 0.6743 0.0285

Table 2.  The results of causal analysis of human blood metabolites (exposure) and deep vein thrombosis 
(outcome). Since no SNP in X-12465 can perform causal analysis, it is not listed. DVT: deep vein thrombosis. 
Significant values are in bold.

Exposure group Outcome group Instruments Analytical method Beta SE P

Valine DVT rs1440581 Wald ratio − 0.0477 0.0359 0.1847

Carnitine DVT

rs735315
rs419291
rs4860022
rs11183620
rs1466788
rs2279014
rs10821585
rs11620955
rs12709393
rs13182512
rs12356193
rs6862024
rs2114713
rs9842133
rs2396004
rs11620973
rs3736438

MR Egger 0.0115 0.0189 0.5499

Weighted median 0.0079 0.0133 0.5505

Inverse variance weighted 0.0104 0.0097 0.2859

X-11317 DVT rs7797368
rs7499892 Inverse variance weighted − 0.0096 0.0153 0.5300

X-11550 DVT rs247616 Wald ratio − 0.0325 0.0324 0.3155

Hydroxytryptophan DVT rs4843718
rs2160860 Inverse variance weighted − 0.0378 0.0163 0.0204

X-12644 DVT
rs1532085
rs1077835
rs7969341

MR Egger − 0.1452 0.0889 0.3498

Weighted median − 0.0265 0.0146 0.0694

Inverse variance weighted − 0.0327 0.0142 0.0219

1-stearoylglycerophosphoethanolamine DVT rs588136 Wald ratio − 0.0206 0.0121 0.0901

X-13741 DVT rs12189736 Wald ratio − 0.0045 0.0072 0.5341

https://github.com/bulik/ldsc
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conduct appropriate risk assessment for the occurrence of DVT to improve the sensitivity of DVT diagnosis, 
timely treatment or avoid invasive surgery. As an important part of systems  biology33, metabonomics has been 
widely used in the study of pathogenesis-related diagnostic and prognostic biomarkers by detecting endogenous 
small molecule compounds in biological  samples34,35. Recent studies have found that glycolysis, purines and 
redox-related metabolites may contribute to the discovery of fresh venous thrombosis, and changes in metabo-
lites may affect the formation of venous  thrombosis5. Therefore, we hope to provide new ideas for the diagnosis 
of DVT and provide insights into the genetic mechanisms of DVT by studying the relationship between blood 
metabolites and DVT.

To study the relationship between blood metabolites and DVT, we carried out genetic correlation analysis 
based on the GWAS summary data of blood metabolites and DVT. We found that 9 blood metabolites were 
genetically correlated with DVT, including 4 known metabolites and 5 unknown metabolites. Then, we ana-
lysed the identified blood metabolites and DVT by MR and found that there was an inverse causal relationship 
between the two blood metabolites and DVT. To our knowledge, this is the first time that a large-scale genetic 
association between blood metabolites and DVT has been assessed, and our findings may greatly expand the 
biological knowledge associated with DVT.

Valine, also known as 2-amino-3-methylbutyric acid, is a branched-chain amino acid. It is one of the eight 
essential amino acids and sugar-producing amino acids of the human  body36. It can promote normal growth, 
repair tissue, regulate blood sugar and provide the necessary  energy37. A mutation in the gene for Factor XIII 
that leads to a Valine-leucine exchange has been reported to be protective against  DVT38. Factor XIII (FXIII) 
is a transglutaminase found in plasma and  platelets39. During thrombus formation, activated FXIII cross-links 
fibrin, which promotes thrombus  stability39. Fujimura et al. found that serum samples from patients with DVT 
showed high levels of  Valine40. FXIII cross-links fibrin when thrombin is activated. The activation of thrombin 
releases activated peptides. A common polymorphism (Valine to leucine variant at residue 34, V34L) that is 
located in the activating peptide has been found to be associated with the prevention of  thrombosis41. However, 
the specific mechanism by which Valine participates in the prevention of thrombi is still unclear and requires 
further experimental research.

Figure 2.  Forest Map of causality between Hydroxytryptophan-related SNP and DVT. The causal effect of 
exposure on outcome is estimated using each SNP singly using the Wald ratio, and represented in a forest plot. 
The MR estimate using all SNPs using the MR Egger and IVW methods are also shown.
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Carnitine is considered a conditionally essential nutrient because of its importance in human  physiology42. 
The anticoagulant effect of Carnitine is related to the regulation of prostaglandin formation by its derivatives, 
which can stimulate prostacyclin  production43. The cytoprotective and vasodilator effects of prostacyclin are well 
known. It has been shown that l-Carnitine supplementation reduces serum CRP and plasma fibrinogen levels 
in haemodialysis  patients44. Supplementation with l-Carnitine reduces inflammatory substances, such as CRP, 
IL-6, and TNF-α, and increases oxidative stress  levels45. Deguchi et al. confirmed that there is a low level of acyl 
Carnitine in the plasma of patients with venous thromboembolism. They also showed that acyl Carnitine can 
act as an anticoagulant because of its ability to bind and inhibit Xa  factor46. Our study found a genetic correla-
tion between Carnitine and DVT, which agrees with these previous studies. Moreover, the genetic association 
between DVT and Carnitine found in our study provides a new direction for further research on how Carnitine 
affects the pathogenesis of DVT.

For the results of the LDSC, DVT was found to be genetically correlated with Valine and Carnitine. We hold 
the opinion that these results should be interpreted as Valine and Carnitine being genetically correlated with 
DVT. However, these two metabolisms may not lead to deep vein thrombosis, and specific directions should be 
explained by referring to relevant literature. Through a literature search, we found no evidence that Valine and 
Carnitine may be involved in increasing the incidence of DVT. Instead, we found that these two metabolites are 
involved in anticoagulation, which needs to be stated.

