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Abstract
Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer’s disease. Mitochondria are the center of intracellular 
energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key 
factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act 
in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochon-
drial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive 
impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. 
In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dys-
function and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive 
impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality 
control on the progression of cognitive impairment in T2DM.
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Introduction

It is estimated that there are 537 million people living with 
diabetes worldwide and this number is expected to over 783 
million in 2045, due to the aging population and increased 
longevity [1]. Type 2 diabetes (T2DM) is a major subtype of 
diabetes, accounting for more than 90% of all diabetes cases 
[2]. T2DM is characterized by relative insulin deficiency 
caused by pancreatic β-cell dysfunction and insulin resist-
ance in target organs [3, 4]. Clinical studies have found that 
T2DM causes atrophy in frontal and temporal regions of 
the brain, especially the hippocampus, which is associated 
with poorer visuospatial construction, executive function, 
and memory function [5–7]. It has been found that T2DM 
increases the risk of multiple forms of cognitive impairment, 
including Alzheimer’s disease (AD) [8, 9]. A meta-analysis 
suggested that patients with diabetes had a 56% increased 
risk of AD [10].

The cognitive changes associated with T2DM appear to 
begin in the prediabetic phase of insulin resistance [11]. The 
brain is an organ susceptible to insulin. It is rich in insulin 
receptors in areas closely related to cognitive memory, such 
as the hippocampus [12]. Studies have shown that decreased 
brain sensitivity to insulin can lead to energy failure and ad 
like pathological changes, including amyloid beta peptide 
(Aβ) deposition and aberrant tau phosphorylation, leading 
to impaired nerve growth, synaptic plasticity, and cogni-
tive function [13–15]. This suggests an association between 
AD and T2DM. In fact, AD is considered a brain-specific 
form of diabetes. AD patients have shown reduced brain 
insulin receptor sensitivity, hyperphosphorylation of insulin 
receptor and downstream second messenger such as insulin 
receptor substrate-1 (IRS-1) [16–18]. Cognitive function 
improved after treatment with insulin sensitizer or intranasal 
insulin in patients with AD [19–21].

The cognitive function of the brain depends on synaptic 
communication between neurons. This leads to high lev-
els of energy demand, so synapses are rich in mitochondria 
[22, 23]. Mitochondria are also a major source and target of 
intracellular reactive oxygen species (ROS). Multiple stud-
ies have shown that mitochondrial dysfunction may be a 
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key player in diabetes-associated brain alterations contrib-
uting to neurodegenerative events [24–26]. In the insulin 
resistant brain, the structural and functional damage of brain 
mitochondria was observed, including reduced mitochon-
drial electron transport chain (mETC) activity, decreased 
mitochondrial respiration and massive production of ROS 
[27–30]. This not only leads to energy exhaustion, but also 
oxidative stress. Uncontrolled oxidative stress can promote 
the accumulation of Aβ in synaptic mitochondria, induce 
neuronal apoptosis and lead to cognitive impairment 
[30–33].

Numerous quality control mechanisms have evolved 
within mitochondria to maintain proper function basally 
and in response to stress, including proteostasis, biogenesis, 
dynamics, and mitophagy [34]. Mitochondrial protein import 
is controlled and occurs in their unfolded form through 
various translocases, which is supported by mitochondrial 
membrane potential [35, 36]. Molecular chaperones and 
intramitochondrial proteases control the integrity and proper 
assembly of the imported proteins [37, 38]. In addition, parts 
of or even entire mitochondria can be removed via several 
mechanisms as discussed later [39, 40]. In this review, we 
focus on mitochondrial dysfunction, and summarize cur-
rent knowledge of the role of mitochondrial quality control 
mechanisms in cognitive dysfunction in diabetes.

