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Database and Computer Program

NeProc predicts binding segments in intrinsically disordered
regions without learning binding region sequences
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Intrinsically disordered proteins are those proteins
with intrinsically disordered regions. One of the unique
characteristics of intrinsically disordered proteins is the
existence of functional segments in intrinsically dis‐
ordered regions. These segments are involved in binding
to partner molecules, such as protein and DNA, and
play important roles in signaling pathways and/or tran‐
scriptional regulation. Although there are databases
that gather information on such disordered binding
regions, data remain limited. Therefore, it is desirable to
develop programs to predict the disordered binding
regions without using data for the binding regions. We
developed a program, NeProc, to predict the disordered
binding regions, which can be regarded as intrinsically
disordered regions with a structural propensity. We
only used data for the structural domains and intrinsi‐
cally disordered regions to detect such regions. NeProc
accepts a query amino acid sequence converted into a
position specific score matrix, and uses two neural net‐
works that employ different window sizes, a neural net‐
work of short windows, and a neural network of long
windows. The performance of NeProc was comparable

Corresponding author: Satoshi Fukuchi, Department of Life Science
and Informatics, Faculty of Engineering, Maebashi Institute of
Technology, Kamisadori 460-1, Maebashi, Gunma 371-0816, Japan.
e-mail: sfukuchi@maebashi-it.ac.jp

to that of existing programs of the disordered binding
region prediction. This result presents the possibility to
overcome the shortage of the disordered binding region
data in the development of the prediction programs for
these binding regions. NeProc is available at http://
flab.neproc.org/neproc/index.html
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Introduction
Intrinsically disordered proteins (IDPs) contain regions

that lack unique three-dimensional (3D) structures under
physiological conditions [1–3]. Computer programs can be
used to predict intrinsically disordered regions (IDRs)
using amino acid sequences as input data. In silico analysis
has disclosed the nature of IDPs, and has revealed that they
are abundant in eukaryotes, in residues with frequent post-
translational modifications, such as phosphorylation, and
that nuclear proteins contain many IDRs [4,5]. Many
programs have been developed to predict IDRs, and their
performance has improved [6–9].

A unique feature of IDPs is their ability to bind to
partner proteins and/or other biological molecules. The
regions involved in binding are short segments that range

The protein binding regions found in the intrinsically disordered regions play pivotal roles in important biological processes. We developed
NeProc to predict such binding regions without using experimental data for binding regions. NeProc demonstrated a performance comparable
to state-of-the-art programs. Since data for such binding regions remains limited, out findings highlight a possible method for overcoming the
shortage of binding region data in developing prediction programs for disordered binding regions.
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from a few to tens of residues, and some can adopt local
two-dimensional structures based on binding. This
phenomenon is referred to as the coupled folding and
binding mechanism [10], and through this mechanism,
IDRs play crucial roles in various biological processes,
such as signal transduction and transcriptional regulation
[2,3,11,12]. Interactions via IDRs are involved in liquid-
liquid phase separation, which is important in many
biological processes and diseases [13–16].

Although some programs can predict both IDRs and
binding segments in IDRs [7,17], there is scope for
improvement in predicting disordered binding regions.
However, one of the difficulties in predicting these regions
is the lack of defined examples of disordered binding
regions. Many programs predicting IDRs employ machine
learning approaches, in which increased training data
enables better performance. Some databases collect such
disordered binding regions together with their structures in
the binding complexes. These binding regions are termed
molecular recognition features (MORFs) [18], short linear
motifs (SLiMs) [19], and disordered binding sites (DIBSs)
[20]. We also developed the IDP database IDEAL [21,22],
that collects IDRs and experimentally verified disordered
binding regions, which are termed protean segments
(ProSs). Despite an effort to experimentally determine such
disordered binding regions, the number of examples is
insufficient; IDEAL has number of 146,276 ordered
residues, 33,053 disordered residues, and 9,444 ProS
residues. Considering their importance, there must be more
interactions via IDRs that require accurate programs to
predict disordered binding regions.

When IDRs were predicted in an amino acid sequence,
we observed that disordered binding regions demonstrated
some structural propensity. These binding regions are
reported to have greater similarity to structural domains
(SDs) than IDRs in terms of sequence conservation [23],
and exhibit a mixture characteristics of SDs and IDRs in
the amino acid composition [24]. Thus, disordered binding
regions can be defined as short segments with structural
properties located in long IDRs. If a segment with
structural propensity is identified in a long IDR, the binding
regions in IDRs can be predicted. Considering the limited
examples of disordered binding regions and the abundance
of SD data, we developed a new program, NeProc (Next
ProSs Classifier), to predict binding regions in IDRs
without using data for disordered binding regions.