5-Hydroxytryptophan (5-HTP) is a kind of amino acid. It can be used as a precursor of serotonin (seroto-
nin, 5-HT) in the human body (and then as a precursor of melatonin)47. According to clinical studies, taking 
5-HTP can significantly improve the mood of patients with  depression48,49. Studies have found that serotonergic 
antidepressants have a weak anticoagulant  effect50. In addition, selective serotonin reuptake inhibitors (SSRIs) 
inhibit the formation of tight clots of platelets in vitro, which indicates that SSRIs have a direct antithrombotic 
or fibrinolytic  effect51. Serotonin stored in platelets accounts for more than 99% of the total serotonin con-
centration in the human body. After blood vessel injury and platelet activation, serotonin is released into the 
bloodstream and binds to specific receptors. It thereby promotes vasoconstriction and platelet aggregation and 
facilitates  haemostasis52. Serotonin reuptake into platelets involves a serotonin transporter that is blocked by 
the SSRI, thereby inhibiting serotonin reuptake into  platelets53. This inhibition in turn reduces the likelihood of 

Figure 3.  Forest Map of causality between X-12644-related SNP and DVT. The causal effect of exposure on 
outcome is estimated using each SNP singly using the Wald ratio, and represented in a forest plot. The MR 
estimate using all SNPs using the MR Egger and IVW methods are also shown.
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platelet agglutination. This then reduces the formation of platelet thrombosis, which in turn increases the risk 
of  bleeding53,54. We found that DVT and 5-HTP were genetically correlated, and 5-HTP and DVT demonstrated 
reverse causality. However, no studies have determined how 5-HTP is involved in the pathogenesis of DVT. In 
the analysis results of the LDSC, we found that hydroxyl tryptophan and DVT have a strong genetic correlation, 
but in patients with DVT, the hydroxyl tryptophan levels may be higher than normal. This is not just because 
of the disease itself but also because of genetic factors. Thus, it cannot explain why Hydroxytryptophan causes 
DVT. In contrast, MR analysis found that Hydroxytryptophan was negatively correlated with DVT. Our study 
provides a new idea for the involvement of 5-HTP in the pathogenesis and diagnosis of DVT.

According to our study, another 6 blood metabolites were found to be genetically correlated with DVT, and 
among them, X-12644 had a reverse causal relationship with DVT. However, we have not found any studies on 
the correlation between these blood metabolites and DVT or blood coagulation.

To the best of our knowledge, this is the first large-scale genetic correlation analysis of the blood metabolic 
groups and DVT. Because we used GWAS gene data, the results are not easily affected by environmental con-
founding factors. Furthermore, we not only studied the genetic correlation between DVT and blood metabolites 
but also determined the causal relationship. Of course, some limitations of this research should be noted. First, 
the significance threshold should be P < 9.45 ×  10−5 after multiple test correction. Unfortunately, according to 
our results, there was no significant genetic correlation at this threshold. Since all blood metabolites identified 
in this study are suggested to be associated with DVT, the results should be interpreted carefully. Furthermore, it 
should be noted that the purpose of this study was to evaluate the genetic correlation between blood metabolites 
and DVT and to scan for new candidate blood metabolites associated with DVT. In this study, further basic 
research is needed to confirm our findings and to clarify the potential biological mechanism of the observed 
link between blood metabolites and DVT. Finally, the GWAS summary data of this study are all from European 
origin. Therefore, we should be careful to apply our research results to other ethnic groups.

Conclusion
In short, by using the LDSC method, we conducted a large-scale analysis to investigate the genetic correlation 
between blood metabolites and DVT and verified the causal relationship by MR analysis. Our study identified a 
set of suggestive candidate blood metabolites that showed an association with DVT. We hope that our findings 
will provide new insights into the pathogenesis and diagnosis of DVT in the future and serve as a basic resource 
for understanding the genetic mechanism of the effects of blood metabolites on DVT.

Table 3.  The description of the instruments.

Instruments F R2

X-11317
rs7797368 3.71 0.00095

rs7499892 1.09 0.00028

Valine rs1440581 15 0.00194

Carnitine

rs735315 0.61 0.00135

rs419291 0.26 0.00058

rs4860022 0.23 0.00052

rs11183620 1.14 0.00249

rs1466788 0.29 0.00064

rs2279014 0.43 0.00095

rs10821585 1.2 0.00263

rs11620955 1.35 0.00296

rs12709393 0.92 0.00202

rs13182512 0.34 0.00076

rs12356193 0.32 0.00070

rs6862024 0.20 0.00045

rs2114713 0.17 0.00039

rs9842133 0.29 0.00064

rs2396004 0.19 0.00043

rs11620973 0.97 0.00212

rs3736438 0.82 0.00180

X-11550 rs247616 3.83 0.00147

Hydroxytryptophan
rs4843718 8.01 0.00205

rs2160860 10.6 0.00272

X-12644

rs1532085 1.95 0.00075

rs1077835 6.33 0.00243

rs7969341 12.4 0.00478

1-stearoylglycerophosphoethanolamine rs588136 19.4 0.00249

X-13741 rs12189736 7.11 0.00091
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Figure 4.  Sensitivity analysis of the MR results (Carnitine, X-12644). As the other 7 blood metabolites were 
included in fewer instruments, the Leave-one-out test could not be used to test them.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. The GWAS dataset of DVT is available at GeneATLAS website, http:// genea tlas. roslin. ed. ac. 
uk/. The GWAS dataset of human blood metabolites: http:// metab olomi cs. helmh oltz- muenc hen. de/ gwas/ gwas_ 
server/ shin_ et_ al. metal. out. tar. gz.
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