Mitochondrial Dysfunction as a Link Between T2DM 
and AD

Studies have shown that a high-fat diet results in an 
increased flux of free fatty acids into circulation, which 
are absorbed by the liver or skeletal muscle for beta-oxi-
dation in the mitochondria or stored as triglycerides [41, 
42]. When fatty acid flux exceeds the processing capac-
ity of these pathways, fatty acid metabolic intermediates 
(particularly ceramide) will accumulate [43, 44]. Although 
the role of ceramide in the formation of insulin resist-
ance is contentious, some evidence suggests that cera-
mide may contribute to brain insulin resistance [45–51]. 
Ceramide can enter the brain through the blood–brain 
barrier, and can also be produced in the brain through 
de novo synthesis or sphingomyelin hydrolysis [50–53]. 
In canonical insulin signaling, insulin binds to insulin 
receptor, inducing IR autophosphorylation, recruitment 
of insulin receptor substrate (IRS) adaptor proteins, and 
then activates phosphatidylinositol 3-kinase (PI3K)/AKT 
pathway, thereby exerting a variety of anabolic activities 
[54]. Ceramide can activate c-Jun N-terminal kinase (JNK) 
and IκB kinase to inactivate IRS-1 phosphorylation, and 
also inhibit the PI3-K/Akt pathway through protein phos-
phatase 2A dephosphorylation, leading to insulin signaling 
disruption and neuronal apoptosis [55, 56]. Interestingly, 
exposure to ceramide also leads to neuronal mitochondrial 

dysfunction. However, the role of mitochondrial dysfunc-
tion in the formation of brain insulin resistance is largely 
unknown, and few studies suggest that mitochondrial dys-
function contributes to brain insulin resistance [27, 57]. 
A study has shown that high glucose induces neuronal 
mitochondrial dysfunction, and subsequent mitochondrial 
dysfunction leads to impairment of the AMPK/Akt path-
way, which is part of the insulin pathway and may lead to 
insulin resistance [57].

Insulin signaling has important implications for brain 
mitochondrial function [58, 59]. PI3-K/Akt can activate 
glucose transporter 3 to promote glucose uptake in neurons, 
and induce hexokinase II to bind to the mitochondrial outer 
membrane to promote glycolysis [60–62]. Pyruvate pro-
duced by glycolysis enters the mitochondria and is converted 
into acetyl-CoA as a substrate for the TCA Cycle. In addi-
tion, the interaction between Akt and hexokinase may inhibit 
the release of cytochrome c and maintain the structural and 
functional integrity of mitochondria, thus inhibiting neu-
ronal apoptosis [63, 64]. In addition, Akt can also regulate 
mitochondrial biogenesis by regulating PGC-1α expression 
via mTOR to control mitochondrial oxidation [65, 66]. insu-
lin signalling can also inhibit forkhead box O 1 (FOXO1) 
to inhibit the expression of heme oxygenase-1, which oxi-
dizes heme to bilirubin and free  Fe3+ to affect the activity of 
mitochondrial electron transport chain (mETC) and reduce 
NAD/NADH ratio and ATP production [59, 67]. Indeed, 
mitochondrial dysfunction, including reduced mitochon-
drial membrane potential, decreased mETC activity, reduced 
ATP production, and increased ROS, have been observed in 
T2DM and in insulin-resistant brains, while improved insu-
lin signaling reversed these changes and improved synaptic 
plasticity and cognitive function [25, 68–70].

Neurodegenerative mechanism may work synergisti-
cally with T2DM to damage brain mitochondrial struc-
ture and function and cognition. During the development 
of brain insulin resistance, ceramide promote cleavage of 
amyloid beta precursor protein (APP) by β and γ-secretase 
to produce Aβ, which is the pathogenic molecule of AD 
[71, 72]. Meanwhile, high insulin levels in T2DM circula-
tion can compete with Aβ for binding to insulin-degrad-
ing enzymes, reducing Aβ degradation [73]. Abnormal 
Aβ production and clearance will lead to its excessive 
accumulation in the brain. In turn, accumulated Aβ can 
compete with insulin for binding to the insulin receptor, 
reduce insulin receptor autophosphorylation, and decrease 
the affinity of insulin to its receptors, leading to disruption 
of insulin signaling [74]. Abeta oligomer also activates 
JNK leading to IRS-1 phosphorylation and degradation 
[75]. Therefore, a vicious circle may exist between insulin 
resistance and AD pathology. Elevated Aβ accumulates 
in synaptic mitochondria prior to extracellular accumula-
tion, inhibiting mitochondrial respiration and biogenesis, 
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resulting in overproduction of ROS, impaired mETC 
function, and altered calcium homeostasis [76–79].The 
increase of ROS in turn increases APP processing and Aβ 
production [80, 81].

