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Genital herpes is an intractable disease caused mainly by herpes simplex virus (HSV) type
2 (HSV-2), and is a major concern in public health. A previous infection with HSV type 1
(HSV-1) enhances protection against primary HSV-2 infection to some extent. In this study,
we evaluated the ability of HF10, a naturally occurring replication-competent HSV-1 mutant,
to protect against genital infection in mice caused by HSV-2. Subcutaneous inoculation of
HF10-immunized mice against lethal infection by HSV-2, and attenuated the development
of genital ulcer diseases. Immunization with HF10 inhibited HSV-2 replication in the mouse
vagina, reduced local inflammation, controlled emergence of neurological dysfunctions
of HSV-2 infection, and increased survival. In HF10-immunized mice, we observed rapid
and increased production of interferon-γ in the vagina in response to HSV-2 infection, and
numerous CD4+ and a few CD8+ T cells localized to the infective focus. CD4+ T cells
invaded the mucosal subepithelial lamina propria. Thus, the protective effect of HF10 was
related to induction of cellular immunity, mediated primarily byTh1 CD4+ cells. These data
indicate that the live attenuated HSV-1 mutant strain HF10 is a promising candidate antigen
for a vaccine against genital herpes caused by HSV-2.
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INTRODUCTION
Herpes simplex virus (HSV) type 1 (HSV-1) and type 2 (HSV-
2) belong to the alphaherpesvirus family. HSV-1 and HSV-2 have
50% DNA sequence homology (Kieff et al., 1972). Generally, HSV-
1 infects via the oral route, whereas HSV-2 infects via the genital
tract. Both exert neurotropic effects and spread to the nervous
system (Corey and Spear, 1986; Whitley and Roizman, 2001).
HSV-2 is the main causative agent of genital herpes worldwide
(Tao et al., 2000). Epidemiological investigations have indicated
that the prevalence of HSV-2 in the general population of the
USA ranges from 10 to 60%, and genital herpes is one of the
most common sexually transmitted diseases (Malvy et al., 2005;
Xu et al., 2006). After primary infection via the genital tract,
the virus establishes latency within the lumbosacral ganglions,
and establishes a state of lifelong infection. Subsequently, the
latent virus reactivates intermittently resulting in recurrent dis-
ease (Miller et al., 1998; Stanberry et al., 2000). In addition, genital
herpes is linked to an increased susceptibility to sexually acquiring
and transmitting human immunodeficiency virus (HIV; Freeman
et al., 2006; Kapiga et al., 2007), which is not markedly reduced
by HSV antiviral therapy (Celum et al., 2008; Watson-Jones et al.,
2008). A vaccine would provide a more effective means of pre-
venting or limiting infection, and would greatly relieve the social
and economic burden of HSV-2 infection. In developed coun-
tries, while childhood acquisition of HSV-1 has decreased, HSV-2

seroprevalence has increased, suggesting the possible protective
effect of HSV-1 against HSV-2 infection (Xu et al., 2006). HSV-
1 has also become a major causative agent of primary genital
herpes in developed countries (Lafferty et al., 2000; Nieuwenhuis
et al., 2006).

In the past, efforts to develop an HSV vaccine have included
development of inactivated whole-virus vaccines, subunit glyco-
protein preparations, DNA plasmids, and attenuated replication-
competent viruses. These candidate vaccines were unsuccessful
in clinical trials (Stanberry, 2004). The most successful vaccine
in human trials was a subunit glycoprotein vaccine that included
HSV-2 gD, a major viral envelope antigen, as an immunogen with
alum and 2-o-deacylated monophosphoryl lipid A as adjuvants
(Bernstein et al., 2005). Although the vaccine appeared safe and
effective against genital herpes in guinea pigs, it failed to provide
sufficient protection against primary infection in a clinical trial
(Stanberry et al., 2002). Furthermore, immunization with HSV-
2 gD subunit did not reduce the rate at which women acquired
HSV-2 genital herpes (Belshe et al., 2012). Therefore, new strate-
gies for developing HSV vaccines are required. Meanwhile, there
are established live vaccines for other alphaherpesviruses, e.g.,
a modified live virus vaccine that prevents pseudorabies virus
infection (PRV/Marker Gold�) in pigs is commercially available
(Swenson et al., 1993a,b; Van de Walle et al., 2003), and an atten-
uated live varicella-zoster virus vaccine that prevents chicken pox
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and shingles (Arvin and Gershon, 1996; Oxman et al., 2005) is in
widespread use. Killed viral vaccines have proven to be inferior to
live vaccines, in terms of naturally acquired immunity, preventing
infection or re-infection, and producing durable immunity. The
use of a live HSV vaccine risks inducing latency or reactivation
(Cappel, 1976).

