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SUMMARY

Characterizing polyclonal antibody responses via
currently available methods is inherently complex
and difficult. Mapping epitopes in an immune
response is typically incomplete, which creates a
barrier to fully understanding the humoral response
to antigens and hinders rational vaccine design ef-
forts. Here, we describe a method of characterizing
polyclonal responses by using electron microscopy,
and we applied this method to the immunization of
rabbits with an HIV-1 envelope glycoprotein vaccine
candidate, BG505 SOSIP.664. We detected known
epitopes within the polyclonal sera and revealed
how antibody responses evolved during the prime-
boosting strategy to ultimately result in a neutralizing
antibody response. We uncovered previously un-
identified epitopes, including an epitope proximal
to one recognized by human broadly neutralizing
antibodies as well as potentially distracting non-
neutralizing epitopes. Our method provides an effi-
cient and semiquantitative map of epitopes that are
targeted in a polyclonal antibody response and
should be of widespread utility in vaccine and infec-
tion studies.

INTRODUCTION

Classically, vaccines are composed of killed or attenuated path-

ogens or protein subunits derived from the pathogen surface.

Although most successful vaccines are based on these ap-
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proaches, highly antigenically variable pathogens, such as HIV,

and pathogens that circulate in the population as a large number

of serotypes have proven less tractable. A different approach

based on isolating functional antibodies to the pathogen by

studying their interaction with their targets and then designing

vaccine candidates has been described (Burton, 2002, 2017;

McLellan et al., 2013; Rappuoli and De Gregorio, 2016; Walker

et al., 2009). For highly antigenically variable pathogens, broadly

neutralizing antibodies (bnAbs), i.e., antibodies that can recog-

nize multiple antigenic variants thereof, can usually be isolated

only from a small subset of infected patients (McCoy and

McKnight, 2017). The target for HIV bnAbs is the metastable en-

velope (Env) antigen, which consists of the two glycoproteins

gp120 and gp41 arranged in a (gp120)3(gp41)3 trimeric assembly

and sits on the surface of the viral particle. Stabilization is

required for the generation of a recombinant molecule (SOSIP)

that mimics the native trimer on the virus, and these recombinant

trimers bind bnAbs and are antigenically native (Binley et al.,

2000; Sanders et al., 2002, 2013). Although some inferred germ-

line versions of bnAbs are able to recognize the native Env trimer

(Andrabi et al., 2015), the inferred germline versions of many

other bnAbs typically fail to recognize both the recombinant tri-

mers and the corresponding Env glycoprotein on the virus. How-

ever, engineered proteins have been designed to stimulate the

precursor B cells of bnAbs (Briney et al., 2016; Escolano et al.,

2016; Jardine et al., 2015; Medina-Ramı́rez et al., 2017; Sok

et al., 2016; Steichen et al., 2016) and help advance structure-

guided vaccine development against HIV according to the use

of sequential immunogens (Escolano et al., 2016).

Although the first immunization experiments using native re-

combinant Env trimers (de Taeye et al., 2015; Pauthner et al.,

2017; Sanders et al., 2015; Sok et al., 2017; Torrents de la

Peña et al., 2017; Voss et al., 2017) and germline-targeting im-

munogens (Dosenovic et al., 2015; Jardine et al., 2015, 2016;
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Sok et al., 2016; Steichen et al., 2016) in diverse animal models

looked promising and were able to elicit tier 2 autologous

neutralizing antibodies (nAbs) (Escolano et al., 2016), one of

the rate-limiting steps in the iterative vaccine-development

approach is in the analysis of the polyclonal immune response

elicited by immunization. Serum neutralization assays and

enzyme-linked immunosorbent assays (ELISAs) are typically

used as relatively rapid readouts of the epitopes recognized by

elicited antibodies but are restricted to previously characterized

epitopes. Gaining a more detailed picture requires the genera-

tion of monoclonal antibodies (mAbs) (Escolano et al., 2017;

McCoy and Burton, 2017; McCoy et al., 2016; Sok et al., 2017)

and determination of their structures in complex with immuno-

gens. This process is time consuming and limited to a relatively

small number of samples. Such analyses typically focus on anti-

bodies with a biological function (e.g., neutralization) and often

leave the remainder of the humoral immune response less well

investigated. Given the high cost and labor involved, unsuccess-

ful outcomes of vaccination experiments are hardly ever

analyzed in detail, and the reasons that a given immunogen

might fail to generate a neutralizing response can remain un-

known. More recent efforts to use deep sequencing of the

B cell receptor (BCR) repertoire of responding B cells have

considerable limitations because, in most cases, the heavy-

light-chain pairing is lost (as reviewed in McCoy and Burton,

2017). Next-generation sequencing (NGS) analyses can be

used to study responses but require a considerable amount of

pre-existing knowledge to interpret the sequencing data; unless

characteristic features of bnAb sequences are known or a

comprehensive reference database of previously isolated and

sequenced pathogen-specific B cell clones or mAbs is available,

these analyses rely on identifying changes between the fre-

quencies of V region clonotypes or families and those of the

pre-immune state. Approaches that couple NGS data with tan-

dem mass spectrometry (MS/MS) analyses of affinity-purified

antibodies (Boutz et al., 2014; Lavinder et al., 2014; Reddy

et al., 2010; Wine et al., 2013, 2015) have enabled the identifica-

tion of BCR sequences that are antigen specific without prior

knowledge of their genetic signatures. These approaches have

brought more comprehensive insights into B cell responses;

however, they cannot provide direct information about the

epitope recognized unless the sequenced BCR sequences are

synthesized and expressed as antibodies for validation and gain-

ing insight into their specificity.

Immunization of rabbits with HIV trimer BG505 SOSIP.664 has

previously been used for determining the immunogenicity of re-

combinant, native-like Env trimers (de Taeye et al., 2015; Klasse

et al., 2016;McCoy et al., 2016; Sanders et al., 2015). These prior
Figure 1. Epitope Mapping of the Antibody Response to BG505 SOSIP

(A) Immunization schedule used for the four rabbits analyzed in this study.

(B) Representative reference-free 2D class averages obtained after each BG505 S

trimers (white) are highlighted with false coloring: red, bottom of trimer (BOT); bl

(C) 3D reconstructions of the four basic antibody classes elicited by BG505 SOSI

filtered Env trimer reference structure (PDB: 5I8H; displayed as ribbons with gp1

map for fully glycosylated BG505 SOSIP.664 (EMD: 5782) was also fitted with Chi

representative 3D reconstructions and 2D class averages. Densities for mAbs 10A

reconstructions, respectively. BOT-, GH-, and COT-specific antibodies are hig

averages are shown below each view. A comparison of the two GH classes and

See also Figures S1 and S2.
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studies employed intramuscular prime immunization with 30 mg

of BG505 SOSIP.664 with Iscomatrix adjuvant at day 0 and

then booster immunization using the same formulation at weeks

4 and 24. BG505 SOSIP.664 immunization was found to induce

autologous tier 2 nAb titers. Neutralizing mAbs 10A, 11A, and

11B isolated from BG505-SOSIP.664-immunized rabbits led to

the definition of a highly immunogenic glycan hole (GH) present

on the surface of the BG505 Env in the vicinity of S241 (Klasse

et al., 2016, 2018; McCoy et al., 2016). Antibodies specific to

this particular epitope were identified as the primary source of

neutralization. Negative-stain electron microscopy (nsEM) illus-

trated that the antibodies approach the Env surface from the

membrane-proximal side of the trimer (McCoy et al., 2016). Be-

sides this class of tier 2 nAb, two tier 1 nAbs were identified—

10B, which recognized the V3 loop, and 10C, which competed

with CD4-binding-site bnAbs on gp120—but both bound poorly

to Env trimers. Lastly, 12A-like antibodies that displayed weak

autologous neutralizing activity but bound to a different epitope

than 10A, 11A, and 11B were identified. 12A-mediated neutrali-

zation was impaired in the presence of a glycan at position N611.

nsEM revealed that mAb 12A bound to an epitope in the vicinity

of the PGT151 epitope but at a more canonical bnAb angle of

approach than that of 10A, 11A and 11B. These studies offer

information about the diversity present in the humoral immune

responses, including non-neutralizing epitopes that could poten-

tially be a distraction from eliciting nAb responses. Here, we

describe a complementary approach that, compared with isola-

tion of mAbs, elucidates a more complex landscape of the anti-

body response within polyclonal sera, including the genesis and

evolution of antibody responses targeting different epitopes on

Env. These data can be rapidly generated, i.e., within a week

of blood collection, and help inform the iterative, structure-based

vaccine design process.