Mitochondria are cellular energy factories. Cognitive 
function depends on the activity of neurons and synaptic 
connections, including the generation of action potentials, 
vesicle circulation, and neurotransmitter release [82, 83]. 
The high energy requirements generated by these pro-
cesses and limited glycolysis capacity cause neurons to be 
extremely dependent on mitochondria [84]. Both insulin 
resistance and accumulation of Aβ lead to mitochondrial 
dysfunction, affecting energy supply to brain neurons, 
resulting in failure of neuronal metabolic control and pro-
moting neurodegeneration [85–87]. In addition, the brain 
is highly vulnerable to oxidative stress due to its high rate 
of oxygen consumption and high levels of polyunsatu-
rated fatty acids, coupled with low activity of antioxidant 
enzymes and high levels of pro-oxidative metal ions (such 
as  Fe2+) [88, 89]. Mitochondria are also a major source 
and target of ROS, the initial form of ROS being superox-
ide  (O2

·−), which is later converted to hydrogen peroxide 
 (H2O2). Mitochondrial dysfunction produces excessive 
ROS, reduces mETC activity and ATP synthesis [90]. 
Meanwhile, mitochondrial DNA (mtDNA) encoding res-
piratory chain complexes is susceptible to ROS, resulting 
in oxidative damage and mutation of mtDNA, which fur-
ther damages the function of mETC and aggravates energy 
failure and oxidative stress [91]. In T2DM, enhanced 
mitochondrial ROS levels have also been observed to 
activate the apoptotic cascade by triggering the release of 
cytochrome c, leading to neuronal apoptosis and impaired 
cognition [92, 93]. In T2DM, oxidative stress also induces 
a novel form of iron-mediated cell death via phospholipid 
peroxidation, ferroptosis. In hippocampal neurons of db/
db mice, upregulation of transferrin receptor 1 levels 
and decreased levels of ferroportin-1 and Ferritin heavy 
chain, decreased expression of mitochondrial ferritin and 
increased expression of mitoferrin were observed, suggest-
ing hippocampal neuronal and mitochondrial iron overload 
[94, 95]. Excess  Fe2+ can react with  H2O2 generated to 
generate hydroxyl radicals (•OH) with stronger oxidative 
ability through Fenton reaction, and undergo lipid peroxi-
dation reaction with unsaturated fatty acids [96]. Elevated 
mitochondrial ROS and decreased glutathione peroxidases 
activity lead to accumulation of lipid peroxides, which 
trigger ferroptosis and cognitive deficits in hippocampal 
neurons in T2DM and AD [94, 97].

Given the complex links between mitochondrial dysfunc-
tion and insulin resistance, impaired energy metabolism, 
accumulation of Aβ, and oxidative stress, mitochondrial 
dysfunction may be a bridge between T2DM and AD, lead-
ing to cognitive impairment.

Mitochondrial Protein Quality Control

In humans, only 13 proteins involving the subunit of res-
piratory chain complexes are encoded by the mitochondrial 
genome, while the remaining 1500 proteins are encoded by 
nuclear DNA [98]. Mitochondrial-encoded proteins can be 
inserted co-translationally into the inner membrane via the 
oxidase assembly protein complex [99, 100]. Precursor pro-
teins encoded by nuclear DNA are produced on cytoplasmic 
ribosomes and subsequently imported into mitochondria in 
unfolded form with the help of molecular chaperones [101, 
102]. With the support of mitochondrial membrane poten-
tial, precursor proteins are transported to the mitochondrial 
matrix through the translocase of the outer membrane com-
plex on the outer mitochondrial membrane (OMM) and 
translocase of the inner membrane complex on the inner 
mitochondrial membrane (IMM) [103–106]. Precursor pro-
teins entering the matrix are processed by mitochondrial 
processing peptidase, and then the molecular chaperones 
assists in folding imported proteins [107–110]. Misfolded 
or redundant proteins are degraded by ATP-dependent pro-
teases [111–114]. When the accumulation of unfolded or 
misfolded proteins exceeds the cleaning capacity of mito-
chondria, the mitochondrial unfolded protein response 
 (UPRmt) is induced [115]. In  UPRmt, signals released from 
mitochondria trigger transcription of nuclear genes that 
encode mitochondrial chaperones and proteases to prevent 
harmful proteins from accumulating in the mitochondria 
[116–118]. Figure 1 illustrates the process of mitochondrial 
protein quality control.