HF10 is a spontaneously occurring HSV-1 mutant that lacks
functional expression of UL43, UL49.5, UL55, UL56, and latency-
associated transcripts (Ushijima et al., 2007). We have demon-
strated that HF10 can be attenuated, and that it does not cause
any neurotropic effects in mice. Intranasal vaccination of mice
with HF10 conferred significant protection against lethal chal-
lenge with HSV-1 and HSV-2 (Mori et al., 2005). Thus, HF10 is
a promising live attenuated HSV vaccine candidate. It is also a
well-known oncolytic virus for cancer therapy (Fujimoto et al.,
2006; Kimata et al., 2006; Nakao et al., 2007). In this study, we
used HF10 as a live attenuated vaccine, and evaluated the immune
response generated and protective effect against HSV-2 genital
infection in mice. Subcutaneous inoculation of HF10-immunized
mice from lethal infection by HSV-2, and attenuated the devel-
opment of genital ulcer diseases. Furthermore, we observed
inhibition of virus replication and production of interferon-γ
(IFN-γ) by splenocytes in response to HSV-2 antigens in the serum
of immunized mice. HF10 also induced rapid accumulation of
CD4+ and CD8+ cells in the infective focus, and protected mice
against HSV-2 genital disease via induction of a cellular immune
response.

MATERIALS AND METHODS
VIRUSES, CELLS, AND ANTIBODIES
Vero cells (African green monkey kidney epithelial cells) were
grown in Eagle’s minimal essential medium (MEM) supplemented
with 10% calf serum. The HSV-1 mutant HF10, the wild-type
HSV-1 strains KH7 and KOS, and wild-type HSV-2 strain 186
were titrated in Vero cells. HF10 virus was inactivated by expo-
sure to ultraviolet (UV) light for 30 min using a GL15 UV
(Mitsubishi/Osram, Kakegawa, Japan). UV-inactivated virus was
not infectious when inoculated into Vero cells. NIH3T3 cells
(mouse embryonic fibroblast cell line derived from BALB/c) were
grown in Dulbecco’s modified Eagle’s medium containing 10%
calf serum. NIH3T3 cells were infected with HSV-2 strain 186 at
a multiplicity of infection (MOI) of 3 in the presence of gan-
ciclovir (GCV; 10 μg/ml) or cycloheximide (CHX; 20 μg/ml)
for 8 h, and then harvested for stimulating splenocytes. Anti-
HSV-1 polyclonal rabbit antibody was purchased from Dako
(Glostrup, Denmark). Anti-HSV-2 antibody was acquired from
a mixture of anti-HSV-2 UL17, UL42, UL46, UL48, and US11
antibodies generated in our laboratory by immunizing rabbits
(Goshima et al., 2000; Kato et al., 2000; Koshizuka et al., 2001).
Anti-mouse CD4 antibody and fluorescein isothiocyanate (FITC)-
labeled anti-mouse CD8 antibody were purchased from Chemicon
International (Temecula, CA, USA) and Thermo Scientific (Rock-
ford, IL, USA), respectively. DRAQ5 (Biostatus Limited, Shepshed,
UK) was used to stain cell nuclei. Anti-mouse IgG-conjugated
FITC and anti-rabbit IgG-conjugated tetramethylrhodamine-5-
(6)-isothiocyanate (TRITC) were obtained from Sigma-Aldrich
(St. Louis, MO, USA).