RESULTS

Immunization with BG505 SOSIP.664 Elicited Different
nAb Titers in Rabbits
For the purposes of the current investigation, we analyzed sera

from four BG505-SOSIP.664-immunized rabbits (3417, 3418,

3419, and 3420) that had been extensively characterized in a

previous study (McCoy et al., 2016). Rabbits were immunized

four times with BG505 SOSIP.664 and bled 2 weeks after each

immunization (Figure 1A). Sera obtained are referred to as PI,

PP, PB1, PB2, and PB3 for pre-immunization, post-prime,

post-boost 1, post-boost 2, and post-boost 3, respectively.

Sera characterization using ELISA (Figures S1A and S1E)

and neutralization assays (Figure S1B; McCoy et al., 2016)
.664 Trimers in Rabbits by nsEM Defines Different Antibody Classes

OSIP.664 immunization of rabbit 3417. Fabs bound to BG505 SOSIP.664 Env

ue, glycan hole (GH); orange, cleft of trimer (COT).

P.664 immunization of rabbits. Refined 3D models were fitted onto a low-pass

20 in bright blue and gp41 in dark gray). For display of the surface, the density

mera and displayed in semitransparent gray. Side and top views are shown for

and PGT151 are added as semitransparent references in the GH2 and COT 3D

hlighted with red, blue, and orange, respectively. Representative 2D class

variations of the BOT epitope recognition is depicted in a box on the right.



demonstrated that the antibody responses were comparable to

those previously published (de Taeye et al., 2015; Klasse et al.,

2016; Sanders et al., 2015). As in previous studies, only low titers

of binding antibodies were induced after the prime (Figures S1A

and S1E). However, the first booster immunization drastically

increased these binding titers to their nearly maximum levels,

such that subsequent immunizations afforded little further

improvement. No autologous nAbs were induced by the priming

immunization, and neither rabbit 3418 nor 3419 developed nAb

titers above the detection level during the entire course of the im-

munizations (Figure S1B; McCoy et al., 2016). In the other two

rabbits after the first boost, neutralizing titers substantially

increased in rabbit 3417, but not in rabbit 3420, where neutral-

izing titers were observed only after the second boost. The third

boost did not improve the already high nAb titers in rabbit 3417

and even resulted in slightly lower titers than observed in PB2

(Figure S1B). In the slower responding rabbit 3420, the third

boost improved its neutralizing titers to around half the titer

observed in rabbit 3417 (i.e., IC50 63 versus 32 mg/mL). These

data demonstrate that each animal responded somewhat differ-

ently in terms of nAb titers to the BG505 SOSIP.664 candidate

vaccine.

Biochemical Characterization of Polyclonal Antibody
Serum and Generated Fabs
To determine the epitopes of the elicited antibodies without gen-

eration of mAbs, we devised a strategy to directly image immune

complexes formed between the immunogen (BG505 SOSIP.664)

and the induced serum antibodies by nsEM. Serum immuno-

globulin G (IgG) was purified with amixture of protein A and G af-

finitymatrix and processed into fragments antigen binding (Fabs)

with immobilized papain to prevent antigen crosslinking and ag-

gregation due to the bivalent nature of IgG. Before nsEM, Fabs

were subjected to biochemical quality control: purity and the

correct size of the Fabs were confirmed by SDS-PAGE and

size-exclusion chromatography (SEC) (Figures S1G and S1H).

To investigate the effect of the IgG digestion protocol on the bio-

logical activity of antibodies, we determined neutralizing titers

before and after IgG digestion. As depicted in Figure S1C, a

considerable reduction of neutralizing activity was observed for

the polyclonal serum when it was digested into Fabs. However,

given that mAbs 10A and 11A also displayed a comparable loss

in neutralizing activity when they were recombinantly expressed

as Fabs, we concluded that proteolytic digestion did not have

gross detrimental effects. Thus, we derived a method to reliably

digest serum IgG into Fabs for further analysis.

Polyclonal Image Analysis of Env-Fab Complexes by
nsEM Reveals Different Classes of Antibodies
Given the limited amount of serum available and the low titers af-

ter the prime vaccination (Figures S1A and S1E), post-prime

complexes could be identified only for rabbit 3417. Complexes

were purified via SEC and deposited onto electron microscopy

(EM) grids and imaged. For each sample, we collected 10,000–

50,000 individual particle images that were submitted to refer-

ence-free 2D classification (Figure 1B). After priming, the early

antibody response was completely dominated by bottom of

trimer (BOT)-binding antibodies. These antibodies bound to a

neo-epitope that is unique to the soluble Env trimer and does
not exist on membrane-embedded Env. Hence, for the most

part, these corresponded to non-neutralizing responses. After

the first booster immunization, antibodies to the GH epitope

(McCoy et al., 2016) were also identified in rabbits that devel-

oped neutralizing titers (3417 and 3420), but not in rabbits that

did not mount neutralizing titers (3418 and 3419).

We performed 3D refinement that yielded 3D classes repre-

senting the most predominant immune complexes for all rabbits.

When all reconstructions were overlaid and compared with pro-

totypic mAbs, one BOT, one cleft-of-trimer (COT), and two

GH-specific binding classes could be defined (Figure 1C). BOT

antibodies recognized an epitope similar to the previously

described bottom-binding mAb 12N (Kulp et al., 2017; McCoy

et al., 2016) and were therefore binned into one class, although

some variation in epitope and angle of approach was detectable

in the 3D reconstructions (Figure 1C, box). Glycan hole 1 (GH1)

class antibodies almost perfectly overlapped 10A, a prototypic

GH-specific neutralizing mAb described earlier (McCoy et al.,

2016). Relative to 10A, the second GH-specific class, GH2,

bound in an orientation rotated approximately 90� along its lon-

gitudinal axis to the same region. COT class antibodies, i.e., an-

tibodies that bound between the trimer blades, were found only

in less than 1% of 2D class averages from rabbits’ 3417 and

3420 bleeds after PB1 (Figure S2A) and not in the 3D classes,

indicating that these antibodies were not very abundant in com-

parison with the others. COT class antibodies were found to bind

a membrane-proximal region located just below fusion-peptide-

specific antibodies, such as PGT151. This region, typically

referred to as the gp120-gp41 interface, is actually a cluster of

overlapping epitopes that include COT, PGT151, and the previ-

ously described rabbit mAb 12A, which preferentially neutralizes

viruses lacking the glycan at N611 (Figure S2B).

We hypothesized that the relative dominance of the BOT and

GH antibodies prevented detection of COT antibodies in the

3D classes. Hence, our original BG505 SOSIP.664 probe was

not sensitive enough to completely characterize the polyclonal

response. When complexes were instead formed with Env tri-

mers in which either the GH alone (Klasse et al., 2016; McCoy

et al., 2016) or the GH and the bottom were modified to diminish

antibody binding (Kulp et al., 2017), the frequency of detection of

COT antibodies increased considerably in 2D class averages

(Figure S2C), and 3D models could be generated from such im-

mune complexes (Figures 1C and S2B). In contrast to human

bnAb PGT151, which binds with a stoichiometry of 2 Fabs per

trimer (Blattner et al., 2014), COT class antibodies bound with

up to three molecules per trimer (Figure S2C, box). GH- and

COT-specific antibodies could be concomitantly bound to the

same cleft of the trimer (Figure 1B, box), indicating that there

was no direct steric hindrance between these two classes.