Limited evidence shows defects in the quality control of 
mitochondrial proteins in diabetes. The levels of mitochon-
drial protease (Lon Peptidase 1) and mitochondrial chap-
erones (heat shock protein 60 and 70) were significantly 
reduced in the brain of T2DM mice, suggesting a deficiency 
of  UPRmt [119, 120]. Metformin can induce  UPRmt and sig-
nificantly improve the function of brain mitochondria in 
T2DM mice [120]. In addition, the increased expression of 
heat shock protein 70 in the brain can improve insulin sensi-
tivity and glycemic control [121]. Decreased mitochondrial 
chaperones heat shock protein 60 and 10 in the hypothala-
mus of T2DM lead to mitochondrial dysfunction and trigger 
neuronal insulin resistance, suggesting that defects in mito-
chondrial protein quality control may play an important role 
in the development of insulin resistance [122, 123]. How-
ever, the link between mitochondrial protein quality control 
system and cognitive impairment in T2DM remains largely 
unknown.

Mitochondrial Biogenesis

Mitochondrial biogenesis is a compensatory response 
secondary to the damaged respiratory apparatus and low 
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ATP production, aiming to replenish mitochondrial com-
ponents. In neurons, mitochondrial biogenesis mainly 
occurs in soma [124]. Peroxisome proliferator-activated 
receptor gamma coactivator-1-alpha (PGC-1α) is regarded 
as the core of transcriptional control of mitochondrial 
biogenesis, activated by sirtuin 1 (SIRT1) and AMP-
activated protein kinase (AMPK) induced deacetylation 
and phosphorylation, respectively [125]. It can augment 
the expression and activity of several critical transcrip-
tion factors, including nuclear respiratory factor 1 (NRF1) 
and nuclear factor erythroid 2-related factor 2 (NRF2), 

peroxisome proliferator-activated receptor-α, oestrogen-
related receptor-α and transcriptional repressor protein 
YY1 [126, 127]. Recent studies have found that NRF2 
transcriptionally not only increases mitochondrial biogen-
esis, but also regulates mitochondrial genes in cooperation 
with PGC-1α. NRF2 can bind to PGC-1α to enhance gene 
induction of NRF1 and mitochondrial transcription fac-
tor A (TFAM), which is a key enhancer protein ensuring 
mtDNA replication by mtDNA polymerase γ [128–130]. 
These transcription factors can improve mitochondrial 
function and against oxidative stress and inflammation 

Fig. 1  Mitochondrial protein quality control. Mitochondrial proteins 
encoded by nuclear genes are produced in the cytoplasmic ribosome, 
and molecular chaperones keep the precursor proteins unfolded. Pre-
cursor proteins pass through and enter the mitochondria through the 
TOM and TIM complexs on the OMM. After the precursor protein 
that enters the matrix is processed by MPP, the mitochondrial chap-
erones folds it to maturity. Misfolded proteins can be hydrolyzed by 

proteases. Mitochondrial-encoded proteins can be co-translationally 
inserted into the IMM via OXA1. TOM translocases of the outer 
mitochondrial membrane, TIM translocase of the inner membrane, 
OMM outer mitochondrial membrane, IMS intermembrane space, 
IMM inner mitochondrial membrane, MPP mitochondrial processing 
peptidase, OXA1 oxidase assembly protein 1
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by regulating the expression of related proteins [131, 
132]. Figure 2 illustrates the process of mitochondrial 
biogenesis.