Materials and Methods
We aimed to predict the binding regions in IDRs

without using the disordered binding region data. We
developed NeProc by employing similar methods used in
the reference programs in order to validate the impact of
the training data. ANCHOR2 [8], DISOPRED3 [7], and

MoRFchibi-Web [25] were selected as the references.
ANCHOR2 uses the statistical potential of the program
IUpred2 [8] to predict the disordered binding regions. The
potential estimates residue pair contact using the SD. In this
sense, ANCHOR2 is similar to NeProc in that both use the
SD data, but ANCHOR2 does not use machine learning
techniques. The other programs, DISOPRED3 and
MoRFchibi-Web, employ the traditional neural network
and/or the support vector machine with the use of the
disordered binding regions as the training data. We
developed NeProc using similar methods to these two
programs; thus, these two programs are similar to NeProc
in terms of the methods used, but are dissimilar in terms of
training data. NeProc predicts disordered binding regions
by identifying segments with structural propensity in IDRs.
NeProc uses both short and long window length models
(Smodel and Lmodel, respectively) to achieve this. The
Lmodel was used to predict IDRs and the Smodel identified
short segments with structural propensity within the IDRs
predicted by the Lmodel.

Sequence data
NeProc uses amino acid sequences of IDRs and SDs

since it detects regions with structural propensity in a
predicted IDR. We used DM4229, which is a training
dataset for the IDR prediction program, SPINE-D [26].
DM4229 contains 4,229 sequences selected from PDB and
DisProt. In the procedure to create DM4229, PDB
structures, with resolution < 2 Å and length > 60 residues,
were clustered at 25% sequence identity to select
representative proteins with long contiguous IDRs from
each cluster. These representative sequences were
combined with fully disordered proteins from the IDP
database, DisProt [27], and sequence redundancy was
reduced again. The sequences identified in the test dataset
described below were excluded. The procedure produced
4,189 sequences consisting of 925,412 ordered and 100,284
disordered residues. Among these, 842 sequences were
used to validate the hyperparameters of the neural
networks, and the remaining 3,347 sequences were used to
optimize the biases and weights.

IDEAL provides annotations for ProSs, which are
disordered binding regions. These ProSs, collected via
manual annotation, possess evidence of disorder in an
isolated state and one or more structures with one or more
binding partners in PDB. Since ProSs possessed both
experimental evidence of disordered in an isolated state and
ordered in a bound state, we used the IDEAL data as the
test dataset for the performance of disordered binding
region predictions.

The NeProc model construction
NeProc is designed to accept an amino acid sequence,

and the query sequence is input into the position-specific
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iteration blast (PSI-BLAST) [28] to obtain a position-
specific scoring matrix (PSSM). The PSI-BLAST searches
were conducted against the UniRef90 database with three
iterations and an E-value threshold of 0.001. From a PSSM,
we extracted the 21-dimensional vector for a site, including
scores for each of the amino acid residues and one for the
information per position, as with DISOPRED3. For the
training and the predictions, all the information from each
PSSM for an entire sequence was used.

We referred to the DISOPRED3 model (Supplementary
Fig. S1) as the starting point to construct the NeProc model.
The DISOPRED3 model has two neural networks tandemly
connected, and each network contains a single hidden layer.
The NeProc model employed this structure frame to have
two network models (Fig. 1). As previously mentioned,
NeProc contains two models, Lmodel and Smodel. The first
networks of the NeProc model took over the DISOPRED3
model with the modification of window size. The first
network of the Lmodel used that of DISOPRED3, and the
Smodel network employed a shorter window size of three
residues so that the difference in the Lmodel and Smodel
windows was enlarged. The number of hidden layers and

nodes was tested using the combinations listed in
Supplementary Table S1. These combinations were
constructed based on the DISOPRED3 model.