BOT-specific antibodies were the first and only class of anti-

bodies detectable after priming (Figure 1B) and remained detect-

able throughout the course of immunization in all rabbits

(Figure 2). In the two rabbits that developed autologous neutral-

izing titers (3417 and 3420), the differences in the kinetics of the

development of neutralizing titers was also reflected in the clas-

ses of antibodies found. In the rapidly responding rabbit 3417,

the appearance of GH1 antibodies coincided with the develop-

ment of neutralizing titers at PB1, and GH1 remained the

only GH-binding class of antibodies. In contrast, in the slowly
Immunity 49, 288–300, August 21, 2018 291
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responding rabbit 3420, GH2 but not GH1 class antibodies were

detectable at PB1 (Figure 2). The fact that no neutralizing activity

was found in this rabbit at PB1 (Figure S1B) suggests that the

GH2 class of antibodies did not confer substantial neutralization

activity against BG505. However, when autologous neutralizing

activity became detectable in rabbit 3420 after PB2, GH1 anti-

bodies became readily identifiable in the 3D reconstructions

(Figure 2). These data suggest that GH1 class antibodies, like

mAb 10A, were predominantly responsible for the neutralizing

activity in these BG505-SOSIP.664-immunized rabbits.

To independently confirm the findings made by nsEM, we

used SEC to compare Fab occupancy in complexes formed

with wild-type (WT) BG505 SOSIP.664 and a variant thereof, in

which mutations S241N and P291S introduced N-linked glyco-

sylation sites at positions N241 and N289, respectively. The

241 or 241 and 289 mutations have previously been shown to

knock out the nAb response (Klasse et al., 2016, 2018; McCoy

et al., 2016), consistent with structural observations (McCoy

et al., 2016). First, to determine the Fab occupancy in immune

complexes, we digested a panel of well-characterized mAbs

into Fabs and estimated their molecular weight by measuring

retention volume by SEC. Most free Fabs eluted at around

18 mL from a Sepharose 6 Increase 10/300 column (Figure 3A).

When immune complexes were formed between BG505

SOSIP.664 and saturating concentrations of a single Fab speci-

ficity, their previously determined stoichiometry of binding (Blatt-

ner et al., 2014; Julien et al., 2013a, 2013b; Lee et al., 2015; Liu

et al., 2017; Stewart-Jones et al., 2016) was reflected in their

elution volume (Figure 3B). However, complexes containing

35O22 or PGT151 Fabs were retained considerably longer than

expected and were therefore excluded from further analysis.

Finally, a large number of distinct immune complexes were

formed and combinedmAbs of different binding stoichiometries,

and their elution volumes were determined (Table S1). These

data enabled us to calculate a standard curve for estimating

Fab occupancy directly from the elution volume of an immune

complex (Figure 3C). To correct for the different amounts and af-

finities of BG505-specific antibodies present in the Fab prepara-

tion from the different bleeds, we determined EC50 values by

ELISA (Figures 4A and S1A) and performed standardized im-

mune-complex formation by overnight incubation of 10–25 mg

of BG505 SOSIP.664, or variants thereof, with 2,0003 the EC50

concentration of Fabs determined by ELISA.We subjected com-

plexes to SEC to remove non-bound Fabs and estimate the

average stoichiometry of Fabs bound to the immunogen. After

SEC elution, complexes were subjected to single-particle nsEM.

To assess the occupancy, we formed immune complexes with

Fab concentrations standardized to 2,0003 the EC50 of 3417

PB1 by using BG505 SOSIP.664 and the GH-restored trimer

(Figure 4). In rabbits that developed a neutralizing response,

the fraction of N241- or N289-sensitive antibodies (i.e., GH spe-
Figure 2. Epitope Mapping of the Antibody Responses in the Four Rab

veals that Neutralization Correlates with Appearance of GH1 Class An

Refined 3Dmodels were fitted onto a low-pass filtered Env trimer reference struct

gray). Densities corresponding to Fabs were separated and colored. For display

5782) was aligned as described above and rendered in semitransparent gray. Sid

top views) illustrates the development of autologous neutralizing titers, correlating

Figure S1.
cific) increased with each booster immunization (3417 and 3420;

Figure 4B). By contrast, in rabbits that failed tomount nAbs (3418

and 3419), the antibody response was almost completely inde-

pendent of the presence or absence of glycosylation at position

241 or 289, consistent with our nsEM findings.

To compare the overall affinities of the bound antibody clas-

ses, we used titrated Fabs from rabbit 3417 PB1 to form com-

plexes with a fixed amount of WT BG505 SOSIP.664 or GH-filled

trimer (Figure 4C) in non-saturating conditions. The fraction of

GH-indifferent antibodies in the immune complexes decreased

with each antibody dilution, indicating that these were of weaker

affinity. Again, nsEM imaging of these complexes was consistent

with these findings (2D classes for rabbit 3417 PB2 are shown as

an example in Figure S2D).

To assess whether the lack of detection of V3 supersite or

apex-specific antibodies was due to perturbation of these epi-

topes by binding of the predominant BOT or GH antibodies,

we formed immune complexes by using a mixture of the BOT

mAb 12N with either PG9 or PGT121 and found that binding of

12N did not affect binding of the other two mAbs in nsEM. Like-

wise, mixing 3417 PB1 Fabs containing BOT, COT, and GH an-

tibodies with either PG9 or PGT121 did not prevent binding or

detection of either mAb, as demonstrated by nsEM (Figure S1D).

Finally, to determine whether the sera contained antibodies able

to bind the V3 loop in the context of a well-ordered intact trimer,

we first performed competition ELISA by using peptides corre-

sponding to the V3 loop of BG505 SOSIP.664. Because no

competition was detectable (Figure S1E), we concluded that

only a minor fraction of Env trimer-specific antibodies was in

fact against the V3 loop. We therefore enriched for V3-specific

antibodies by affinity chromatography and obtained �1 mg of

V3-specific Fabs per milligram of total Fabs. A fraction of these

V3-specific Fabs were indeed able to bind immobilized BG505

SOSIP.664 in ELISA (Figure S1F) but were not observed in

nsEM, most likely as a result of low affinity and fast off rates. In

total, using nsEM and image analysis, we have discovered a

class of antibodies that have not been described so far (COT),

identified classes of antibodies that correlate with neutralization

(GH1), and been able to expand our knowledge of the immuno-

dominance of the BOT epitopes.

3D CryoEM Studies of Env-Fab Complexes Reveal High-
Resolution Information about Targeted Epitopes
Although nsEM and 2D classification were sufficient to identify

the predominant epitope specificities elicited by BG505

SOSIP.664 immunization, we also attempted cryo-electron mi-

croscopy (cryoEM) and 3D reconstruction of complexes from

one of the serum samples (rabbit 3417, PB1) for a more detailed

analysis. We collected a dataset of �162,000 complexes and

analyzed them by 2D classification. The results were consistent

with the nsEM data, although as expected, the cryoEM data had
bits at Different Time Points during the Immunization Schedule Re-

tibodies

ure (PDB: 5I8H; displayed as ribbons with gp120 in bright blue and gp41 in dark

of the surface, the density map for fully glycosylated BG505 SOSIP.664 (EMD:

e and top views are displayed. The bright-green wedge (between the side and

withGH1 class antibodies, in two of the rabbits at different time points. See also
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Figure 3. Generation of a Standard Curve for Measuring Fab Occupancy in Immune Complexes

(A) Elution volumes of Fabs purified from the indicated mAbs.

(B and C) Elution volumes of immune complexes saturated with a single Fab specificity (B) or combined Fab specificities (C) for determination of a standard curve

for the calculation of Fab occupancy in immune complexes. Multiple dots represent different Fab-BG505 SOSIP.664 combinations with the same stoichiometry

of binding. Note that complexes containing PGT151 and 35O22were excluded from the right panel because of their aberrant elution behavior, which in the case of

35O22 only could be explained by a prolonged retention time of the Fabs themselves.

