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Abstract

The recent development of High Throughput Sequencing technologies has enabled an individual’s TCR repertoire to be
efficiently analysed at the nucleotide level. However, with unique clonotypes ranging in the tens of millions per individual,
this approach gives a surfeit of information that is difficult to analyse and interpret in a biological context and gives little
information about TCR structural diversity. Using publicly available TCR CDR3 sequence data, we analysed TCR repertoires
by converting the encoded CDR3 amino acid sequences into Kidera Factors, a set of orthogonal physico-chemical properties
that reflect protein structure. This approach enabled the TCR repertoire from different individuals to be distinguished and
demonstrated the close similarity of the repertoire in different samples from the same individual.
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Introduction

It has been estimated that potentially 4.261017 different a-b T-

cell receptors (TCR) can be generated during maturation in the

thymus [1]. This diversity stems from the combinatorial

rearrangement of germline DNA during thymocyte differentiation.

Both chains of the receptor are encoded by a number of genes (V,

J and C for the alpha chain and V, D, J and C in the beta chain)

from which only a subset is selected to form the TCR. For

example, the human alpha chain can be constructed from a choice

of 94–96 functional components [2], of which approximately 43–

45 are Variable genes; 50 are Joining genes and one is a Constant

gene segment, leading to around 2,200 possible V-J-C combina-

tions. Further diversity is provided through the CDR3 region

situated between the V and J segments within each of these chains

by addition, deletion and substitution of bases at the 39 end of the

variable segment and the 59 end of the joining segment.

Combination of the rearranged alpha chain with a similarly

rearranged b-chain incorporating additional variation provided by

the D region, accounts for the enormous overall diversity in T-cell

receptors. This diversity of CDR3 regions is crucial in providing

an appropriate response to a broad range of pathogens.

Knowledge of the CDR3 sequence content in an individual is

therefore of central importance in immunology [3–6].

CDR3 diversity has been estimated previously by spectratyping,

whereby the length distribution of the CDR3 region in a T-cell

receptor is obtained by gel electrophoresis [7,8]. This method is

cheap and fast and has been used in numerous studies using

signature bias of CDR3 regions to detect and describe the impact

of pathologies such as HIV [9] and Multiple Sclerosis [10]. The

drawback of spectratyping is that it ignores the actual sequence

content of the CDR3 regions. Subsequent methods have employed

traditional Sanger sequencing of T-cell receptor PCR products of

small numbers of T-cells. This has the merit of assessing CDR3

sequence identity [11] but the sequencing cost per base and

constraints on the number of cells that can reasonably be analysed

[12] makes the technique impracticable for assessing CDR3

diversity in individual blood samples. More recently, High

Throughput Sequencing (HTS) technologies have enabled mil-

lions of TCR clonotypes (the receptor transcript which comprises

the V,(D),J,C gene usage including the CDR3 region to be

identified [5,13,14]. HTS comes with its own challenges, however,

including sequencing errors, priming and PCR biases. For

example, the error rate is rather higher with HTS compared to

Sanger sequencing (0.1–1% vs. 0.01–0.001%, depending on the

sequencing technology [12]). There is a risk therefore of measuring

artefactual diversity, originating from the measurement apparatus

rather than from the underlying true sequences. To overcome

these issues, conservative quality control methods have been

designed and thoroughly tested using real and artificially

generated data [14–16]. A second problem related to the use of

HTS techniques stems paradoxically from the very success of the

technology itself. From the relative data paucity of the recent past,

there is now a potential information overload that can be difficult

to interpret. As an example, a total of 1,061,552 different

clonotypes from peripheral blood samples of healthy individuals

have recently been described [14]. Direct comparison of the TCR

sequences in samples from different individuals and between

samples from one individual found few intersecting nucleotide

sequences within libraries [14]. Indeed, when sampling the same

individual a week later, only 12.8% of nucleotide sequences

intersected within the two samples indicating that only a fraction

of the true sequence diversity appears to be captured in a single

blood sample. It is difficult therefore to attribute a sample to an
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individual on the basis of direct comparisons of individual

sequences. In addition, such ‘‘Venn-based’’ indicators are likely

to depend heavily on the size of the sample and are therefore

difficult to interpret.

