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Intranasal calcitonin gene‑related 
peptide administration impairs 
fear memory retention in mice 
through the PKD/p‑HDAC5/Npas4 
pathway
Narumi Hashikawa‑Hobara*, Yoshikazu Yoneyama, Kyoushiro Fujiwara & Naoya Hashikawa

The calcitonin gene-related peptide (CGRP) suppresses fear memory retention in mice. Although 
intracerebroventricular administration of CGRP alters the fear memory processes, making it a 
promising therapeutic strategy for post-traumatic stress disorder (PTSD), direct brain injection into 
patients is not practical. Therefore, we propose that intranasal application may be an effective way 
to deliver CGRP to the brain. This study tested whether CGRP nasal administration exerts the same 
effect as intracerebroventricular administration using C57BL6J mice. The amount of CGRP in the 
cerebrospinal fluid and hippocampus 30 min after nasal administration of CGRP was significantly 
higher when compared with saline. Intranasal CGRP also elicited photophobic behaviors similar to 
intracerebroventricular injection. Moreover, intranasal CGRP decreased fear memory retention but 
did not affect reactivation and extinction of fear memory. We found intranasal CGRP significantly 
increased the expression of protein kinase D (PKD), phosphorylated histone deacetylase 5 (p-HDAC5) 
and neuronal PAS domain protein 4 (Npas4) in the hippocampus. CGRP-mediated impairment of 
fear memory and Npas4 expression increases were attenuated significantly by the CGRP receptor 
antagonist BIBN4096. Together, our data demonstrate that intranasal CGRP delivery activates the 
PKD/p-HDAC5/Npas4 pathway, decreases fear memory retention.

Post-traumatic stress disorder (PTSD) is a disorder of learning and memory caused by exposure to frightening 
or life-threatening events. The lifetime prevalence of PTSD in adults is approximately 8% in the United States1. 
There are few medication options for the treatment of PTSD, and the selective serotonin reuptake inhibitors 
have been used as the first-line pharmacological treatment. However, the response rate of this drug is less than 
20–30%2. Therefore, the development of new pharmacological strategies for PTSD is required. Our previous study 
showed that calcitonin gene-related peptide (CGRP) is involved in suppressing fear memory retention3. CGRP 
is a 37-amino acid neuropeptide released from capsaicin-sensitive sensory nerves4. CGRP is widely distributed 
in both the central and peripheral nervous systems5. CGRP is a potent vasodilator with some beneficial cardio-
protective functions. It has also been shown to play a role in limiting adverse inflammatory events, modulating 
pain levels, and acting as an anti-depressant6–9.

As CGRP cannot cross the blood–brain barrier (BBB) due to its molecular size, CGRP has been directly 
injected into the brain of rodents for central nervous system experiments. In contrast, there are a few experi-
mental reports that suggest that the noninvasive, intranasal (i.n.) administration of CGRP is more effective than 
intravenous delivery10,11. Drug delivery to the brain via the nasal mucosa is a rapidly developing field that holds 
great promise, especially for anti-Alzheimer disease agents12. Additionally, in clinical trials, i.n. administration 
of insulin did not increase circulating levels of insulin13, indicating that the nose-to-brain pathway is able to 
preferentially deliver peptides to the brain. Our previous studies have reported that intracerebroventricular (i.c.v.) 
administration of CGRP immediately after fear memory exposure impairs fear memory retention in C57BL6J 
mice3. Therefore, we propose that i.n. delivery of CGRP may be a more appropriate and feasible strategy for 
treating PTSD.
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In this study, we assessed whether i.n. CGRP administration to mice would modulate fear memory processing. 
Furthermore, we focused on CGRP signaling via the protein kinase D (PKD)/phosphorylated histone deacetylase 
5 (p-HDAC5)/neuronal PAS domain protein 4 (Npas4) pathway in the mouse hippocampus. In this study, we 
found that i.n. CGRP application suppresses fear memory retention and increases Npas4 expression via CGRP 
receptor activation. Together, our data indicate that i.n. CGRP administration could be a viable potential alterna-
tive to direct brain injection for delivering CGRP to PTSD patients.