See also Table S1.
a much great diversity of views of the complexes as a result of

the free tumbling of particles in solution before rapid freezing,

as well as a higher number of imaged particles. This relatively

isotropic distribution of complexes is essential for robust 3D

classification and reconstruction. We first calculated a single

3D reconstruction of the entire dataset by using CryoSparc (Pun-

jani et al., 2017) (Figure S3), which included a heterogeneous

mixture of Env-Fab complexes, resulting in a �4.7 Å resolution

density map. The BG505 SOSIP.664 portion of this ‘‘global

average’’ map was very well resolved, and further 3D classifica-

tion and refinement resulted in four reconstructions that were

resolved to sub-nanometer resolution. Previously solved atomic

structures of the trimer could be fitted well into these maps, two

of which are displayed in Figure 5A.

The main conclusion from the high-resolution analyses in

CryoSparc is the high-quality density in the maps that corre-

sponded to the GH1 antibodies, suggesting a structurally homo-

geneous mAb population. Further, when the high-resolution

structure of Fab 10A, which we solved by X-ray crystallography

(Figure 5B and Table S2; PDB 6CJK), was fit into the density

map, it was very similar, particularly with regard to the main point

of contact, the long LCDR3 loop (Figure 5C). Notably, in HCDR1,

HCDR2, and HCDR3, the loop lengths of the polyclonal average

appeared to differ from that of 10A, consistent with some variation

in loop length and heavy-chain usage between these and 10A.

These data suggest that the rabbits might have biased light-chain

usage that preferentially targeted the GH epitope, whereby

LCDR3 made the majority of contacts with Env in a lysine-rich

loop directly above the S241 residue (Figure 5D). Moreover, con-

necting densities between the glycan at position N88 and the light

chain suggest additional direct interactions (Figure 5C). Although

the epitope-paratope regions were well resolved, for the C-termi-

nal end of constant region 1, the 10A fit became poorer and

densities become more diffuse, probably as a result of a slight

difference in the positions of their C termini. Whether these differ-

ences reflected actual differences in the angle of approachof indi-

vidual antibody species present in the polyclonal sera or whether

this was due to the inherent flexibility of the hinge region of the
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Fabs could not be determined from the available data. In our pre-

vious study, we showed at low resolution that nAbs isolated from

different rabbits targeted the GH in very similar manners (McCoy

et al., 2016). Here, in our high-resolution cryoEM analysis, the

close resemblance between the averaged polyclonal densities

and the structure of mAb 10A, isolated from a different rabbit,

again suggests highly convergent responses, even at themolecu-

lar level. Althoughwe can only speculate at this point whether this

observation was due to the dominance of a single clonotype or

whether itwas the result of convergent evolution ofmultiple clono-

types, thedecreasing resolutionof theGH1densitymap in regions

distal to the paratope indicates that the individual Fabs bound at

varying angles of approach.

In the CryoSparc refinement, the complexes were not

completely classified, and in all reconstructions, there was

evidence of partial occupancy of one or more Fabs. The den-

sities corresponding to Fabs varied between epitopes and pro-

vided a rough approximation of stoichiometry: densities that

comprised the intact molecular volume of Fabs were consistent

with high stoichiometry, whereas incomplete Fab volumes were

consistent with lower stoichiometry butmight also have reflected

to some degree a higher flexibility or diversity of the bound Fabs

(cf. BOT densities in Figure 5A). We therefore devised a strategy

to estimate the occupancy on the basis of the Fab density

apparent at different map thresholds. Using RELION (Scheres,

2012) on the same dataset, we undertook an exhaustive 3D clas-

sification approach to determine as many 3D reconstructions as

possible given the size of the dataset (Figure S3). On the basis of

this approach, we computationally isolated 20 complexes at

modest resolution, which enabled us to observe the diversity

of epitopes targeted and estimate the response to each epitope.

Our 3D classification scheme allowed us to semiquantitatively

report the total occupancy of the two primary antibody re-

sponses, BOT and GH (Figure 6). At the Fab concentration

used, all immune complexes contained at least one GH1 Fab.

The majority of 3D models displayed partial occupancy at one

or two of the potential GH and BOT binding sites, and no other

pattern was discernable. Quantification of 3D classes provided



Figure 4. Analysis of 241 and 289 GH Binding Shows the Evolution of the Immune Response and Higher Affinities of GH-Specific Antibodies

Than of Non-GH Antibodies

Fab occupancy of immune complexes formed with rabbit polyclonal Fabs and BG505 SOSIP.664 with or without the GH was compared.

(A) Factors used for normalization to rabbit 3417 PB1 EC50 were determined by ELISA.

(B) Occupancy of GH-specific (white) and non-GH-specific (black) antibodies in immune complexes normalized to PB1-EC50 of rabbit 3417.

(C) Comparison of relative affinities of GH-specific (white) and non-GH-specific (black) antibodies determined by measurement of Fab occupancy in complexes

formed with titrated amounts of rabbit 3417 Fabs.

See also Figure S2.
semiquantitative information for recognition of the different anti-

body classes. Moreover, by adding cryoEM analyses to nsEM,

we gained structural information about the GH1 epitope recogni-

tion and demonstrated a structurally highly convergent evolution

of these GH1-specific antibodies in rabbits.

DISCUSSION

Our polyclonal imaging approach using nsEM can provide

snapshots of the antibody response at any given time after

vaccination and has enabled us to extensively and semiquanti-

tatively map the polyclonal immune response to a protein or

glycoprotein immunogen and thereby shed light on the epitopic

diversity and maturation of antibody responses in vaccinated

animals. Our approach could equally be applied to follow the

course of a response during natural infection. Using this

approach, we confirmed GH1 class antibodies as major source

of neutralization in BG505-SOSIP.664-immunized rabbits. In

addition, we were able to discern differences in the kinetics

by which the nAb responses are mounted and demonstrated
that the lack of neutralization in this particular case was due

to a failure to mount GH-specific antibodies. Moreover, we

identified two additional classes of antibodies, namely GH2

and COT, that have not been previously described. The fact

that GH2 antibodies can be found in samples with no neutral-

izing activity suggests that this class of antibody is non-neutral-

izing. COT antibodies could only be found in the neutralizing

rabbits 3417 and 3420, but the absence of neutralization of a

BG505 N332 virus with restored glycans at positions N241

(McCoy et al., 2016) and N289 indicates that this class of anti-

bodies is either non-neutralizing or too rare to provide neutral-

ization at least in these specific rabbits. Obtaining a definitive

answer about their biological activity, however, will require

additional experiments with mAbs from these classes. Besides

identifying the predominantly elicited antibody classes and the

most likely source for autologous neutralization, our rapid nsEM

approach also provided approximate information about the af-

finity of the antibody classes detected. For example, we

showed that early BOT class antibodies were inferior to GH-

binding antibodies in that they disappeared from immune
Immunity 49, 288–300, August 21, 2018 295



Figure 5. Analysis of a Polyclonal Immune Complex Structure Obtained by cryoEM with Sub-nanometer Resolution

(A) Side and bottom views of two representative 3D reconstructions for immune complexes with Fabs originating from PB1 of rabbit 3417. EM densities are

depicted in beige (Env), blue (GH binding Fabs), and red (BOT binding Fabs). The crystal-structure coordinates of BG505 SOSIP (PDB: 5I8H) were fitted into the

EM densities and are depicted as a backbone in beige for gp120 and in gray for gp41. The 10A light chains are colored cyan, and heavy chains are colored green

(cf. B–D).

(B) Crystal structure of rabbit mAb 10A (PDB: 6CJK). The long LCDR3 extends away from the surface of the paratope.

(C) Close-up views of a high-resolution cryoEM map of BG505 SOSIP.664 in complex with polyclonal Fabs. The cryoEM BG505 SOSIP.664 structure (PDB:

5ACO) and crystal structure of Fab 10A were fitted onto the map.

(D) Close-up view of the epitope-paratope. The long LCDR3 makes the majority of contacts with Env in a lysine-rich loop directly above the S241 GH residue.

Position N289, whose glycosylation would interfere with antibody binding (but is not glycosylated in BG505 SOSIP.664), is indicated in the structure. The glycan

present at N88 is represented by sticks and exhibits density in the cryoEM map that interacts with the light chain.