Here, we address the challenge of interpreting information

contained in clonotype sequences produced by HTS [17] by

transforming CDR3 sequences into a set of physico-chemical

properties of the encoded amino acids (Kidera Factors) [18],

which are known to be related to 3D protein structure [19]. Using

statistical approaches borrowed from ecology, we then examine,

and explicitly compare TCR receptor diversity within and

between individuals. Our results show that TCR diversity between

individuals but not within individuals can be distinguished by this

approach.

Methods

TCR Receptor CDR3 Sequences
Files containing all the distinct TCRb and corresponding amino

acid sequences used in this study are hosted online at ftp://ftp.

bcgsc.ca/supplementary/TCRb2010/[14]. Sequences from eight

blood samples from 3 individuals (two males and one female

unrelated to each other) were studied in detail (Table 1). Six

samples of unseparated, naı̈ve and memory T-cells taken twice one

week apart were all from one donor (Male 1 in Table 1). The other

samples of unseparated T cells were derived from single blood

draws from the other male (Male 2) and a female (Female). The

number of unique clonotypes (V-CDR3-J ) and CDR3 sequences

identified in each of these eight samples is also given in Table 1.

Generating Kidera Factor Representations of Clonotype
Sequences

The Kidera Factors were originally derived by applying

multivariate analysis to 188 physical properties of the 20 amino

acids and using dimension reduction techniques [18]. A 10-

dimensional vector of orthogonal factors was then obtained for

each amino acid (an example representation for Alanine is given in

supplementary material Table S1) that explained 86% of the

variance in the original dataset. A connection between the Kidera

Factors and the structural properties of proteins was established by

encoding a set of proteins from the CATH database using Kidera

Factors and then applying Principal Component Analysis (PCA) to

demonstrate relationships between proteins that have similar

structures but unknown sequence homology [19,20]. This

approach was able to identify remote protein homologues missed

by conventional homology modelling.

The CDR3 region within each clonotype is defined as the

sequence between the conserved Cys amino acid of the Variable

gene and the conserved Phe amino acid of the Joining gene. Ten-

dimensional Kidera Factor representations [18] (Table S1) for

each CDR3 sequence were computed by taking the average score

for each Kidera factor across all amino acids within the CDR3

sequence. This resulted in an average score for each of the Kidera

Factors represented as a ten dimensional vector and inserted into a

csv file. The raw sql files from [14] were concatenated with the

Kidera Factor representation for each clonotype, converted into

csv format and imported into R for data analysis.

Principal Component Analyses and Multidimensional
Scaling

Kidera Factor vectors of the CDR3 regions were subject to PCA

and plotted using the rgl and ggplot2 packages in R. Generating a

Kidera Factor representation for each CDR3 region in all of the

clonotypes from the samples shown in Table 1 resulted in

hundreds of thousands of transformed sequences (Kidera Factor

vectors, Figure 1). To analyse these data further, the Kidera Factor

representations for each CDR3 region were aggregated with the

Variable genes contained within that sample. This produced the

average physico-chemical properties of the CDR3 region per

Variable gene in each sample and enabled a significant reduction

in the dimensionality of the data. Multi-dimensional scaling was

then employed to preserve the relative similarity between Variable

gene aggregates of different samples, in a lower dimension, using

Euclidean distance between the Kidera Factor vectors as the

similarity measure. This helped explore intuitively whether the

Kidera Factor repertoires in the different samples were distin-

guishable. In the course of MDS fitting, two samples were found to

have a Vb gene (TRBV-17) with the same CDR3 Kidera Factor

aggregation leading to a Euclidean distance of 0 between these two

points. In these instances, a small delta (0.000000001) was applied

to allow the non-metric MDS algorithm to complete.

Table 1. Blood samples and associated clonotypes of publically available TCRb sequences.