MOUSE STRAINS, IMMUNIZATION, AND CHALLENGE
BALB/c and BALB/c nude mice were obtained from SLC (Hama-
matsu, Japan). Six-week-old BALB/c mice were immunized
subcutaneously in the rear flank once with 100 μl phosphate-
buffered saline (PBS) containing 1 × 106 plaque-forming units
(PFUs) of HF10, 1 × 107 PFUs of UV-treated HF10, or PBS only.
Mice were challenged 4 weeks or 4 months after immunization,
and 7 days prior to challenge they were subcutaneously injected
in the neck ruff with 3 mg Depo-Provera (Sigma-Aldrich). For
intravaginal challenge, mice were inoculated with 5 × 105 PFUs of
HSV-2 strain 186 (approximately 15 × LD50) using a pipette.

For the safety study, 5 × 105 PFUs of HF10 or KH7 were sub-
cutaneously inoculated in the flank of 6-week-old BALB/c nude
mice. On days 1 and 5 after infection, mice were sacrificed, and skin
samples were harvested for histological and immunohistochemical
studies to detect HSV-1 antigens.

All experiments were approved by the University Committee
and conducted in accordance with the Guidelines for Animal
Experimentation of Nagoya University.

CLINICAL OBSERVATIONS
Mice were observed daily for signs of genital lesions. The severity of
disease was scored as follows: 0, no sign; 1, slight genital erythema
and edema; 2, moderate genital inflammation; 3, purulent genital
lesions and paralysis; and 4, death.

EVALUATION OF ACUTE INFECTION
Vaginal tracts of mice were washed with 200 μl MEM contain-
ing 5% newborn calf serum for 1–5 days after challenge. These
were stored at −80◦C for virus titration and IFN-γ assays. Viral
titers were determined using a standard plaque assay. IFN-γ con-
centration was determined using a Quantikine Immunoassay kit
(R&D Systems, Minneapolis, MN, USA) in an enzyme-linked
immunosorbent assay (ELISA).

NEUTRALIZING ANTIBODY ASSAY
Four weeks after immunization, blood samples were collected via
laparotomy from the abdominal aortic arch. After incubation at
37◦C for 30 min, blood samples were centrifuged at 3000 rpm
for 10 min and serum was collected. To estimate neutralization
titers, diluted sera were added to 100 PFUs of HSV-1 strains HF10
and KOS or HSV-2 strain 186, incubated for 30 min at 37◦C, and
the remaining infectious virus was detected on duplicate Vero cell
monolayers.

IMMUNOFLUORESCENT STAINING OF VAGINAL TISSUES
Mice were deeply anesthetized with ketamine and xylazine and
their vaginas were excised. To examine the distribution of CD4+
and CD8+ cells, frozen sections were stained with a variety of anti-
bodies. In brief, 8 μm frozen sections were blocked with PBS/2%
fetal calf serum (FCS), reacted with mouse CD4 monoclonal anti-
body for 30 min, and stained with anti-mouse IgG-conjugated
FITC antibody for 30 min or FITC-labeled anti-mouse CD8 mon-
oclonal antibody for 30 min at 37◦C. Slides were then washed
with PBS/2% FCS three times, fixed with 4% paraformaldehyde
for 15 min, and treated with 0.1% Triton X-100 for 10 min at
room temperature. Next, these slides were stained with polyclonal
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rabbit HSV-2 antibody (described in Section “Viruses, Cells, and
Antibodies”) for 30 min at 37◦C, washed with PBS, and then
treated with a secondary antibody (anti-rabbit IgG-conjugated
TRITC) for 30 min at 37◦C. Stained slides were washed, incubated
with DRAQ5, and mounted with Fluoromount Plus (Diagnostic
Biosystems, Pleasanton, CA, USA). Finally, slides were visualized
using an LSM 510 laser-scanning confocal microscope (Carl Zeiss,
Jena, Germany).