See also Figure S3 and Table S2.
complexes at higher Fab concentrations than GH class anti-

bodies, and this property did not change throughout the course

of the immunization. Overall, our findings were consistent with

and extend those of previously published rabbit-immunization

studies (de Taeye et al., 2015; Klasse et al., 2016; McCoy

et al., 2016; Sanders et al., 2015; Torrents de la Peña et al.,

2017, 2018). Moreover, we also corroborated our nsEM data

with occupancy data determined by a different, biochemical

method. Successful epitope mapping experiments using sera

from mice immunized with influenza A virus hemagglutinin

and ongoing studies investigating the humoral response to

BG505 SOSIPs in non-human primates (NHPs) (both will be

published elsewhere) further indicate that this method is not

restricted to rabbit immunoglobulin but can be applied to other

species and other antigens as well.

The addition of cryoEM to our methodology enabled us to

obtain sub-nanometer-resolution 3D reconstructions that pro-

vided us with additional insights into the molecular recognition

of the GH1 epitope on the immunogen. We detected a high de-

gree of structural conservation in these antibodies, in particular

for LCDR3. Our data, however, do not allow us to differentiate

whether this was due to the dominance of a single antibody clo-

notype or whether different antibody clones converged to struc-

turally similar paratopes.
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Although the images might not recapitulate the full diversity of

antigen-specific antibodies in the serum, they most likely repre-

sent a snapshot of the predominantly recognized epitopes.

Thus, our workflow and a small set of SOSIP trimer constructs

allow the rapid derivation of information for assessing ongoing

immunization experiments and provide data for immunogen

redesign. For example, the early dominant response to the trimer

base neo-epitope is concerning because the activation and pro-

liferation of BOT-specific B cells might restrict resources for

B cells recognizing more productive and neutralizing epitopes.

Furthermore, nearly all of the antibodies bind at an upward angle

relative to the trimer. This contrasts with all known bnAbs that

bind at a downward or parallel angle of approach, which reflects

the fact that the soluble BG505SOSIP.664 can also be presented

to rabbit Bcells in an ‘‘upside-down fashion’’ relative to virionpre-

sentation. Therefore, particulate display of BG505 SOSIP.664 tri-

mers could prevent presentation of the base and lower epitopes

in Env and improve immune responses such that they more

closely resemble nAb and, perhaps even to some extent, bnAb

responses. Overall, the rabbit responses to BG505 SOSIP.664

trimers appear quite narrow and are limited to a few epitopes.

In our images, we did not observe V3 loop, non-neutralizing

Abs, which have been reported in ELISA binding assays (McCoy

et al., 2016; Pauthner et al., 2017; Sanders et al., 2015). Because



Figure 6. Semiquantitative Analysis of Epitope Occupancy in cryoEM 3DReconstructions of Immune Complexes between BG505 SOSIP.664

and Fabs Originating from Rabbit 3417 PB1
(A) Examples of different occupancies for the indicated GH epitope. For normalizing thresholds of the individual 3D reconstructions, all density maps were

overlaid with a reference structure for BG505 SOSIP.664 (EMD: 8312) and adjusted in volume threshold until the Env volumes were identical to those of the

reference structure. Occupancy was then estimated, starting from the GH1 antibody present in all structures (referred to as GH1), in a clockwise direction.

(B) Number of particles displaying the indicated full occupancy.

(C) Number of particles containing full (darker colors), medium, and partial (lighter colors) occupancies for each of the indicated antibody-binding sites.

See also Figure S3.
we formed complexes in solution by using fully native Env trimer

proteins that do not expose the V3 loop or other epitopes that

can becomeexposed after immobilization, this is perhaps not sur-

prising. Our approach therefore preferentially detects the most

relevant responses to the surface of pre-fusion conformation of

Env. Although there is some indication from the COT class of an-

tibodies that itmight bemore challenging for ourmethod to detect

less frequent antibody classes, they still did not go undetected.

Additional complexes formed with epitope-knockout variants of

the immunogen or the use of pre-adsorbed Fab preparations

could also aid in the detection of rarer specificities.

In line with previous findings, our study also showed that the

appearance and maintenance of epitope specificities can vary.

The EM imaging provides predictive models that accurately

anticipate neutralization on the basis of the epitopes targeted,

at least in rabbits. Preliminary analysis using conventional

epitope mapping of NHPs immunized with BG505 SOSIP.664

(Pauthner et al., 2017) has found a more diverse response than
in rabbits. Our polyclonal epitope-mapping approach could be

used for a more comprehensive analysis of such NHP samples

as well as human responses to vaccines, which in turn would

inform prime-boosting vaccination strategies. For example,

direct visualization by nsEM could be used for rapidly deciding

whether a single prime is sufficient before the introduction of a

heterologous boost or whether a second prime should be given

if a desired antibody specificity cannot be observed after the first

immunization. Further, one can determine whether the elicited

polyclonal antibodies directly (via epitope overlap) or indirectly

(through steric blockade) interfere with an intended epitope-

focused response. Finally, comparison of imaging from human

and animal model studies will reveal the similarities and differ-

ences in responses between humans and animal models and

help determine the relative value of different preclinical studies

and the most appropriate animal model for iterative vaccine

design, including different immunization regimens and

adjuvants.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HRP-conjugated anti-rabbit IgG, F(ab’)2 specific Jackson ImmunoResearch Cat# 111-035-047

HRP-conjugated anti-human IgG, F(ab’)2 specific Jackson ImmunoResearch Cat# 109-035-097

Monoclonal anti-HIV-1 Env PGT121 Produced in house (Walker et al., 2011) RRID: AB_2491041

Monoclonal anti-HIV-1 Env PGT145 Produced in house (Walker et al., 2011) RRID: AB_2491054

Monoclonal anti-HIV-1 Env PGT151 Produced in house (Falkowska et al., 2014) N/A

Monoclonal anti-HIV-1 Env PG9 Produced in house (Walker et al., 2009) RRID: AB_2491030

Monoclonal anti-HIV-1 Env PG16 Produced in house (Walker et al., 2009) RRID: AB_2491031

Monoclonal anti-HIV-1 Env PGDM1400 Produced in house (Sok et al., 2014) N/A

Monoclonal anti-HIV-1 Env PGV04 Produced in house (Wu et al., 2011) N/A

Monoclonal anti-HIV-1 Env VRC01 Produced in house (Wu et al., 2010) RRID: AB_2491019

Monoclonal anti-HIV-1 Env 10-1074 Produced in house (Shingai et al., 2013) RRID: AB_2491062

Monoclonal anti-HIV-1 Env 35O22 Produced in house (Huang et al., 2014) N/A

Monoclonal anti-HIV-1 Env 3BC315 Produced in house (Klein et al., 2012) N/A

Monoclonal anti-HIV-1 Env 10A Produced in house (McCoy et al., 2016) N/A

Monoclonal anti-HIV-1 Env 11A Produced in house (McCoy et al., 2016) N/A

Monoclonal anti-HIV-1 Env 12A Produced in house (McCoy et al., 2016) N/A

Monoclonal anti-HIV-1 Env 12N Produced in house (McCoy et al., 2016) N/A

Monoclonal anti-HIV-1 Env 14e Produced in house (Sanders et al., 2013;

Prof. James Robinson)

N/A

Monoclonal anti-HIV-1 Env 19b Produced in house (Robinson et al., 1990) N/A

Bacterial and Virus Strains

BG505 N332 HIV-1 Env-pseudotyped virus Produced in house (Pauthner et al., 2017) N/A

BG505 N241/289/332 HIV-1 Env-pseudotyped virus Produced in house (Pauthner et al., 2017) N/A

Biological Samples

Plasma from rabbits 3417–3420 McCoy et al., 2016 N/A

Chemicals, Peptides, and Recombinant Proteins

BG505 SOSIP.664 Produced in house (Sanders et al., 2013) N/A

BG505 SOSIP.664 N241 N289 Produced in house (Sanders et al., 2013) N/A

BG505 SOSIP.664 v4.1 Produced in house (de Taeye et al., 2015) N/A

BG505 SOSIP.664 v5.2 Produced in house (Torrents de la Peña

et al., 2017)