T cell preparation Sample*
Unique TCRb nt
sequences (V-CDR3-J)

Unique CDR3 amino
acid sequences

Unique Kidera
Clonotypes

M1 unseparated 1 494,796 419,990 337,745

M1 unseparated 2 352,139 312,445 260,732

M1 memory 1 52,166 50,748 47,955

M1 memory 2 83,206 75,920 70,178

M1 naı̈ve 1 55,253 52,137 49,130

M1 naı̈ve 2 121,233 102,788 95,042

M2 unseparated 1 193,551 165,931 146,445

F1 unseparated 1 93,990 86,225 78,391

Male 1 (M1), Male 2 (M2) and Female 1 (F1).
*Unseparated, memory and naı̈ve samples 1 and 2 were taken one week apart.
Descriptive statistics of the eight samples generated by [14]. This includes the number of unique clonotypes (V-CDR3-J rearrangements) and the number of unique
CDR3 amino acid sequences ignoring the Variable and Joining gene usage. The number of unique Kidera Factor clonotypes defined by the 10 dimensional vector is
compared to the number of unique CDR3 amino acid sequences derived from the nucleotide (nt) sequences described by Warren et al [14].
doi:10.1371/journal.pone.0086986.t001

T Cell Receptor Diversity with Kidera Factors
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Computation of the ANOSIM Indicators and P-values
The aim of the non-parametric ANOSIM (Analysis of

Similarity) test is to judge whether two clonotype samples can be

distinguished statistically. The procedure tests whether the CDR3

Kidera Factors from one sample are more similar to each other

than to those from a different sample. If this is the case, the

samples are considered to be distinguishable from each other. The

test is computed on the rank order of similarities between all

CDR3 Kidera Factor vectors within the two samples derived by

comparing the Euclidean distance between the 10 dimensional

Kidera representations of the two chosen samples. The closer the

Euclidean distance between two Kidera Factor vectors, the more

similar they are considered to be.

Following the convention described in [21], the matrix of rank

similarities was sub-partitioned by sample (See Supplementary

Material Figure S1 for an example calculation). rB is denoted to be

the average rank similarity between samples and rw to be the

average rank within each sample. The test statistic is constructed

as:

R~
r!B{ r!W

n(n{1)=4

A small or negative R-statistic indicates no difference between

the rank similarity between the groups. In contrast, if the samples

are well separated rB will exceed rW and the R-statistic will be

positive. The theoretical range of the R-statistic is between 21 and

1. In practice this range is much smaller and as in any statistical

test, required a comparison of the R-statistic with a null

distribution to derive a p-value (see Figure S1).

Programming Code
All statistical analysis was performed using R (version 2.13.0)

with external packages MASS (for non-metric MDS), ggplot2,

scatterplot3d, rgl, mgcv and lattice for data visualisation. The

ANOSIM test and null distribution generation was coded by one

of us (ME) following the approach described by Clarke [21].

Results

PCA of Kidera Factor Vectors
An average value for each of the ten Kidera Factors over each

amino acid in the CDR3 sequences found in the clonotype dataset

described by Warren et al [14] was calculated as described

Rackovsky [19]. This resulted in an averaged ten-dimensional

Kidera Factor vector for each CDR3 sequence. Notably, there

were fewer unique Kidera factors in each sample than unique

CDR3 amino acid sequences indicating less diversity than

suggested by the CDR3 amino acid sequence data (Table 1).

The full set of CDR3 Kidera Factor vectors was contained in a

small fraction of the theoretical total possible diversity (Figure 2).

Direct comparisons of the CDR3 Kidera Factor repertoires

present in the various samples from different individuals were

performed using Principal Component Analysis (PCA). The results

for naı̈ve and memory T cell subsets from the same individual

(male1) and for unseparated cells from two different donors (male

1and female) are shown in Figure 3. Whereas the CDR3 DNA

sequences of the naı̈ve and memory cells were largely distinct with

an overlap of only about 1% [14], 3D PCA analysis of the Kidera

Factors showed a similar distribution of the two populations

consistent with the memory T cells being a random sample of the

naı̈ve population (Figure 3A). Projection of 5,000 randomly

selected datapoints from the naı̈ve and memory samples on to a

2D plot also appears to indicate a similar distribution (Figure 3B).