The study showed that the expression of SIRT1 and 
PGC-1α in the brain of T2DM mice decreased significantly 
[120]. Decreased PGC-1α expression and activation in hip-
pocampal neurons of T2DM mice leads to blocked mito-
chondrial biogenesis and mitochondrial dysfunction, trig-
gers neuronal loss, and promotes cognitive impairment in 
diabetes [133, 134]. Downregulation of PGC-1α in the hip-
pocampus of T2DM may result from dipeptidyl peptidase-4 
binding to protease-activated receptor 2 and triggering gly-
cogen synthase kinase-3β (GSK3β) activation [133]. Insulin 
signaling has also been found to be involved in regulating 
PGC-1α expression, affecting mitochondrial biogenesis 
[135, 136]. It was found that hyperinsulinemia caused by 
T2DM activates the hyperactivation of the insulin signaling 
factor Akt in the anterior cortex and hippocampus, resulting 
in the phosphorylation inactivation of FOXOs and subse-
quent reduction of PGC-1α, and accumulation of Aβ [137]. 
Interestingly, another study in UCD-T2DM rats showed 
that with the progression of brain insulin resistance, AMPK 
phosphorylation and SIRT levels in hippocampal neurons 
decreased, and mitochondrial biogenesis-related PGC-1α 

and TFAM expressions were significantly decreased, leading 
to increased lipid peroxidation and decreased synaptic plas-
ticity in hippocampal neurons [138]. A study using primary 
rat cortical neurons also showed that palmitate induces neu-
ronal insulin resistance and suppresses PGC-1α expression, 
contributing to mitochondrial dysfunction and decreased 
cell viability [139]. These studies suggest that PGC-1α has 
beneficial effects on diabetic brain neurons, and impaired 
insulin signaling may induce and exacerbate neuronal dam-
age through inhibition of PGC-1α.

Mitochondrial Dynamics

Mitochondria are highly dynamic organelles that continu-
ally undergo fusion and fission [140, 141]. Mitochondrial 
fusion promotes mixing of membranes and contents between 
mitochondria to supplement oxidative damage components, 
safeguard mtDNA integrity and preserve mtDNA function in 
the face of mutations [142, 143]. Mitochondrial fission con-
tributes to the even partitioning of mitochondria to daughter 
cells during mitosis, and separation of damaged mitochon-
dria for autophagic degradation [144, 145]. Two classes of 
dynamin-like protein are involved in mitochondrial fusion, 
including mitofusin (MFN) and optic atrophy 1 (OPA1). 
MFN mediate IMM fusion. MFN1 and MFN2 on the OMM 
of two adjacent mitochondria form both homooligomeric 
and heterooligomeric complexes to promote mitochondrial 
fusion, which depends on GTP hydrolysis, and can be medi-
ated by GTPase domain [146, 147]. The fusion of IMM is 
mediated by OPA1. OPA1 is encoded by nuclear genes and 
introduced into mitochondria through the mitochondria pro-
tein quality control system [148]. The OPA1 entering the 
mitochondria is hydrolyzed by protease in the matrix to form 
long isoform and short isoform OPA1 [149]. the long iso-
form OPA1 is anchored on the IMM, and the short isoform 
OPA1 regulates the fusion activity by forming a complex 
with the long isoform OPA1 [146, 150]. In addition, OPA1 
is also involved in the formation of mitochondrial cristae 
[151].

The key to mitochondrial fission is dynamin-related pro-
tein 1 (Drp1). Most mitochondrial fission occurs where ER 
tubules crossing or wrapping around. During fission, endo-
plasmic reticulum (ER) tubules mark sites of mitochondrial 
division and mediated constriction [152]. Then, Drp1 is 
recruited from the cytosol to the OMM at ER tubules mark 
sites by its receptors fission protein 1 (Fis1), mitochondrial 
fission factor (MFF), mitochondrial elongation factor 2 and 
mitochondrial elongation factor 1 [153]. Researchs suggest 
that although they all have the ability to recruit Drp1 to 
mitochondria alone, MFF and MID seem to be more impor-
tant that their interplay could regulate Drp1 to promote mito-
chondrial fission [154, 155]. The recruited Drp1 molecules 
assemble into a ring-like structure to constricts and cleaves 

Fig. 2  Mitochondrial biogenesis. Mitochondrial biogenesis is mainly 
regulated by PGC1-α. PGC1-α activates the expression of NRF1/2, 
thereby enhancing the expression of TFAM and promoting mitochon-
drial DNA replication and transcription. PGC1-α peroxisome prolif-
erator-activated receptor-γ co-activator 1α, NRF1 nuclear respiratory 
factor 1, NRF2 nuclear factor erythroid 2-related factor 2, TFAM tran-
scription factor A
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mitochondria by GTP hydrolysis [156]. Dynamin 2 also 
found to be involved in mitochondrial fission, but not neces-
sary [157]. Figure 3 illustrates the process of mitochondrial 
fusion and fission.