N/A

BG505 MD39 CPG9 Prof. William R. Schief (Kulp et al., 2017) N/A

Immobilized Papain Thermo Fisher Scientific Cat# 20341

Immobilized IdeS (Fabricator) Genovis Cat# A0-FR6-100

Immobilized protein A GE Healthcare Cat# 17-5280-02

Immobilized protein G GE Healthcare Cat# 17-0618-05

Immobilized streptavidin (high capacity) Thermo Fisher Scientific Cat# 20357

NeutrAvidin Thermo Fisher Scientific Cat# 31000

InstantBlue Coomassie stain Expedeon Cat# ISB1L

Desalting columns Thermo Fisher Scientific Cat# 89890

TMB substrate Thermo Fisher Scientific Cat# 34028

Polyethylenimine (PEI) HCl MAX, Linear, Mw 40,000 Polysciences Cat# 24765-1

TMB substrate Thermo Fisher Scientific Cat# 34028

DEAE-Dextran Sigma-Aldrich Cat# D9885-10G

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

X-tremeGENE 9 DNA Transfection Reagent Sigma-Aldrich Cat# XTG9-RO

Biotinylated BG505 V3 peptide GenScript N/A

Uranyl Formate Electron Microscopy Sciences Cat# 22451

n-Dodecyl-b-D-Maltopyranoside (DDM) Anatrace Cat# D310 25 GM

Critical Commercial Assays

Pierce Fab Preparation Kit Thermo Fisher Scientific Cat# 44985

BirA biotin-protein ligase standard reaction kit Avidity Cat# BirA500

Bright-Glo Luciferase Assay System Promega Cat# E2610

Bolt 4-12% Bis-Tris Plus Gels Thermo Fisher Scientific Cat# NW04127BOX

Negative stain EM Grids Electron Microscopy Sciences Cat# EMS400-CU

CryoEM grids Electron Microscopy Sciences Cat# Q26194

Deposited Data

CryoEM map of polyclonal serum in complex with

BG505 SOSIP.664 from rabbit 3417 at post boost 2.

All particles from 2D classification went into this

Ab-initio reconstruction made in CryoSparc.

EMDataBank EMD: 7552

CryoEM map of polyclonal serum in complex with

BG505 SOSIP.664 from rabbit 3417 at post boost 2.

Refined map after a second round of classification

and removing a class shown to have only one glycan

hole (GH) Fab bound.

EMDataBank EMD: 7553

CryoEM map of polyclonal serum in complex with

BG505 SOSIP.664 from rabbit 3417 at post boost 2.

Refined class after two subsequent classifications

showed no significant differences in 3D maps.

EMDataBank EMD: 7554

CryoEM map of polyclonal serum in complex with

BG505 SOSIP.664 from rabbit 3417 at post boost 2.

Refined map after adding particles from a separate

class shown to have a single GH Fab bound.

EMDataBank EMD: 7555

CryoEM map of polyclonal serum in complex with

BG505 SOSIP.664 from rabbit 3417 at post boost 2.

Same thing as EMD-7446.

EMDataBank EMD: 7557

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Negative stain EM map of BG505 SOSIP.664 in

complex with PG9 and 12N Fab.

EMDataBank EMD: 7570

Negative stain EM map of BG505 SOSIP.664 in

complex with PGT121 and 12N Fabs.

EMDataBank EMD: 7903

Negative stain EM map of BG505 SOSIP.664 in

complex with PGT121 and polyclonal serum from

rabbit 3417 at post post boost 1.

EMDataBank EMD: 7904

Negative stain EM map of BG505 SOSIP.664 in

complex with PG9 and polyclonal serum from

rabbit 3417 at post post boost 1.

EMDataBank EMD: 7906

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3418 PB2. Rabbit was not protected.

EMDataBank EMD: 7887

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3418 PB2. Rabbit was not protected.

EMDataBank EMD: 7888

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3419 PB2. Rabbit was not protected.

EMDataBank EMD: 7889

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3419 PB2. Rabbit was not protected.

EMDataBank EMD: 7890

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3417 PB2.

EMDataBank EMD: 7891

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3417 PB2.

EMDataBank EMD: 7892

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3420 PB2.

EMDataBank EMD: 7893

Negative stain EM map of polyclonal serum in

complex with BG505 SOSIP.664 from rabbit

3420 PB2.

EMDataBank EMD: 7894

Negative stain EM map of polyclonal serum in

complex with BG505 MD39 CPG9.

EMDataBank EMD: 7895

CryoEM map of polyclonal serum in complex

with BG505 SOSIP.664 from rabbit 3417 at post

boost 2. All particles from 2D classification

went into this Ab-initio reconstruction made in

CryoSparc and C3 symmetry applied. This map

was used to dock atomic models of BG505

SOSIP.664 trimer (orange, PDB: 5V8M) and Fab

10A (blue, PDB: 6CJK) to create a hybrid model.

EMDataBank EMD: 7896; PDB: 6DID

Fab 10A X-ray crystal structure RSCB Protein Data Bank PDB: 6CJK

Experimental Models: Cell Lines

Human: TZM-bl NIH AIDS Reagent Program Cat# 8129

Human: FreeStyle HEK293F Thermo Fisher Scientific Cat# R79007

Human: HEK293T ATCC Cat# CRL-3216

Experimental Models: Organisms/Strains

Rabbit: New Zealand white Western Oregon Rabbit N/A

Software and Algorithms

Prism v7.0 GraphPad https://www.graphpad.com

Unicorn 7.0 GE Healthcare http://www.gelifesciences.com/

UCSF Chimera Pettersen et al., 2004 N/A

Appion database Lander et al., 2009 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Leginon Suloway et al., 2005 N/A

DoG Picker Voss et al., 2009 N/A

Relion Scheres, 2012 N/A

CryoSparc Punjani et al., 2017 N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Lars

Hangartner (lhangart@scripps.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Rabbits
The samples used in this study derived from the previously described immunization of animals 3417, 3418, 3419, and 3420 (McCoy

et al., 2016). Briefly, 15-week-old female New Zealand white rabbits were immunized twice with liposomes embedded with BG505

SOSIP.664 v3.2, and then three soluble BG505 SOSIP.664 v3.2 protein boosts. The Scripps Research Institute (TSRI) Institutional

Animal Care and Use Office and the Committee (IACUC) approved all experimental procedures involving rabbits 3409–3420. All pro-

cedures were performed by TSRI Department of Animal Resources (DAR) staff in accordance with IACUC protocol 14-0002.

CELL LINES

TZM-bl cells (human female HeLa-derived cancer cell line) were maintained at 37�C and 5% CO2 in high glucose Dulbecco’s Modi-

fied Eagle Medium (DMEM, Corning) containing 1X Penicillin-Streptomycin (Corning), 2 mM L-Glutamine (Corning), and 10% heat-

inactivated fetal bovine serum (FBS, Omega Scientific).

METHOD DETAILS

Anti-HIV-1 Env Monoclonal Antibodies
Monoclonal antibodies (mAbs) were expressed by co-transfection of HEK293F cells (Thermo Fisher Scientific). Briefly, 156 mg heavy

chain and 156 mg light chain-expressing plasmids were mixed in 25 mL Opti-Minimum Essential Media (MEM), and then added to

25 mL Opti-MEM containing 937.5 mg Polyethylenimine (PEI) MAX 40,000 (Polysciences). After 30 min at room temperature (RT),

the DNA/PEI mix was added to 109 HEK293F cells in 1 L FreeStyle 293 Expression Medium (Thermo Fisher Scientific), and further

incubated for 6–7 days at 37�C, 8% CO2, 80% humidity, 135 rpm. Cells were then pelleted by centrifugation and filtered through

0.22 mmRapid-Flow filter units (Nalgene). Filtered supernatant was applied to a column containing a 1 mL packed Protein G Sephar-

ose Fast Flow (GE Healthcare) equilibrated with phosphate-buffered saline (PBS). The column was washed with 20 column-volumes

of PBS, andmAb eluted with 0.1 M glycine pH 2.5 in a 1:10 volume of 1 M Tris-HCL pH 8 solution. Antibodies were concentrated and

buffer-exchanged into PBS using 10,000MWCOAmiconUltra-15 centrifugal filter units (EMDMillipore) over three rounds of spinning.