Direct comparisons of the unique CDR3 Kidera Factors in

unseparated T cell samples from different individuals performed

Figure 1. PCA of Kidera Factor representation of unique CDR3
sequences. 3D scatterplot on the first three eigenvectors of the
Principal Component Space obtained from Kidera Factor representa-
tions of the unique CDR3 sequences in the unseparated T cell Female
sample. In this sample there are 78,391 unique Kidera Factor
representations of 86,225 unique CDR3 sequences (Table 1).
doi:10.1371/journal.pone.0086986.g001

Figure 2. Diversity of Vb CDR3 Kidera Factors. The full set of CDR3
Kidera Factors from an unseparated T cell sample was contained in a
small fraction of the theoretical total possible diversity bounded by the
maximum possible Kidera Factor values for each PCA. The example
shown is from the Female unseparated sample which contained 78,391
unique Kidera Factors.
doi:10.1371/journal.pone.0086986.g002

T Cell Receptor Diversity with Kidera Factors
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using Principal Component Analysis suggested that the distribu-

tions were a little different (Figure 3C). This is most evident in the

2D PCA projection of 5,000 randomly selected samples in

Figure 3D. The distribution of black points pertaining to the

male sample were shifted away slightly from the red points of the

female sample. Although this by itself cannot be considered

conclusive evidence that the samples are physiochemically

different, it suggested that further statistical analysis was warrant-

ed.

Data Compression and Graphical Representation using
Multidimensional Scaling (MDS)

Although PCA seemed to indicate some differences between

samples from different individuals, this method did not allow the

way they were distinguishable to be quantified. An indication of

diversity can be obtained by enumerating the number of unique

Kidera Factors (Table 1) but PCA by itself is not a quantitative

method that allows for testing whether the two samples are

distinct. This difficulty in quantitative comparison of PCA of

different samples prompted us to analyse the data further using

multidimensional scaling (MDS). To do this, the information from

Figure 3. PCA of naı̈ve and memory T cell samples from the same donor and unseparated T cell samples from different donors. The
first three principal components of the naı̈ve and memory samples from Male 1 sample 2 (A) and the first two principal components of the same
analysis (B). Unseparated samples from Male 1 (sample 1) and Female on the first three principal components (C) and the first two principal
component axes (D). The slight shift of the male points compared to the female points suggests that these samples contain different physicochemical
properties (sample size = 5000).
doi:10.1371/journal.pone.0086986.g003

T Cell Receptor Diversity with Kidera Factors
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Figure 4. MDS representation of similarity between samples. Unseparated T cell samples from Female donor compared with Male 1, sample 1
(A) (2-D stress value 16.12%) and from Male 1 compared with Male 2 (B). Note the north-west south-east separation between the male and female

T Cell Receptor Diversity with Kidera Factors
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the Kidera Factors was compressed by aggregating the Kidera

Factors of all CDR3 sequences according to their associated Vb
gene [14]. This has the advantage of reducing the information for

each sample to a set of about fifty 10-dimensional vectors per

sample and making the computational requirements for Multidi-

mensional Scaling (MDS) much more economical than for the

non-aggregated representation of the sample.

MDS also provides a graphical visualisation of the data in a

lower dimensional space, which preserves the relative similarity,

reported in the output by Euclidian distance between individual

data points. It does so by iteratively minimising the squared

difference between the Euclidean distances proposed between the

points in the reduced space and the actual rank dissimilarities

between the points in the higher dimensional space. Two-

dimensional MDS representations for unseparated T cells from

different donors are presented in Figure 4A and 4B; naı̈ve and

memory T cells from the same donors in Figure 4C and 4D; and

two unseparated samples from the same individual taken a week

apart in Figure 4E. Although they are not entirely distinct, each

sample from different donors appears to preferentially occupy

different regions of the plane, broadly the lower right for male 1

and higher left for the female sample (Figure 4A) and lower left for

the male 2 sample (Figure 4B). In contrast, no such distinction can

be seen in the other panels depicting naı̈ve and memory T cell

populations from the same donor (Figure 4C and 4D) and

unseparated samples drawn from the same individual, taken a

week apart (Figure 4E). These results are consistent with the PCA

results and indicate a difference in the CDR3 Kidera factor

distribution between different individuals but not between

different samples taken at different times from the same individual,

or naı̈ve and memory cells from the same individual.