We considered different window sizes in the construction
of the second network. Window sizes were selected based
on DISOPRED3 of 15 residues. The window sizes for the
Lmodel were selected as 15, 30, 40, 50, and 60, where 30
and 60 are multiples of 15, and 40 and 50 filled the gap
between 30 and 60. The window sizes for the Smodel were
shorter than those in the Lmodel, and were 3, 5, and 10
residues. In the second network, we tested all the
combinations of the networks of different window size that
were placed parallel, and tested the neural network and the
support vector machine as the following unit of the
combined output of the second network. The number of
hidden layers and nodes were also tested using the
combinations listed in Supplementary Table S1.
The hyperparameters were determined using the subset

of the training dataset of 842 sequences. The parameters,
weights and biases of the first and the second networks,
were optimized using the subset of the remaining 3,347
sequences. The biases were initialized using the values

Figure 1 Structure of the NeProc model. The digits in the layers represent the numbers of nodes. The underlined digits indicate the window
sizes of the layers. ProS represents the disordered binding region.
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reported by He, et al. [29], and the adaptive moment
estimation (Adam) [30] was employed as the optimizer.
0.001, 0.9, and 0.999 were used in Adam for the learning
rate, exponential decay rate for the first moment estimation,
and exponential decay rate for the second estimation,
respectively. The rectified linear activation (ReLU) function
was used for the activation function. We used the
linearSVC of Sikit-learn by changing the cost parameters,
from 0.1 to 10, and used the default values for the other
parameters.
The Smodel and Lmodel output a binary decision of

“ordered” or “disordered”. The final prediction was made
by combining these outputs from the Smodel and Lmodel,
in which a simple decision rule was employed. The input
was one of the following four states: disordered/disordered
(D/D), disordered/ordered (D/O), ordered/disordered (O/D)
or ordered/ordered (O/O) (Smodel output/Lmodel output).
The D/D state was disordered, the O/O state was ordered,
the O/D state was the disorder binding region, and the D/O
state was unknown. Taken together, NeProc accepts a query
amino acid sequence, and outputs the three states labels of
binding regions, disordered, and ordered as a result.

Performance evaluation
Evaluation of performance was not straightforward for

the binding region prediction. Since it was expected that
cryptic binding regions in IDRs would remain hidden, the
possibility that residues labeled as disordered may be
residues in a disordered binding region could not be
excluded. We used the method employed in the ANCHOR2
evaluation [8]. In the disordered binding region prediction,
predictions of “disordered” and “disordered binding
regions” could not be separated, because of the possibility
of cryptic binding regions. On the contrary, “ordered” and
“disordered binding regions” did not have to be mixed.
Thus, only “disordered binding regions” and “ordered”
were considered in the evaluation of the binding region
prediction.

Four measures, namely, sensitivity, precision, F-score,
and Matthews Correlation Coefficient (MCC), were used,
as follows:

Sensitivity =  TP
TP + FN (1)

Precision =  TP
TP + FP (2)

F − score =  2Sensitivity ×  Precision
Sensitivity + Precision (3)

and

MCC =  TP × TN − FP × FN
TP + FP TP + FN TN + FP TN + FN

(4)

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

We also assessed the statistical significance of the
disorder binding region predictions to the other predictors.
First, we performed 50,00 resampling experiments, each
randomly sampling 80% of the proteins from the test
dataset and calculated four measures of each of the
considered predictors. We recorded the values of the paired
differences (i.e., the NeProc result compared with the
results of another predictor). Next, if the differences were
normally distributed, as calculated using the Shapiro-Wilk
test [31] with 0.05 significance, paired t-test was used,
otherwise Wilcoxon signed-rank test was used [32].

ANCHOR2 [8], DISOPRED3 [7] and MoRFchibi-Web
[25] were selected as the reference programs. The
performance of these programs was evaluated using the
data of disordered binding regions obtained from the
IDEAL database. We previously inferred disordered
binding regions by combining the IDR predictions and
UniProt annotation [33]. We found 1,518 binding regions
(17,148 residues) of UniProt annotations in the predicted
IDRs, called these regions putative binding regions, and
used them as another test dataset for the predictions.

Results and Discussion
Performance evaluation of prediction of binding regions
in IDRs
The NeProc structure is shown in Figure 1. We compared

the NeProc results with those of DISOPRED3, ANCHOR2
and MoRFchibi-Web (Table 1). Among the four programs,
NeProc showed the highest performance in terms of MCC,
precision, and F-score, although ANCHOR2 showed the
highest sensitivity. The sensitivity of NeProc was lower
than that of ANCHOR2 by 0.010, with greater precision
than that of ANCHOR2 by 0.013, suggesting that NeProc
provided slightly more false negatives and fewer false
positives. It is intriguing that ANCHOR2 uses the DIBS

Table 1 Performance of disordered binding region predictions of
NePorc, ANCHOR2, MoRFchibi-Web, and DISOPRED3