His-tagged Fab 10A was recombinantly expressed and secreted as a soluble protein in HEK293F cells. The supernatant was

concentrated and loaded onto a Ni-NTA affinity column, and the Fabs were eluted using an imidazole gradient. Next, Fabs were

loaded onto a cation exchange column (monoS) and eluted using a salt gradient. Fractions containing pure Fabwere pooled, concen-

trated, and buffer exchanged into tris-buffered saline (TBS) buffer (50 mM Tris, 150 mM NaCl, pH 7.5).

Soluble Env Protein Production
BG505 SOSIP.664 v3.2 (Sanders et al., 2015), BG505 SOSIP.664 v4.1 (de Taeye et al., 2015), BG505 SOSIP.664 v5.2 (Torrents de la

Peña et al., 2017), BG505 SOSIP.664 v5.2 with glycans at positions N241 and N289 (will be published elsewhere), or BG505 MD39

CPG9 (Kulp et al., 2017) (with or without C-terminal Avi or Strep tag to enable biotinylation and purification) were used in this study.

Compared to BG505 SOSIP.664 v3.2, BG505 SOSIP.664 v4.1 contains a A316W mutation, which improves hydrophobic packing

and stability of the V3 loop, and an E64K mutation, which reduces spontaneous sampling of the CD4-bound ‘‘open’’ trimer confor-

mation. The BG505 SOSIP.664 v5.2 is similar to the v4.1 design, with the addition of a second disulfide bond between gp120 (A73C)

and gp41 (A561C) to further increase trimer stability. BG505 MD39 CPG9 contains the MD39 stabilizing mutations (Steichen et al.,

2016), glycans at positions N80, N241, N289, N630, and a glycosylated loop connecting gp120 and gp41 that block binding to the

bottom of the trimer. BG505 trimers were expressed in HEK293F cells by transient co-transfection with furin (except for BG505MD39

CPG9, which is cleavage independent), and then purified using methods described elsewhere (Pugach et al., 2015), with either 2G12

or PGT145-affinity columns followed by size exclusion chromatography (SEC). Fractions corresponding to trimer were pooled and
Immunity 49, 288–300.e1–e8, August 21, 2018 e5
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concentrated down to 1–2 mg/mL. Avi-tagged proteins were biotinylated after 2G12 or PGT145-affinity columns using the BirA

biotin-protein ligase standard reaction kit (Avidity) under the following conditions and reagents from the kit: 100 mL of Avi-tagged pro-

tein, 15 mL of 103 Biomix B, 15 mL of BIO200, 15 mL of 1 M Tris-HCL pH 8, 5 mL of BirA enzyme, incubated for 1 hr at 37�C. Excess
biotin and BirA enzyme was finally removed by SEC. All samples were sterile filtered prior to aliquoting and flash freezing. Structural

validation of trimers was performed by analysis of negative-stain electron microscopy (EM) 2D class averages. The proteins used for

immunizations had no His-tag.

Plasma or Serum IgG Purification
IgGswere purified fromplasma or serumof immunized animals using protein A and/or GSepharose resin (GEHealthcare), at a ratio of

1 mL packed resin for each mililiter of undiluted plasma or serum. Samples were diluted at least 4-fold in PBS, then incubated with

protein A/G resin for 5 hr at RT or overnight at 4�C. The resin waswashed 3 times with 10 volumes PBS, and the IgGs eluted with 5–10

volumes of 0.1 M glycine pH 2.5 immediately neutralized with 1 M Tris-HCL pH 8. Buffer was exchanged to PBS or TBS either by

dialysis or by centrifugation using 10 kDa cutoff membranes (Thermo Fisher Scientific) or tubes (EMD Millipore), respectively.

Fab Preparation
Fabs were prepared for EM imaging. To make Fab, IgG were digested with papain-agarose resin (Thermo Fisher Scientific) for 5 hr at

37�C using 50 ml settled resin/mg IgG in 20 mM sodium phosphate, 10 mM EDTA, 20 mM cysteine, pH 7.4. Fc and non-digested IgG

were removed by 1 hr incubation at RT with protein A Sepharose resin (GE Healthcare), using 0.2 mL packed resin/mg of initial IgG.

After protein A incubation, cysteine was removed from the flow-through containing the digested Fab by dialysis or by ultracentrifu-

gation using 10 kDa cutoff (Thermo Fisher Scientific) or tubes (EMD Millipore), respectively.

Fab Quality Control by SDS-PAGE and SEC
Fab size and homogeneity were assessed by Sodium Dodecyl Sulfate - PolyAcrylamide Gel Electrophoresis (SDS-PAGE) and SEC.

For SDS-PAGE, 5 mg protein/lane was loaded on a 4%–12% Bolt Bis-Tris Plus gel (Thermo Fisher Scientific) in reducing VS non-

reducing conditions, and run at 200 V in 3-Morpholinopropane-1-sulfonic acid (MOPS) buffer. Bandswere visualized with Coomassie

staining (Expedeon), and the size of the fragments evaluated by running a protein standard ladder (Thermo Fisher Scientific). For SEC,

50 mg protein was loaded on a Superdex 200 increase 10/300 column using a 100 mL loop, and run at 0.5 mL/min using an Äkta Pure

system (GEHealthcare). Fab peaks were analyzed with the provided Unicorn 7.0.2 software. The size of the fragments was estimated

with the help of a linear regression calculated by running amix of proteins with knownmolecular weight (BioRad) on the same column.

BG505 ELISA
High-binding enzyme-linked immunosorbent assay (ELISA) plates (Thermo Fisher Scientific) were coated with neutravidin (Thermo

Fisher Scientific) or a BG505-binding antibody (mostly human PG9, PGT145, or PGT121, or rabbit 10A or 12N) overnight at 4�C, then
blocked with 3% BSA for 2 hr at RT. Biotinylated or untagged BG505 SOSIP.664 was captured on the neutravidin/antibody plate for

2 hr at RT, before adding serial dilutions of Fab or F(ab’)2 for additional 2 hr at RT. Binding of BG505-specific antibodies was assessed

by Fab-specific secondary-horseradish peroxidase (HRP) antibodies (Jackson ImmunoResearch) after 1 hr incubation at RT. HRP

activity was measured by adding 3,30,5,50-Tetramethylbenzidine (TMB)-substrate (Thermo Fisher Scientific), and blocking the reac-

tion with 2 N sulfuric acid after 3 min incubation. OD450 was finally measured using a BioTek Synergy 2 plate reader (Perkin Elmer),

and the effective concentration (EC), EC50 and EC90, calculated using Prism 7 software (GraphPad). Relative abundance of BG505-

specific antibodies was estimated by comparing the EC50s with those obtained from a total IgG ELISA. Competition with BG505

V3-peptide (TRPNNNTRKSIRIGPGQAFYATGDIIGDIRQAH, GenScript) was performed by pre-incubation of antibodies or plasmas

with 150 mg/mL V3-peptide at room temperature for 1 hr before incubation on BG505 SOSIP.664 coated ELISA plates.

V3-Peptide ELISA
High-binding enzyme-linked immunosorbent assay (ELISA) plates (Thermo Fisher Scientific) were coated with neutravidin (Thermo

Fisher Scientific) overnight at 4�C, then blocked with 3% BSA for 2 hr at RT. Biotinylated BG505 V3-peptide (TRPNNNTRKSIRIGPG

QAFYATGDIIGDIRQAH, GenScript) was captured on the neutravidin plate for 2 hr at RT, before adding serial dilutions of Fab or

plasma for additional 2 hr at RT. Binding of BG505 V3-peptide specific antibodies was assessed by Fab-specific secondary-horse-

radish peroxidase (HRP) antibodies (Jackson ImmunoResearch) after 1 hr incubation at RT. HRP activity was measured by adding

3,30,5,50-Tetramethylbenzidine (TMB)-substrate (Thermo Fisher Scientific), and blocking the reaction with 2 N sulfuric acid after 3 min

incubation. OD450 was finally measured using a BioTek Synergy 2 plate reader (Perkin Elmer), and the effective concentration (EC),

EC50 and EC90, calculated using Prism 7 software (GraphPad). Competition with BG505 V3-peptide (TRPNNNTRKSIRIGPGQA

FYATGDIIGDIRQAH, GenScript) was performed by pre-incubation of antibodies or plasmaswith 150 mg/mL V3-peptide at room tem-

perature for 1 hr before incubation on BG505 SOSIP.664 coated ELISA plates.