Results
Intranasal administration delivers CGRP to cerebrospinal fluid and the hippocampus.  We first 
determined whether i.n. administration of CGRP had enough delivery efficiency to enter the cerebrospinal fluid 
(CSF) or hippocampus in mice. Thirty minutes after i.n. administration of CGRP, serum levels of CGRP were 
not increased (Fig. 1A, saline (n = 6), CGRP (n = 8)). In contrast, CSF levels of CGRP were significantly higher 
than those observed for i.n. saline administration (Fig. 1A, Welch’s t test, p = 0.0225, saline (n = 8), CGRP (n = 8)). 
These experiments demonstrate that delivered CGRP is present in the CSF 30 min after i.n. administration. We 
therefore similarly examined CGRP levels in the hippocampus and found significantly higher levels than that 
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Figure 1.   Changes in CGRP distribution and photophobic behavior after intranasal administration of CGRP. 
(A) CGRP expression was assessed in the serum, cerebrospinal fluid (CSF) and hippocampus using ELISA 
30 min after CGRP application. (B) Photophobic behavioral assay results in saline and CGRP-treated mice. Each 
bar indicates the mean ± S.E.M. *p < 0.05, Welch’s t test. Numbers in parentheses indicate the number of animals 
in each group.
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observed in saline-treated animals (Fig. 1A, Welch’s t test, p = 0.0291, saline (n = 6), CGRP (n = 6)). Collectively, 
these data indicate that i.n. administration delivers CGRP to the CSF and hippocampus in mice.

Intranasal administration of CGRP elicits known physiological behaviors.  I.c.v. administration 
of CGRP has been shown to cause a photophobic behavioral response in mice14. We next sought to determine 
whether i.n. CGRP elicits a similar response by using the photophobia test according to the protocol from Rec-
ober et al.14. Mice were habituated to the apparatus and allowed to freely explore both the light (200 LUX) and 
dark compartments of the box for 2 days. The residence times in the light compartment in these sessions were 
approximately 130 s in both i.n. and i.c.v. administered CGRP. We then measured the time spent in a 1000 LUX 
light box 60 min after CGRP treatments. We found the residence times were significantly reduced by 38% and 
30% with i.c.v. and i.n. administration, respectively, (Fig. 1B, Welch’s t test, i.c.v. p = 0.0072, saline (n = 8), CGRP 
(n = 8), i.n. p = 0.0284, saline (n = 6), CGRP (n = 6)). These results indicate that i.n. application of CGRP revealed 
photophobic behavior similar to that seen with direct brain injection.

Effects of intranasal administration of CGRP on contextual fear memory.  We have previously 
reported that CGRP i.c.v. administration reduces fear memory retention3. In this study, we investigated whether 
i.n. administration of CGRP affects contextual fear memory. First, we investigated whether exogenous CGRP 
affects memory retention of contextual fear. Mice were given i.n. CGRP or saline 30 min after a foot shock and 
were tested 24 h later. CGRP treatment significantly decreased freezing time (Fig. 2A, Welch’s t test, p = 0.0005, 
saline (n = 6), CGRP (n = 6)). In order to exclude the factors of hand-holding stress, we also evaluated effect of 
CGRP i.n. under anesthesia (Supplementary Fig. S1). Anesthesia did not affect CGRP-mediated freezing per-
centage (20%), which was same as without anesthesia (Fig. 2A). Next, we examined whether CGRP affects the 
reactivation of contextual fear memory. In our previous data, CGRP i.c.v. administration after re-exposure pro-
longed freezing time15. According to this data, it is expected i.n. administration of CGRP would increase freezing 
time. CGRP or saline were administered 30 min after a 2-min reactivation period, followed by testing 24 h later. 
CGRP did not affect freezing time compared with saline treatment (Fig. 2B, saline (n = 6), CGRP (n = 8)). Finally, 
we examined whether CGRP affects fear memory extinction. Mice received CGRP after re-exposure for 30 min 
to erase fear memory and after 24 h were subjected to a freezing test. We observed that CGRP did not affect 
freezing time compared with saline treatment, indicating that CGRP does not have an effect on eliminating fear 
memory (Fig. 2C, saline (n = 8), CGRP (n = 7)).

Intranasal CGRP increases PKD, p‑HDAC5, and Npas4 levels in the mouse hippocampus dur‑
ing fear conditioning.  To investigate the mechanism of i.n. CGRP administration on memory retention 
deficits, we focused on Npas4, which is a transcription factor that has a well-established role in fear memory 
processing16. A previous report from our group demonstrated that i.c.v. CGRP reduced fear memory reten-
tion by increasing Npas4 expression, as well as PKD and p-HDAC5, in the mouse hippocampus3 To confirm 
whether the PKD/p-HDAC5/Npas4 signaling cascade is altered with i.n. administration of CGRP, as it is with 
i.c.v. administration, we first analyzed PKD levels in the hippocampus of mice 24 h after they were exposed to 
foot shock. We found that i.n. CGRP significantly increased PKD expression (Fig. 3A, Welch’s t test, p = 0.0206, 
saline (n = 6), CGRP (n = 6)). Next, we analyzed p-HDAC5 levels. We have previously reported that i.c.v. CGRP 
increases the phosphorylation of Ser 498 in HDAC53. p-HDAC5 cannot translocate into the nucleus to suppress 
the transcription of Npas4. Similarly, we found that i.n. CGRP significantly increased p-HDAC5 levels (Fig. 3B 
Welch’s t test, p = 0.0142, saline (n = 6), CGRP (n = 6)). Congruent with the idea that p-HDAC5 elevates Npas4 
expression, Npas4 mRNA and protein levels were significantly increased by i.n. CGRP. (Fig. 3C Welch’s t test, 
p = 0.0015, saline (n = 6), CGRP (n = 6), Fig. 3D Welch’s t test, p = 0.0092, saline (n = 6), CGRP (n = 5)).