EVALUATION OF CELLULAR IMMUNITY
Mice were deeply anesthetized with ketamine and xylazine, and
their spleens were excised. Tissues were crushed through a 100-
μm nylon cell strainer (BD Biosciences, Franklin Lake, NJ, USA).
Erythrocytes were depleted using lysis buffer (BD Biosciences),
and spleen cells were suspended in RPMI-1640 medium contain-
ing 10% FCS. Spleen cells were plated at 1 × 107 cells/well (2 ml)
for stimulation by HSV-2-infected NIH3T3 cells. NIH3T3 cells
(2 × 106 cells/35 mm dish) were infected with HSV-2 strain 186 at
an MOI of 3 for 3 h. Spleen cells were also plated at 1 × 106

cells/well (500 μl) for stimulation by NIH3T3 cells expressing
HSV-2 viral antigens. To produce viral antigens, UL46 and US6
genes and ICP0 cDNA from HSV-2 strain 186 were amplified
by polymerase chain reaction and cloned into pcDNA 3.1(+)
expression vectors (Invitrogen, Carlsbad, CA, USA). Each plasmid
(1.5 μg) was transfected into 1 × 106 NIH3T3 cells/35 mm dish
with Lipofectamine 2000 (Invitrogen) according to the manufac-
turer’s instructions, and incubated for 18 h. Plasmid-transfected or
HSV-2-infected cells were frozen, thawed, and added to dishes con-
taining splenocytes acquired as described above. Splenocytes were
stimulated with these viral antigens at 37◦C for 3 h and the medium
was collected at 5 and 20 h to quantify IFN-γ concentrations.

STATISTICS
The statistical significance of differences in disease scores and viral
titers on individual days was determined using a Student’s t-test.
Survival rates were estimated by the Kaplan–Meier method, and
statistical significances were determined by the log-rank test. Viral
titers, disease scores, and IFN-γ concentrations in genital washes
were expressed as means ± SE. Statistical analysis was performed
using SPSS 1.1J software (SPSS Inc., Chicago, IL, USA). Differences
with a P-value of <0.05 were considered statistically significant.

RESULTS
CLEARANCE OF HF10 AFTER SUBCUTANEOUS INOCULATION
INTO BALB/c NUDE MICE
To confirm the low virulence of HF10, we subcutaneously inoc-
ulated HF10 or wild-type KH7 into eight BALB/c nude mice and
compared their virulence. No HF10-inoculated nude mice devel-
oped zoster or died. In contrast, KH7 infection caused severe zoster
formation and death in all mice. HF10 was detected 1 day after
inoculation but cleared by day 5 (Figure 1). Conversely, KH7-
infected cells were still detectable on day 5. These results confirm
the low virulence of HF10 (Mori et al., 2005).

IMMUNIZATION WITH HF10 PROTECTS MICE AGAINST HSV-2
GENITAL DISEASE
To determine the efficacy of HF10 as a vaccine, we subcutaneously
immunized either BALB/c mice with HF10 or UV-inactivated

FIGURE 1 | Safety study of HF10 in a nude mouse model. HSV-1 mutant
HF10 or HSV-1 wild-type KH7 was subcutaneously inoculated into BALB/c
nude mice. Skin samples were obtained at days 1 and 5 after infection and
evaluated by hematoxylin and eosin (HE) staining and
immunohistochemistry (IHC) to detect HSV-1 antigens. Arrows indicate
HSV-1-infected cells.

HF10, or performed mock immunization. After 1 month, each
group was challenged by intravaginal inoculation of wild-type
HSV-2 stain 186. Mice immunized with HF10 had signifi-
cantly lower titers of virus shedding in the vaginal mucosa 1
day after challenge (Figure 2A). The shedding of strain 186
in HF10-immunized mice was diminished by day 5 after chal-
lenge. In control mice, the viral titer decreased by day 3 and
then increased (Figure 2A). Viral titers on day 5 were signif-
icantly lower in HF10-immunized mice than in unimmunized
mice and UV-inactivated HF10-immunized mice. Immunization
with HF10 protected mice from development of local genital
symptoms and these mice exhibited no signs of systemic dis-
ease (Figure 2B); the survival rate was 83.3% (Figure 2C). In
contrast, all mice in the control group developed severe gen-
ital symptoms and hind paralysis (Figure 2B). Eventually, all
succumbed and died within 10 days of challenge (Figure 2C).
Genital symptoms and paralysis in mice immunized with UV-
inactivated HF10 were slightly weaker than those in unimmunized
mice, albeit without statistical significance (Figure 2B). The sur-
vival rate of UV-inactivated HF10-immunized mice was 40%
(Figure 2C). Thus, immunization with UV-inactivated HF10
partially protected mice from HSV-2 genital disease. We then
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FIGURE 2 | Immunization of mice with HF10 followed by lethal HSV-2