Neutralization Assays
Replication incompetent HIV pseudovirus was produced by co-transfecting env plasmids with an env-deficient backbone plasmid

(pSG3Denv) in HEK293T cells in a 1:2 ratio, using the X-tremeGENE 9 transfection reagent (Roche). Pseudovirus was harvested after

48–72 hr by sterile-filtration (0.22 mm) of cell culture supernatants and titrated on TZM-bl cells. Neutralization was then assessed by
e6 Immunity 49, 288–300.e1–e8, August 21, 2018



TZM-bl assay: previously titrated pseudovirus were incubated with Fab for 1 hr at 37�C, and then transferred in a white 384-well plate

(Greiner Bio-One) together with an equal volume of TZM-bl cells (4,000/well) resuspended in complete DMEM + 20 mg/mL Diethy-

laminoethyl (DEAE)-dextran. After 48 hr at 37�C and 5% CO2, the supernatant was removed and the cells lysed with Glo lysis buffer

(Promega) for 5 min at RT. Luciferase activity was measured by the addition of Bright-Glo luciferase-substrate (Promega), and the

luminescence signal read using a BioTek Synergy 2 plate reader. Full IgG and F(ab’)2 were used as control, and uninfected cells

to correct for background.

Occupancy Standard Curve
Twelve-molar excess (for each mAb) of a single or combination of mAbs known to bind with different stoichiometries were incubated

with 10 mg BG505 trimers overnight at RT in 100 mL total volume. Complexes were then run on a Superose 6 increase 10/300 column

and Äkta Pure system (GE Healthcare) and the different elution peaks used to calculate a stoichiometry standard curve using the

Prism 7 software (GraphPad).

Complexes for EM
10 mg BG505 trimers were incubated overnight at RT with 2000-fold EC50 excess of Fab in 100 mL total volume, and the complexes

were then purified on a Superose 6 increase 10/300 column and Äkta Pure system (GE Healthcare) in TBS buffer. The fractions con-

taining the complexes were pooled in 10 kDa cutoff tubes (EMD Millipore) and concentrated down to 50 mL final volume.

X-Ray Crystallography
Fab 10A was crystallized from solutions containing 10 mg/mL Fab in TBS buffer. Crystals were grown using sitting drop vapor

diffusion with a well solution containing 0.1 M sodium citrate pH 5.26, 0.17 M ammonium acetate, 15% glycerol and 19%

PEG4000. Crystals were grown at 298 K and appeared within 3 days. Fab 10A crystals were cryoprotected by soaking in a well so-

lution supplemented with 30%glycerol. Diffraction data were collected at the Advanced Photon Source (APS) beamline 23ID-D. Data

collection and processing statistics are outlined in Table S2. Datasets were indexed, integrated, and scaled using the HKL-2000

package (Otwinowski and Minor, 1997). The structures were solved by molecular replacement using PHASER (McCoy et al.,

2007) with homology models for Fab 10A (SWISS-MODEL; Arnold et al., 2006; Biasini et al., 2014; Bordoli et al., 2009) as search

models and further refined using phenix.refine (Adams et al., 2010) combined with manual building cycles in Coot (Emsley et al.,

2010). Structure deposited: PDB: 6CJK.

Negative-Stain EM
SEC purified complexes were deposited at approximately 0.04 mg/mL onto carbon-coated copper grids and stained with 2% (w/v)

uranyl formate (Briganti and Mauro, 1979) for 30 s as previously described (Pugach et al., 2015). Grids were imaged at 120 KeV using

a Tecnai Spirit using Leginon (Suloway et al., 2005). Images were collected on a 4kx4k TemCam F416 detector and transferred into

the Appion database (Lander et al., 2009) for initial image processing. Particles were picked using DoG Picker (Voss et al., 2009) and

2D classes were generated using MSA/MRA (Ogura et al., 2003). Particles corresponding to Env-Fab complexes were selected and

further processed via 3D classification in Relion (Scheres, 2012) to separate out the unique complexes within the heterogeneous da-

taset before final refinement of each map. Figures were prepared using UCSF Chimera (Pettersen et al., 2004).

Cryo EM
The 3417 PB1 sample was concentrated to 5.6 mg/mL. Immediately before deposition onto a 1.2/1.3 200 Quantifoil grid (EMS) that

were glow discharged for 10 s, 3mL of the concentrated complex was mixed with 1 mL of 0.42 mM Dodecyl Maltoside (DDM, Ana-

trace). Addition of DDM promoted appearance of complexes into holes and improved angular sampling of individual complexes.

Grids were then blotted and plunged into liquid ethane using a Vitrobot (FEI) to capture complexes in vitreous ice. Cryo grids

were transferred into a 200 KeV Talos Artica and images recorded on a 37103 3838 pixel Gatan K2 Summit detector using Leginon

(Suloway et al., 2005) at a defocus range of�1.5 mm to�2.5 mm. Imageswere transferred to the Appion (Lander et al., 2009) database

and particles were picked using DoG Picker (Voss et al., 2009) and placed into a stack. Initial 2D classification was conducted in

Relion and non-Env particles were removed, creating a clean stack of 161,639 particles that was then subjected to 3D classification.

The first round of 3D classification resulted in six reconstructions. Subsequent rounds of sequential 3D classification were conducted

as illustrated in Figure S3. 3D reconstructions with similar occupancy of bound Fabs were combined before final refinement. This

approach resulted in 20 unique 3D reconstructions that were then used to quantify the Fabs at each epitope.

The same cryo-particle stack was also subjected to image processing in CryoSparc (Punjani et al., 2017) that resulted in 4 sub-

nanometer resolution reconstructions (Figure S3). We also calculated a global average of all particles that was resolved to 4.71 Å

resolution.

Fab Occupancy Analysis
Within the 20 Relion cryoEMmaps, there was still obvious sub-stoichiometric occupancy of Fabs at different epitopes. We derived a

method to approximate the occupancy of the Fabs at each site to get a better estimate of the total response per epitope. In the end,

each epitope was characterized as having full, moderate, low, or no occupancy using the following approach. Each reconstruction

was normalized to best match the trimer density of a 20 Å resolution low pass filtered map of BG505 SOSIP.664. In every map, at
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these normalized thresholds, we saw at least one nicely resolved GH Fab. At this contour level, there were Fabs present at other

epitopes that only had partial density. We then increased the density threshold (higher sigma density) and observed that the GH

Fab density persisted; thus, we considered this to be fully occupied. Conversely, the partial density Fabs would disappear at this

higher threshold, and we therefore considered this to be partial occupancy. To detect even lower occupancy, we decreased the

threshold (lower sigma signal) relative to the normalized map and if density appeared at an epitope that began to resemble a Fab

we considered this to be low occupancy. If no density appeared, then we characterized this as no occupancy. Our results are sum-

marized in Figure 6.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical models inherent to Relion (Scheres, 2012) and CryoSparc (Punjani et al., 2017) were employed in image analysis to derive

2D classes and 3Dmodels. Estimation of Fab occupancy in the 3D models was undertaken manually based on density thresholds in

the 3D EM reconstructions as described in the method details under the heading ‘‘Fab occupancy analysis.’’ No statistical measures

were applied.

DATA AND SOFTWARE AVAILABILITY

3D EM reconstructions have been deposited in the Electron Microscopy Databank (http://www.emdatabank.org/) under the acces-

sion numbers listed in the Key Resources Table. The crystallographic structure of the 10A Fab has been deposited in the Protein Data

Bank (http://www.rcsb.org/) under accession number PDB: 6CJK.
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