In the hippocampus of type 2 diabetic mice and high 
glucose cultured human SK cells, GSK3β was activated to 
promote the significant expression and mitochondrial trans-
location of Drp1, which exacerbated mitochondrial fission 
and subsequently damaged the morphology and function 
of mitochondria [30]. Interestingly, levels of Mfn1, Mfn2, 
OPA1 were not altered in diabetic hippocampus, which 
was consistent with some research results [30, 69, 158]. 
However, some studies report that Opa1 was reduced in the 
cortex of GK mice with T2DM [159]. Knockout or inhibi-
tion of Drp1 significantly improves mitochondrial mass and 
reduces diabetes-induced hippocampal synaptic damage [30, 
133]. However, it has been found that hippocampal neurons 
in neuron-specific Drp1-deficient T2DM mice exhibited 
marked mitochondrial dysfunction and synaptic damage, 
and higher levels of oxidative stress and neuroinflamma-
tion, which may be due to the fact that Drp1 knockdown 
inhibits mitochondrial fission and impairs the autophagy 
process [160]. In the hippocampal neurons of T2DM mice 
and PC12 cells cultured with high glucose, it was further 
found that promoting FUNDC1-mediated mitophagy can 

eliminate mitochondrial fragmentation caused by overac-
tivated Drp1, reduce mitochondria-derived apoptosis, and 
thus alleviate diabetic cognitive impairment [161]. In addi-
tion, in vitro studies have shown that high glucose increases 
nitric oxide in cortical and hippocampal neurons in an 
N-methyl-D-aspartate receptor-dependent manner, leading 
to S-nitrosylation of Drp1, which leads to excessive mito-
chondrial division, impairs neuronal energy generation, and 
leads to synaptic loss and reduced plasticity [162]. These 
studies suggest that mitochondrial fragmentation owing to a 
loss of mitochondrial dynamics has a key role in the progres-
sion of cognitive impairment in diabetes.

Mitophagy

Mitophagy is a selective form of autophagy, that mediates 
the removal of defective and superfluous mitochondria. 
Mitophagy can promote mitochondrial turnover, avoid 
the accumulation of damaged mitochondria that can lead 
to cell degeneration, and adjust mitochondrial numbers to 
meet the energy demand [163]. Defects in mitophagy have 
been implicated in a variety of neurodegenerative diseases 
[164]. The process of mitophagy includes the detection and 
separation of damaged mitochondria, the recruitment of 

Fig. 3  Mitochondrial fusion and fission. MFN1/2 interaction on adja-
cent mitochondria regulates OMM fusion. OPA1 mediates the fusion 
of IMM. Drp1 is recruited from the cytoplasm to the cleavage site 

of the OMM through its receptor, where it forms a ring-like structure 
to cleave mitochondria. MFN1/2 mitofusin ½, Drp1 dynamin-1-like 
protein
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phagosomes and subsequent autophagic degradation [165]. 
Figure 4 illustrates the process of mitophagy.

Like other forms of autophagy, mitophagy is activated 
by phosphorylation of the Unc-51 like autophagy activating 
kinase 1 (ULK1) complex, typically by AMPK [166]. ULK1 
induces nucleation of the phagophore by phosphorylating 
beclin 1 and activating class III PI3K complex [167]. The 
phagophore membrane extends and completely engulfs the 
target mitochondria and matures into an autophagosome 
mediated by Atg12-Atg5-Atg16 and LC3/Atg8 systems. 
During this period, the microtubule-associated protein 1 
light chain 3 (LC3-I) is processed to LC3-II that is incor-
porated into the double membranes of the autophagosomes 
[168]. Then, the autophagosomes fuses with the lysosomes, 
resulting in the degradation of its cargo by acid hydrolases 
[169]. Several pathways have been found to detect target 
mitochondria and recruit autophagosomes for degradation to 
achieve the selectivity and specificity of mitophagy.