challenge via vaginal inoculation. One month after immunization with
HF10, 5 × 105 PFUs of wild-type HSV-2 strain 186 were inoculated into
mice vagina. Unimmunized mice and UV-inactivated HF10-immunized mice
were used as controls. (A) Replication of strain 186 in the genital mucosa
was determined by viral titrations of vaginal washes (200 μl). Viral titers
were significantly lower in HF10-immunized mice on day 5 than in both
unimmunized mice (P < 0.05) and UV-inactivated HF10-immunized mice
(P < 0.05). (B) Clinical symptoms were monitored and scored for 8 days.
HF10-immunized mice had lower disease scores than unimmunized mice
(on day 8, P < 0.0001). Disease scores were not significantly different
between UV-inactivated HF10-immunized mice and unimmunized mice
(P = 0.065). (C) Survival curve derived by the Kaplan–Meier method.
HF10-immunized mice survived longer than unimmunized mice and
UV-inactivated HF10 mice (on day 28, P < 0.0001 and P = 0.001,
respectively).

confirmed the persistent efficacy of HF10 immunization against
vaginal infection by HSV-2. Four months after immunization,
mice immunized with HF10 were also protected against genital
disease to the same level as mice challenged after 1 month (data
not shown).

Histological examinations of vaginal tissues were performed
(Figure 3). In unimmunized mice, HSV-2 antigens were present in
mucosal epithelial cells and subepithelial lamina propria of vaginal
tissue at days 1 and 4 after challenge, and mucosa in the infective
focus dropped out from the epithelium 6 days after challenge.
In contrast, in HF10-immunized mice, HSV-2 antigen staining
was restricted to the mucosal surface at days 1 and 4 and was
undetectable 6 days after challenge. These results indicate that
mice immunized with HF10 were protected against severe genital
disease caused by HSV-2.

IMMUNE RESPONSES AGAINST HSV-2 STRAIN 186 IN
HF10-IMMUNIZED MICE
To determine neutralizing antibody titers against HSV-2 strain
186 in HF10-immunized mice, we collected serum 1 month
after HF10 immunization and investigated its ability to neutral-
ize HSV-1 strains HF10 and KOS and HSV-2 strain 186 based
as determined by reductions in plaque formation (Figure 4A).
Serum inhibited HF10 plaque formation at a dilution of 1:128
and KOS plaque formation at a dilution of 1:64. The titers pro-
ducing a 50% reduction in plaque formation by HF10 and KOS
were between 16 and 32. Serum had little effect on plaque for-
mation by HSV-2 strain 186 at lower concentrations, but at a
dilution of 1:2 caused a 40% reduction. Plaque formation by
UV-inactivated HF10-immunized mouse serum was lower than
that of HF10-immunized mice (Figure 4B). To evaluate cellular
immune responses, we stimulated spleen cells from each immu-
nized or unimmunized mouse with 186-infected NIH3T3 cells and
examined IFN-γ production kinetics. IFN-γ accumulated in the
medium of splenocytes from HF10-immunized mice at both 5 and
20 h after stimulation, although IFN-γ levels were similar to those
produced by UV-inactivated HF10-immunized mice (Figure 4C).
We then investigated IFN-γ concentrations in vaginal washes after
challenge (Figure 4D). Although IFN-γ production was recog-
nized in mouse vaginas immunized with UV-inactivated HF10,
the quantity was not statistically significantly different from that
produced by unimmunized mice. In contrast, IFN-γ concentra-
tion in HF10-immunized mice was significantly higher than that
in unimmunized mice.