The ANOSIM Statistic for Testing Pair-wise Sample
Combinations

Although visually the differences between the different samples

seem clear enough, interpretation of graphic representations is still

subjective. To overcome this, the non-parametric ANOSIM

(Analysis of Similarity) test, commonly used in ecological statistics,

was used to compare samples. This test relies entirely on

quantitative considerations to establish the difference between

population samples. Results are shown for unseparated samples

from different individuals (Figure 5A and 5B), for naı̈ve and

memory cells from the same individual (Figure 5C and 5D) and for

unseparated samples taken at different times from the same

individual (Figure 5E). The value of the R-statistic when

unseparated samples from different individuals (male 1 sample 1

and female, Table 1) are compared was 0.166 and for when male 1

sample 1 was compared with male 2 was 0.063, both of which

significantly exceeded any values obtained through random

reshuffles. Since a thousand such permutations were performed,

the corresponding null hypothesis p-value does not exceed 0.001,

thereby indicating that the two unseparated clonotype samples

(male 1 sample 1 vs. female and male 1 sample 1 vs. male 2) are

significantly different (P,0.001). In contrast, when naı̈ve and

memory cells from the same donor (Figure 5C and 5D) and two

unseparated blood samples from the same individual (Figure 5E)

are compared the R statistics are all slightly negative (20.009,

20.004 and 20.02) with a large corresponding p-value of < 1

showing that these samples are not statistically distinguishable

from each other.

This analysis was repeated for all possible pairwise combinations

of blood samples described in Table 1 and the results compiled in

Table 2. The values of the R statistic are given below the diagonal

whilst the corresponding p-values are given above the diagonal. It

is clear that pairs of samples from different individuals (highlighted

bold) are all significantly different (p,0.05). Conversely, for all

pairwise comparisons belonging to the same individual, no

significant differences were obtained (p.0.2). These results

indicate that compressing the Kidera Factors data by aggregation

with Vb regions can successfully discriminate pairs of samples

originating from different individuals, an outcome that is difficult

to assess when the sequences are kept in their raw DNA sequence

form and compared directly.

Generating P-values without Vb Aggregation
It is theoretically possible that the significant ANOSIM statistics

generated for samples between different individuals may have

arisen from the aggregation of Kidera Factors with Vb regions if

there were preferential associations of particular CDR3 regions

with different Vb genes. To check this was not the case, we

undertook ANOSIM tests using CDR3 Kidera Factor vectors

from different individuals that were not aggregated with the Vb
regions. This procedure was implemented by randomly selecting

two subsamples of one hundred CDR3 vectors from two

individuals from their unique set of transformed CDR3 sequences.

The ANOSIM statistic and subsequent P-value was then

calculated between these two subsamples. This was repeated 100

times in a bootstrap sampling procedure that generated a

distribution of the P-value for samples from the two given

individuals.

This is a very computationally expensive analysis, which meant

that the analysis could only be performed with a limited sample

size (100 CDR3 vectors from each individual). Nevertheless, the

results confirmed the findings obtained with the aggregated

samples shown in Figure 5, with a random distribution of the P-

values between 0.05–1 for the two unsegregated samples taken at

different times from male 1 (Figure 6A), and a non-random

distribution of the p-values for male 1 unsegregated sample 1

compared with the female sample (Figure 6B). This is denoted by

the high frequency of significant p-value scores (p,0.05) in the R-

statistic distribution shown in Figure 6B.

Discussion

The TCR Vb repertoires from three different individuals

together with the naı̈ve and memory repertoires from one

individual were investigated using Kidera Factor representation

of TCR CDR3 regions. By design, Kidera Factors capture

uncorrelated physico-chemical properties of polypeptide chains

and have been shown to delineate global protein structural

properties encoded by distinct amino acid (and therefore gene)

composition [19]. The Kidera Factor representation of CDR3

regions revealed considerable diversity, but less than that of the

original TCR Vb CDR3 DNA (and amino acid) sequencing [14]

in the same samples (Table 1). This means that different CDR3

sequences can give rise to the same Kidera Factor vector. One

interpretation of this observation is that different TCRs respond-

ing to the same antigen peptide may have similar 3D structural

properties even if derived from distinct DNA sequences. This is an

samples and the two male samples. Naı̈ve T cell sample compared with memory T cells from Male 1 (C) (2-D stress value 13.70%) and repeated one
week later (D) (2-D stress value 14.52%); and unseparated T cell samples from Male 1 taken one week apart (E) (2-D stress value 11.72%).
doi:10.1371/journal.pone.0086986.g004

T Cell Receptor Diversity with Kidera Factors
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Figure 5. ANOSIM R-statistic and null distribution. ANOSIM statistic for unseparated T cell samples from Male 1 compared with Female,
p,0.001 (A); Male 1 compared with Male 2, p < 0.001 (B); Naı̈ve T cell sample compared with memory T cells from Male 1, p<1 (C); repeated one
week later, p<1 (D); and unseparated T cell samples from Male 1 taken one week apart, p<1 (E).
doi:10.1371/journal.pone.0086986.g005

T Cell Receptor Diversity with Kidera Factors
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important notion if TCR diversity is to be measured only by DNA

sequencing.