PINK1/Parkin-mediated mitophagy is the most well-
known pathway. PTEN- induced kinase 1 (PINK1) is regu-
lated by mitochondrial protein quality control mechanisms 
[99]. Under normal circumstances, PINK1 is introduced into 
IMM through TOM and TIM complexes, where it is cleaved 

by IMM protease presenilin-associated rhomboid-like, and 
then it is released into cytoplasm and degraded by protea-
some [170]. The decrease of the membrane potential during 
mitochondrial dysfunction inhibits the entry of PINK1 into 
IMM through TIM complexes, resulting in the accumulation 
of PINK1 on the OMM.

On the mitochondrial surface, PINK1 recruits and phos-
phorylates Parkin to relieve its auto inhibited state and 
increase its E3 ligase activity [171]. PINK1 also phospho-
rylates Ubiquitin. Activated Parkin ubiquitylates multiple 
OMM proteins builds poly-ubiquitin chains on the OMM 
proteins, which in turn recruit autophagy receptor proteins, 
including p62, Next to BRCA1 gene 1 (NBR1), Nuclear 
domain 10 protein 52, Optineurin and Tax 1 binding protein 
1 [172]. Autophagy receptor proteins simultaneously bind 
poly-ubiquitin chains in mitochondria through their ubiquitin 
binding domains, and LC3 on autophagosome membranes, 
which promotes the target mitochondria to be engulfed by 
autophagosomes, then autophagosomes fuse with lysosomes 
and lysosomal hydrolases degrade polyubiquitinated mito-
chondria [172, 173].

In addition to the classic PINK1/Parkin-related 
mitophagy, other autophagy receptors have also been 

Fig. 4  Mitophagy. ULK1 is activated by AMPK, induces nucleation 
of the phagophore by phosphorylating beclin 1 and activating Vps34 
complex. Atg12-Atg5-Atg16 and LC3 further mediate autophago-
some formation. LC3-I is processed into LC3-II and incorporated into 
the autophagosome membrane. Decreased mitochondrial membrane 
potential inhibits PINK1 entry into mitochondria, leading to PINK1 
accumulation on OMM. Then, PINK1 recruits parkin from the cyto-
plasm to catalyze the formation of polyubiquitin chains on OMM 
proteins, which are then recognized by autophagy receptor proteins 

to form mitophagosome. Among other pathways of mitophagy, 
BNIP3, NIX and FUNDC1 in the OMM can directly bridge mito-
chondria to autophagosomes by interacting with LC3-II. ULK1 Unc-
51 Like Autophagy Activating Kinase 1, AMPK AMP-activated pro-
tein kinase, Vps34 class III phosphatidylinositol 3-kinase, LC3 light 
chain 3, PINK1 PTEN- induced kinase 1, BNIP3 BCL2/Adenovirus 
E1B 19 kDa Interacting Protein 3, NIX Nip3-like protein X, FUNDC1 
FUN14 domain containing 1