MCC Sensitivity Precision F-score

NeProc 0.388 0.487 0.358 0.413
ANCHOR2 0.381* 0.497 0.345* 0.408*
MoRFchibi-Web 0.196* 0.221* 0.249* 0.234*
DISOPRED3 0.175* 0.171* 0.233* 0.198*

MCC, Matthews correlation coefficient. * p-value <1.0×10−15 in the
comparison with NeProc.
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database [20] as a training dataset, as the DIBS database
integrates disordered binding regions from IDEAL. This
performance test was conducted using the IDEAL dataset,
and the ANCHOR2 training data may contain some of the
proteins used in this performance test. Nevertheless, the
performance of NeProc was comparable to that of
ANCHOR2 without using data for disordered binding
regions.

IDEAL contained 7,253 residues of binding region in
IDRs comprising 321 binding regions. These regions
included various length of sequences and secondary
structures involved in binding to their partners. First, we
analyzed the length dependence of the NeProc binding
region prediction. Figure 2 shows the median and mean
values of the sensitivity, together with the density of
sensitivity by length. Although the sensitivity was 0.487
(Table 1), the mean 10–50 residue range was close to 0.6.
On the other hand, very short and very long binding regions
showed low sensitivities. The bins from 10 to 50 residues
showed higher medians than the mean values, suggesting
that many samples had high sensitivity and few samples
had low sensitivity. The density plot (grey area) also
showed this trend. This result reflected the NeProc method,
which detected short segments with structural propensity in
long IDRs. The high median values in the short regions
indicated that NeProc detected most of the short binding
regions in IDRs. As more than 90% of the binding regions
in the IDEAL database were shorter than 50 residues
(Supplementary Fig. S2), this feature could be practically
useful in the prediction of binding regions in IDRs.

Table 2 shows the secondary structure dependence of the
prediction of binding regions in IDRs. Table 2A shows the
sensitivity of the secondary structures, in which the coil

regions have the highest sensitivity followed by the helix
and sheet regions. Table 2B shows the sensitivity by
classifying the binding regions based on the secondary
structure content. The sensitivity values are the mean of the
regions in the class. The values in Table 2B are mostly
greater than those in Table 2A. Since the statistics in Table
2A were evaluated according to residues whereas Table 2B
were analyzed according to regions, the discrepancy
between Table 2A and 2B suggests that there were many
short binding regions with high sensitivity and a low

Figure 2 Relationship between prediction accuracy and binding
region lengths. The horizontal axis represents the lengths of the
binding regions, and the vertical axis represents sensitivity. Gray areas
represent the distribution of sensitivity at each length of the binding
regions. Triangles and asterisks represent the median and mean values
of sensitivity, respectively.

Table 2 Secondary structure dependence of the prediction of the disordered binding regions

A) Sensitivity according to secondary structure

Helix Sheet Coil

Sensitivity 0.434 0.341 0.530

B) Sensitivity according to disordered binding region secondary structure class

H S C H&S

Sensitivity 0.587 0.643 0.481 0.421

C) Fractions of judgments according to disordered binding region secondary structure class

Structured Disorderd Binding regions Unknown Average length

H 0.340 0.174 0.483 0.003 20.8
S 0.292 0.184 0.524 0.000 13.2
C 0.402 0.221 0.373 0.004 18.5
H&S 0.485 0.161 0.352 0.001 38.2

H: α helix/helices; S: β sheet/sheets; C: coil/coils; H&S: both α-helices and β-sheets.
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number of long binding regions with low sensitivity. Table
2C shows the misjudge trend by the secondary structure
class together with the mean length of each of these classes.
The H&S class, which contains both α-helices and β-sheets,
has the lowest sensitivity in Table 2B, and is largely
misjudged as “structured”. The average length of this class
is the longest. Although the reason for the low sensitivity of
the H&S class was not clear, the length of the binding
regions may be a factor.