To confirm that memory cells of HF10-immunized mice cross-
reacted with HSV-2 proteins, we expressed HSV-2 ICP0, UL46, and
gD in NIH3T3 cells (Muller et al., 2009), used them to stimulate
splenocytes, and quantified IFN-γ concentration in the medium.
Splenocytes from HF10-immunized mice produced considerable
amounts of IFN-γ in response to gD-, ICP0-, and UL46-expressing
NIH3T3 cells (Figure 5). To confirm that protein synthesis was
necessary, we stimulated splenocytes with 186-infected NIH3T3
cells treated with ganciclovir or cycloheximide. Splenocytes stim-
ulated with ganciclovir-treated cells produced high levels of IFN-γ
(474 pg/ml) at 20 h after stimulation compared to the produc-
tion by cycloheximide-treated cells (82 pg/ml), indicating the
requirement for protein synthesis (Figure 5). There was little or
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FIGURE 3 | Immunohistochemical evaluation after HSV-2 challenge. After inoculation of wild-type HSV-2 strain 186 into HF10-immunized mice or
unimmunized mice vagina; vaginal mucosal lesions were excised at days 1, 4, and 6 after challenge, and HSV-2 antigens were stained. Arrows indicate
HSV-2-infected cells.

no production of IFN-γ by splenocytes from unimmunized mice
subjected to identical protein stimulation (Figure 5).

Furthermore, to investigate cellular responses to HSV-2 genital
infection, we performed immunohistochemical studies in mouse
vaginas on days 1 and 3 after challenge (Figure 6). In HF10-
immunized mice, CD4+ cells localized to the infective focus and
invaded the mucosal subepithelial lamina propria on both 1 and
3 days after challenge (Figure 6A). CD8+ cells were only detected
1 day after challenge (Figure 6B). In unimmunized mice, there
were no detectable CD4+ and CD8+ cells 1 day after challenge
(Figures 6A,B), but there were a few CD4+ cells in the infective
focus 3 days after challenge.

DISCUSSION
Genital herpes is an intractable disease of major public health
importance. It causes significant morbidity and psychosocial dis-
tress and increases the risk of HIV transmission (Freeman et al.,
2006; Kapiga et al., 2007). Previous HSV-1 infection provides pro-
tection against primary genital HSV-2 infection and its severity,
to some extent (Mertz et al., 1992; Bryson et al., 1993). Therefore,
immunization with HSV-1 may be useful for preventing infection
with or disease caused by HSV-2.

In this study, we evaluated the ability of the spontaneously
occurring HSV type 1 mutant HF10 to serve as a vaccine against
HSV-2-mediated genital disease. The safety of the vaccine must
be considered because HF10 is a replication-competent virus. We
determined the complete DNA sequence of HF10 and found that
the virus lacks functional expression of UL43, UL49.5, UL55,
UL56, and latency-associated transcripts (Ushijima et al., 2007).
In addition, HF10 exhibits a relatively high divergence in proteins
compared to HSV-1 strain 17. All of these changes occurred spon-
taneously. UL56 associates with the kinesin motor protein KIF1A,

and its absence reduces the neuroinvasiveness of HSV (Rosen-
Wolff et al., 1991; Berkowitz et al., 1994; Koshizuka et al., 2002).
The LAT promoter region is also reported to be associated with
neurovirulence (Jones et al., 2005; Peng et al., 2005). We previously
found that HF10 lacks neuroinvasiveness and is at least 10,000-fold
less virulent than wild-type HSV-1 in mouse models (Nishiyama
et al., 1991; Jiang et al., 1995; Mori et al., 2005). To confirm the
safety of HF10, we subcutaneously inoculated HF10 into BALB/c
nude mice. HF10 was cleared from the skin by day 5, and no nude
mouse developed zoster or died. Using clinical trials of HF10 as
cancer virotherapy, we have been evaluating the safety of HF10
through various approaches in preclinical tests (Fujimoto et al.,
2006; Kimata et al., 2006; Nakao et al., 2007). Recently, the US
Food and Drug Administration approved a phase I clinical trial of
HF10 against refractory head and neck cancer (Clinical Trials Gov,
Identifier: NCT01017185). Considering the results collectively, we
believe that HF10 is a safe vaccine candidate. One striking advan-
tage of HF10 is that it is a naturally occurring HSV-1 mutant
and is not genetically engineered. Therefore, in terms of ethical
aspects, it is not necessary to consider the safety of foreign gene
expression.