2165Neurochemical Research (2022) 47:2158–2172 

1 3

found to regulate mitophagy, including Nip3-like protein 
X (NIX), BCL2/Adenovirus E1B 19 kDa Interacting Pro-
tein 3 (BNIP3), FUN14 domain containing 1 (FUNDC1). 
Under hypoxia, the expression of BNIP3 can significantly 
up regulate through hypoxia-inducing factor-1α, the inactive 
monomer BNIP3 in the cytosol forms a stable homodimer 
and is anchored to the OMM via its C-terminal transmem-
brane domain [174, 175]. The homodimer of BNIP3 can 
interact with LC3, which is further regulated by Ser17 and 
Ser24 phosphorylation near the LIR motif [176]. BNIP3 
and NIX are proteins with homology to BCL2 in the BH3 
domain. Similar to BNIP3, NIX is integrated into the OMM 
through dimerization and then binds to LC3 [177]. Several 
studies have reported that BNIP3 and NIX are also involved 
in PINK1/Parkin mediated mitophagy. NIX is ubiquitylated 
by Parkin, which promotes the recruitment of NBR1 to mito-
chondria [178]. BNIP3 can inhibit PINK1 proteolysis and 
promote its accumulation on OMM [179]. Of note, BNIP3 
and NIX can also induce cell death [180]. FUNDC1 is an 
OMM protein that mediates hypoxia-induced Parkin-inde-
pendent mitophagy by directly binging to LC3 [175, 181]. 
Under basal conditions, the activity of DC1 binding to LC3 
is inhibited by phosphorylation of casein kinase 2 at serine 
13 and SRC kinase at tyrosine 18 [182]. When encounter-
ing hypoxia, FUNDC1 is dephosphorylated by phospho-
glycerate mutase family member 5 (PGAM5) at serine 13 
and phosphorylated by ULK1 at serine 17, which increases 
interaction with LC3 to promote mitophagy [183, 184]. In 
addition, FUNDC1 interacts with OPA1 under normal con-
ditions, while under mitochondrial stress, this interaction 
is reduced and promotes Drp1 recruitment to mitochondria 
[185]. It further reveals the “coupling” mechanism between 
mitochondrial dynamics and mitophagy.

In vitro models of diabetes, mitophagy of SK-N-MC 
and SH-SY5Y cells is significantly triggered in response to 
mitochondrial dysfunction and apoptosis induced by high 
glucose. The mitophagy seems to depend on PINK1 rather 
than BNIP3 or NIX, and has the effect of protecting neu-
ronal cells. Melatonin could enhance PINK1-dependent 
mitophagy via the MT2/Akt/NF-κB pathway, thereby pre-
venting ROS accumulation and antiapoptosis in neuronal 
cells under high glucose conditions [186]. However, some 
research found that LC3-II and p62 increased and PINK1 
decreased in the midbrain of diabetic mice, indicating that 
autophagic flux is blocked. This was also seen in neuron-
like PC12 cells cultured in high glucose. High glucose 
significantly blocked autophagic flux and inhibited PINK1/
Parkin mediated mitophagy to reduced the viability of 
PC12 cells [187]. Significantly, these studies suggest that 
the enhancement of PINK1/Parkin mediated mitophagy 
is an important way to rescue neuronal cells in diabetes 
[186, 187]. Recent studies have also found the role of 

FUNDC1 related mitophagy in diabetic cognitive impair-
ments. In T2DM mice, the dephosphorylation of FUNDC1 
was inhibited, which promoted oxidative stress and neu-
roinflammation, resulting in apoptosis of hippocampal 
neurons. Similarly, the destruction of autophagic flux and 
the inhibition of FUNDC1-dependent mitophagy induced 
by high glucose exacerbated the apoptosis of PC12 cells. 
Activation of the Rac1/ROS axis appears to be an effective 
approach to prevent hyperglycemia-induced neurotoxicity 
by modulating FUNDC1-dependent mitophagy [161].

Conclusion and Future Directions

Mitochondrial quality control is critical for the homeosta-
sis of the mitochondrial network. The damage to multiple 
control mechanisms, such as imbalanced mitochondrial 
dynamics, impaired mitophagy and proteostasis disorder, 
was observed in diabetic cognitive impairment. However, 
the relative contribution of each dysregulated mechanism 
to cognitive impairment in diabetes is still unclear. In addi-
tion, because the mitochondrial qualitycontrol mechanism 
is a complex integrated hierarchical network of pathways, 
the changes of different quality control mechanisms can 
affect each other, and then alter the results of quality con-
trol. For example, proteins produced by mitochondrial bio-
genesis require the mitochondrial protein quality control 
system for import into mitochondria and proper assem-
bly, and inhibition of mitochondrial fission might damage 
mitophagy and mitochondria biogenesis. Although current 
studies have noted that diabetes could affect interactions 
between mitochondrial quality control mechanisms, the 
functional consequences of these interactions are not fully 
understood and requires further experiments to determine 
the exact nature of their interplay. In conclusion, dissect-
ing the mitochondrial quality control mechanisms and 
their interaction might be exploited to unveil new path-
ways for the prevention and treatment of diabetic cognitive 
impairment.
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