NeProc predicted disordered binding regions without
using the binding region data by only learning the SD and
IDR data. This result suggested that NeProc identified
shared features between binding regions in IDRs and SDs.
We then assessed how disordered binding region sequences
were similar to SD sequences and/or how binding region
sequences were different from IDR sequences. The
distances from the binding region data to the SD and IDR
data are plotted in Figure 3. In this plot, a circle placed
around the diagonal indicates the intermediate amino acid

composition between IDRs and SDs. In the shorter
windows, the gray circle, which represents all binding
regions in the IDRs, is located near the diagonal, while it
shifts to the bottom in the longer windows. This trend was
observed for all prediction classes, successfully predicted
sites (red), unsuccessfully predicted as ordered (blue), and
unsuccessfully predicted as disordered (light blue).
Although the successfully predicted sites were located near
the diagonal in the shorter windows, they shifted to near the
horizontal line in the longer windows, where the
successfully predicted sites overlaps with the sites
unsuccessfully predicted as disordered in the two longest
windows. The sites unsuccessfully predicted as ordered did
not move far from the shorter windows to the longer
windows, and were consistently located as the nearest
points to the vertical axis. Thus, the sites unsuccessfully
predicted as ordered had similar features to the ordered
residues and were not predicted as disordered, even in the
longer windows. Similarly, the sites unsuccessfully

Figure 3 Similarity in the amino acid composition of the binding regions in IDRs to that of ordered and disordered regions. The amino acid
composition of binding regions in IDRs were compared with that of the ordered and disordered data in the training dataset. The horizontal axis
showed similarity to the ordered dataset, while the vertical axis showed similarity to the disordered dataset. The binding regions were divided into
the sites that were successfully predicted (red), unsuccessfully predicted as ordered (blue), and unsuccessfully predicted as disordered (light blue).
The gray circle in each panel represents all the binding regions. The circular centers represent the distance of the average amino acid composition
to the ordered and disordered data. The circle areas are proportional to the variances. The compositions were calculated using window sizes of 3,
5, 15, 30, and 60 and are presented in panels A), B), C), D), and E). Details of the calculations are found in Supplementary Text S1.
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predicted as disordered showed features similar to those of
the disordered sites, even in the shorter windows.
Therefore, we could improve the performance of the
prediction of disordered binding regions by NeProc if we
could predict the residues in the sites unsuccessfully
predicted as ordered as disordered in the long window
models and the sites unsuccessfully predicted as disordered
as ordered in the short window models.

NeProc and ANCHOR2 showed similar performance in
terms of predicting the disordered binding regions with
MCCs of 0.388 and 0.381, respectively. The IDEAL
database, which provided the binding region samples for
this study, focuses mainly on nuclear proteins in the
annotation and likely resulting in the biased sampling of the
binding regions. We repeated the testing of the prediction
of the binding regions using the putative binding region
dataset (see Materials and Methods section). As shown in
Table 3, NeProc and ANCHOR2 showed comparable
performances of 0.588 and 0.569. All programs showed
higher performances than the binding region predictions in
Table 1. The putative binding regions were defined as the
regions with UniProt annotations associated with protein
binding found in predicted IDRs. Thus, IDRs containing
putative binding regions were considered to have features
easily detected by IDR prediction programs. The improved
performances in this test may be due to the correct IDR
predictions, and improved IDR predictions around
disordered binding regions may improve the prediction. As
a reference, the performance of IDR predictions was shown
in Supplementary Table S2.

Although MoRFchibi-Web showed low performance in
the binding site predictions for our test datasets, the
framework to develop MoRFchibi-Web differed from
NeProc and ANCHOR2. MoRFchibi-Web separates amino
acid sequences into binding regions in IDRs and “others”,
which contain SDs and IDRs. These IDRs could contain
binding regions that have not yet been discovered (cryptic
binding regions). As described in the Materials and
Methods section, NeProc and ANCHOR2 use the
disordered binding regions and SDs in the performance
tests, since the possibility of cryptic binding regions in
IDRs cannot be ruled out. The strategy of MoRFchibi-Web
may yield a small number of predicted binding regions as it
intends to exclude cryptic binding regions. In contrast,

Table 3 Performance of disordered binding region predictions using
the putative binding region dataset

MCC Sensitivity Precision F-score

NeProc 0.588 0.896 0.421 0.572
ANCHOR2 0.569 0.755 0.481 0.587
DISOPRED3 0.418 0.626 0.307 0.411
MoRFchibi-Web 0.365 0.282 0.565 0.376

NeProc and ANCHOR2 may yield a large number of
predicted binding regions, since the cryptic binding regions
they provide cannot be evaluated. The balance between
sensitivity and precision in Table 3 may reflect this
difference in the development frameworks.

Conclusions
NeProc was developed without using data for the

disordered binding regions, and showed good performance
in the predictions of disordered binding regions. These
findings highlight the possibility of overcoming the
shortage of binding region data in the development of
prediction programs.
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