Notably, the distribution of CDR3 Kidera Factors obtained in

different samples from the same individual could not be

distinguished either by PCA or by MDS analysis even though

there was only a small overlap (,10%) in the corresponding

CDR3 DNA sequences. This result suggests that relatively small

sampling can potentially capture the population diversity within an

individual, at least in terms of the TCR physicochemical

(structural) properties. In this case, an individual’s TCRb diversity

as indicated by Kidera Factors may be somewhat smaller than is

allowed by the theoretical range of potential CDR3 sequences

produced by hyper-recombination during T cell development.

There was also a similar distribution of CDR3 Kidera factors

shown by PCA in naı̈ve and memory cell populations from the

same individual despite only about 1% overlap in CDR3 DNA

sequences and 14% overlap in amino acid sequences. This is

consistent with the memory cell compartment being a random

sample of the naı̈ve population. It is important to bear in mind

however that the Kidera Factor diversity described here is of the

TCRb chain CDR3 segment only and does not give information

about either contribution by residues in V or J regions and more

importantly the TCRa/b dimer that binds to antigen/MHC.

Interestingly, there appeared to be some aggregation of the

memory cell Kidera Factors, which might be interpreted as

restricted heterogeneity of the repertoire to particular infections. It

Table 2. ANOSIM R statistic (in italics below the diagonal) and p-values (above the diagonal) for all possible pairwise combinations
of the eight human blood samples. Statistically different values highlighted in bold italic.

Donor
Male 1 S1
Total T

Male 1 S2
Total T

Male 1 S1
memory

Male 1 S2
memory

Male 1 S1
naı̈ve

Male 1 S2
naı̈ve

Male 2
Total T

Female
Total T

Male 1 S1 Total T xxx 1 0.548 0.891 1 0.642 0.001 ,0.001

Male 1 S2 Total T 20.019 xxx 0.604 0.961 1 0.55 ,0.001 ,0.001

Male 1 S1 memory 20.002 20.004 xxx 0.994 0.925 0.282 ,0.001 ,0.001

Male 1 S2 memory 20.009 20.011 20.013 xxx 0.989 0.574 ,0.001 ,0.001

Male 1 S1 naı̈ve 20.015 20.016 20.009 20.013 xxx 0.583 ,0.001 ,0.001

Male 1 S2 naı̈ve 20.004 20.002 0.003 20.003 20.003 xxx ,0.001 ,0.001

Male 2 Total T 0.063 0.057 0.070 0.089 0.055 0.091 xxx 0.031

Female Total T 0.167 0.159 0.168 0.198 0.153 0.185 0.021 xxx

This table shows the pairwise ANOSIM R-statistics (in italics below the diagonal) and p-values between all the samples. Note that all the male1 samples are statistically
indistinguishable from each other. This is particularly apparent between the two aggregated male samples taken a week apart, despite displaying a relative lack of
sequence overlap at the nucleotide level. All the male 1 samples are statistically distinguishable (p,0.05) from the second male sample and the female sample,
indicating that the physico-chemical properties of these samples from different individuals are distinct.
doi:10.1371/journal.pone.0086986.t002

Figure 6. Distribution of the p-values in pairwise samples. The distribution of the p-values after bootstrapping non aggregated subsamples
from both male1 unseparated samples (Figure 6A) and the male1 unseparated sample1 and female samples (Figure 6B). The relative uniform
frequency of the p-values from 0 to 1 in (A) suggests that significant p-values would occur only by chance in these subsamples. This contrasts with
the high number of significant p-values (p,0.05) in the distributions between the male1 and female samples (B).
doi:10.1371/journal.pone.0086986.g006

T Cell Receptor Diversity with Kidera Factors
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would be of particular interest to look into this further with T cell

populations taken during or just after an acute infection.