Our results indicate that immunization with HF10 protected
mice from HSV-2 primary genital infection. Immunization inhib-
ited viral replication in the vagina, reduced local inflammation,
controlled emergence of neurological manifestations of HSV-2
infection, and increased survival. We speculate that HF10 can
induce adaptive immunity against HSV-2 strain 186. However,
serum from the HF10-immunized mice elicited few neutralizing
effects against HSV-2. Therefore, humoral immunity does not
play a key role in the protection against HSV-2 genital disease.
In previous studies, the transfer of serum from HSV-immunized
mice to unimmunized mice did not reduce HSV replication in
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FIGURE 4 | Immune responses of HF10-immunized mice. (A) Serum was
obtained from HF10-immunized mice (n = 3), and its neutralizing ability
against HSV-1 strains (HF10 and KOS) and an HSV-2 strain (186) was
investigated by the reduction in plaque formation. (B) Mice were immunized
with UV-inactivated HF10 or HF10. After 4 weeks, serum (n = 3) collected
and neutralizing ability against HF10 was assayed by the reduction in plaque
formation. (C) IFN-γ produced by splenocytes stimulated with HSV-2
strain 186-infected NIH3T3 cells. Splenocytes (1 × 107 cells/dish) from
unimmunized (n = 3), UV-inactivated HF10-immunized (n = 3), or

HF10-immunized (n = 3) mice were incubated with 186-infected NIH3T3
cells (1 × 107 cells/dish) for 5 and 20 h, and the supernatants were collected.
Supernatants from three mice were combined and assayed for IFN-γ
concentrations using an ELISA. (D) IFN-γ levels in mice vagina after HSV-2
challenge. Genital tracts of unimmunized, UV-inactivated HF10-immunized,
and HF10-immunized mice were washed 0, 1, and 3 days after challenge
with strain 186, and the washes were assayed for IFN-γ concentrations by
ELISA. *P < 0.05 between unimmunized mice and HF10-immunized mice.
ND; not detected.

the vaginal mucosa, but rather protected the nervous system and
prevented lethality (McDermott et al., 1990; Eis-Hubinger et al.,
1993). Mucosal immunity against vaginal HSV-2 infection does
not depend on IgA. Regarding cellular immunity, Th1 CD4+ cell
help is required for the entry of CD8+ T cells into the geni-
tal mucosa during the effector phase of the immune response
(Nakanishi et al., 2009). Furthermore, CD4+ effector T cells them-
selves play a direct antiviral role. In the mouse vaginal infection
model, Th1 CD4+ cells enter the infected vagina and produce
high levels of IFN-γ, which blocks viral replication (Iijima et al.,
2008). Conversely, CD8+ T cells are important for preventing
reactivation of latent HSV in neurons (Zhu et al., 2007). Thus, T
cell-mediated immunity plays an important role in the prevention
of HSV genital disease. Our results indicate that HF10-immunized
mice rapidly produced high levels of IFN-γ in their vagina in
response to vaginal infection by HSV-2. Furthermore, the vaginal

sections of HF10-immunized mice revealed many CD4+ cells
concentrated in the infective focus and invading the mucosal
subepithelial lamina propria 1 and 3 days after challenge. CD8+
cells were detected only 1 day after challenge. Taking our data
and those of previous reports into consideration, protection of
HF10-immunized mice against HSV-2 genital disease appears to
be associated with cellular immunity mediated mainly by Th1
CD4+ T cells.