When comparing samples from different individuals (Figure 3),

the distributions shown by PCA alone appeared to be slightly

different. To investigate this further, the Kidera Factors were first

aggregated with the Vb genes they were associated with in the

identified clonotypes and then subjected to MDS analysis. A clear

difference between samples from different individuals was evident

by this analysis but not samples from the same individual taken at

different times or for naı̈ve and memory samples from the same

individual (Figure 4). Moreover, the ANOSIM statistic showed

these differences were highly statistically significant (Figure 5,

Table 2). Because the Kidera Factors were aggregated by Vb gene,

it was theoretically possible that the differences between individ-

uals could be due to different Vb gene usage resulting from

selection of the TCR on different sets of MHC self peptides. To

investigate this possibility, repeated samples of smaller numbers of

non-aggregated Kidera Factors from different donors and in

different samples from the same donor were subject to ANOSIM

analysis (Figure 6). The results from these analyses supported the

conclusion from the Vb aggregated results showing that samples

from different individuals could be distinguished whereas samples

taken at different times or naı̈ve and memory T-cell samples from

the same individual could not. The biological significance of this

finding is not quite clear at this stage. If the structural properties of

the Vb chain identified by the Kidera factors are specific for

antigen binding, the similar distribution in naı̈ve and memory T-

cell and in samples taken at different times from the same

individual may suggest a smaller antigen specific repertoire than

indicated by the sequences alone. Alternatively, the ‘‘structural

properties’’ identified by the Kidera Factors may reflect Vb chain

binding to different MHC types rather than antigen.

It is important to note that these results were obtained despite

considerable information compression. The CDR3 amino acid

sequences were turned into a ten dimensional vector representing

the averaged Kidera Factors of the amino acids composing the

sequence so that information inferable from the order of the amino

acids was lost in the process. Nevertheless, Kidera Factor

representation of the CDR3 conveys information that is related

to protein structure and gives information about the TCR

repertoire that is not evident from DNA or amino acid sequences

alone [19,20]. This could have important implications for relating

the TCR repertoire to antigen recognition and in the clinical

arena such as ageing, autoimmune disease and immune reconsti-

tution in HIV after anti-retroviral treatment and following stem

cell transplantation.

Supporting Information

Figure S1 shows how permuting the sample labels and
recalculating the R-statistic generate the null distribu-

tion for the ANOSIM test. Permuting the labels produces an

alternative plausible distribution of the aggregate labels if, under

the null hypothesis, the samples cannot be distinguished and are

effectively replicates from the same sample. To obtain a p-value,

the R statistic must be compared with a null distribution. As the

ANOSIM test is a non-parametric test, this null distribution must

be computed. The distribution of rank similarities under the null

hypothesis implies that the samples containing the CDR3 Kidera

Factors are indistinguishable from each other. Taking the null

hypothesis to be true, each CDR3 Kidera Factors is effectively just

a replicate from a single sample. Randomly re-assigning the

sample labels (i.e. either ‘‘sample 1’’ or ‘‘sample 2’’) among the

CDR3 Kidera Factor vector represents an alternative permutation

of the sample labelling of the CDR3 Kidera Factors. If the samples

are indeed indistinguishable, this random reassignment can be

used to generate a null distribution by repeatedly shuffling and re-

assigning the sample labels pertaining to each aggregated gene

(Figure S1). This maintains the rank similarity between pairs of

CDR3 Kidera Factors but reassigns each aggregate at random

between the two samples. An R-score is computed by using the

same formula above for each random reshuffle. Summating these

R-scores creates the null distribution. A p-value for the original R-

statistic can now be obtained by evaluating the proportion of

reshuffles for which the permuted R-statistics exceeds or equals the

actual R-statistic. Thus instead of relying on the value of R, we can

qualify the difference between samples on the p-value, where the

smaller it is, the lower the chance that the actual permutations of

labels has come from the null distribution and hence the more

likely the samples are to be different. In practice, given the number

of possible combinations (
C100

50

2
) for two samples, each with 50

aggregated Kidera Factor data points, a subsample of these

combinations can be generated to serve as the null distribution.

Sampling 1,000 permutations by randomly assigning the sample

labels to each gene in the similarity rank matrix generates a null

distribution of sufficient size to be able to accept or reject the null

hypothesis (Figure S1 for schematic).

(PDF)

Table S1 Gives the 10 dimensional Kidera Factor
descriptions with values for alanine as an example of
all twenty amino acids taken from reference 18.

(DOCX)
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