In this study, the serum of UV-inactivated HF10-immunized
mice had a lower neutralizing titer against HF10 than did that
of live HF10-immunized mice. In mice immunized with UV-
irradiated HF10, IFN-γ concentration in vaginal washes after
HSV-2 challenge were not significantly increased compared to
those of unimmunized mice. As a result, UV-inactivated HF10
immunization could not completely protect mice against HSV-
2 challenge. These results indicate that UV-inactivated HF10
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FIGURE 5 | Cellular immune responses of HF10-immunized mice to

HSV-2 proteins. Splenocytes (1 × 106 cells) from HF10-immunized or
unimmunized mice were collected and incubated at 37◦C for 3 h. NIH3T3
cells (1 × 106 cells) transfected with expression vectors for HSV-2 gD, ICP0,
and UL46 were added into dishes to stimulate splenocytes. To confirm

protein synthesis, 186-infected NIH3T3 cells were treated with either
10 μg/ml ganciclovir (186/GCV) or 20 μg/ml cycloheximide (186/CHX) for 8 h
and used for stimulation. The media were collected at 5 and 20 h after
addition and assayed for IFN-γ concentrations by ELISA. “Cells” denote
uninfected NIH3T3 cells used as a negative control.

FIGURE 6 | Accumulation of CD4+ and CD8+ T cells in the infection

focus of vagina after HSV-2 challenge. Unimmunized and HF10-
immunized mice were challenged with HSV-2 by intravaginal infection,
and vagina was excised 1 or 3 days later. Frozen sections were

stained with anti-CD4 (green), anti-CD8 (green), and anti-HSV-2
antibodies (red). Cell nuclei were counterstained with DRAQ5 (blue).
Images were captured with confocal microscopy at ×200
magnification. (A) Anti-CD4. (B) Anti-CD8.
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immunization induced weaker acquired immunity, in accor-
dance with the belief that killed viral vaccines are inferior to live
vaccines.

Recently, it has been reported that replication-defective HSV-1
that include the CMV promoter driving the HSV-1 gD expres-
sion cassette (CJ9-gD) effectively protects guinea pigs against
HSV-2 genital disease by inducing strong cross-reactive immunity
(Brans et al., 2008). In mice, CJ9-gD induces strong and persistent
humoral and Th1-associated cellular immunity against both HSV-
1 and HSV-2 (Brans et al., 2009; Lu et al., 2009). This indicates
not only that HSV-1 induces cellular immune responses against
HSV-2 but also that gD is a key antigen for immunity. Mean-
while, tegument proteins encoded by UL46, UL47, and UL49
also induce a Th1 type response to HSV-2 infection in BALB/c
mice (Muller et al., 2009). In this study, splenocytes from HF10-
immunized mice produced IFN-γ in response to gD-, ICP0-, and
UL46-expressing NIH3T3 cells, indicating that memory T cells
responding to epitopes of HSV-2 gD, ICP0, and a tegument protein
encoded by UL46 can be induced in HF10-immunized mice. Taken
together with the IFN-γ production in the vagina, HF10 inocula-
tion could induce Th1 type cellular immunity and protect against

severe HSV-2 infection. Due to the high amino acid sequence
homology between gD-1 and gD-2 (Lasky and Dowbenko, 1984),
the memory T cell response to gD may play an important role in
the mechanism underlying protection against HSV-2 infection by
HF10 inoculation.

In summary, we demonstrated that immunization with HF10,
a non-engineered, naturally occurring HSV-1 mutant, protected
mice against severe genital disease caused by HSV-2. Immuniza-
tion with HF10 inhibited HSV-2 replication in the vagina, reduced
local inflammation, blocked neuroinvasiveness, and increased sur-
vival. The protective effect was related to the induction of cellular
immunity mediated mainly by Th1 CD4+ T cells. These results
indicate that HF10 is a promising candidate antigen for inclusion
in a vaccine against both HSV-1 and HSV-2 infection. Moreover,
our data support the hypothesis that previous infection with HSV-
1 provides a degree of protection against primary genital HSV-2
infection and attenuates its severity.
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