CGRP receptor antagonist BIBN4096 inhibits CGRP‑mediated memory disability by suppress‑
ing Npas4 expression.  As i.n. administration of CGRP activates the PKD/p-HDAC5/Npas4 pathway, we 
next asked whether CGRP receptor blockade suppress the CGRP-mediated decrease in fear memory retention 
and Npas4 protein expression. We administered the CGRP receptor antagonist BIBN4096 intraperitoneally and 
then evaluated freezing behavior after 24 h. We observed that BIBN4096 significantly inhibited CGRP-mediated 
memory retention impairment (Fig. 4A, BIBN versus CGRP; p = 0.004, CGRP versus BIBN + CGRP; p = 0.0073 
with Tukey–Kramer test, saline (n = 7), BIBN (n = 7), CGRP (n = 6), BIBN + CGRP (n = 7)). As expected, in the 
presence of BIBN4096, CGRP failed to increase Npas4 protein levels (Fig. 4B, saline versus CGRP; p = 0.0364, 
CGRP versus BIBN + CGRP; p = 0.0013 with Tukey–Kramer test, saline (n = 6), BIBN (n = 5), CGRP (n = 6), 
BIBN + CGRP (n = 5)). These data demonstrate that CGRP suppresses fear memory retention by increasing 
Npas4 via the CGRP receptor.

Discussion
The major finding of this study is that i.n. administration of CGRP can suppress fear memory retention in the 
same way as i.c.v. administration. Specifically, we show that CGRP increases Npas4 levels via the CGRP receptor, 
indicating that activation of the PKD/p-HDAC5/Npas4 pathway plays a role in memory retention.

Drug delivery from the nasal mucosa to the brain is a rapidly progressing area in basic and clinical research. 
It has been reported that drugs administered into the nasal cavity can be directly transferred to the brain via cer-
ebrospinal fluid or can reach the brain directly without inference by the BBB17,18. The nasal mucosa is innervated 
by olfactory and trigeminal nerves providing a direct connection between nose and brain. Therefore, olfactory 
and trigeminal pathways are direct drug delivery routes, without the need to pass into the systemic circulation 
and cross the BBB to reach the brain19. Clinical trials for treating Alzheimer’s disease with insulin nasal spray20 
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Figure 2.   Effects of intranasal CGRP on contextual fear memory. (A) To study the effect of CGRP on memory retention 
of contextual fear, CGRP was nasally administered 30 min after fear conditioning, and freezing behavior was observed 24 h 
later. (B) To investigate the effect of CGRP on the reconsolidation of contextual fear memory, mice were fear conditioned 
and re-exposed 24 h later for 2 min. CGRP was administered intranasally 30 min after re-exposure, and freezing behavior 
was observed on Day 3. (C) For fear memory extinction, mice were fear conditioned and 24 h later were placed back in the 
box for 30 min for extinction of the of contextual fear memory. CGRP was administered intranasally 30 min after the 30-min 
extinction, and freezing behavior was observed on Day 3. Each bar indicates the mean ± S.E.M. *p < 0.05, Welch’s t test. 
Numbers in parentheses indicate the number of animals in each group.
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and autism spectrum disorders with oxytocin nasal spray21 have reported that small molecule peptides delivered 
to the central nervous system by i.n. administration improved cognitive function and social behavior, respectively. 
Oxytocin is a peptide consisting of nine amino acids, and insulin is composed of two peptide chains, A and B, 
which consist of 21 and 30 amino acids, respectively, linked by two disulfide bonds. Considering that CGRP 

Figure 3.   Effects of intranasal administration of CGRP on the PKD/p-HDAC5/Npas4 pathway. (A) PKD 
protein levels in saline and CGRP-treated mice, (B) Phosphorylated HDAC5 expression in saline and CGRP-
treated mice, (C) Npas4 mRNA levels in saline and CGRP-treated mice, and (D) Npas4 protein expression 
in saline and CGRP-treated mice. Each bar indicates the mean ± S.E.M. *p < 0.05, Welch’s t test. Numbers in 
parentheses indicate the animal numbers for each group.
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is a peptide of 37 amino acids, it is highly possible that the same effect as seen with i.c.v. administration could 
be obtained. In our present study, we observed similar photophobic behaviors with both i.c.v. and i.n. CGRP 
administration.

CGRP has been reported to have a wide distribution in the central and peripheral nervous systems. CGRP is 
well known as a key component in migraine-related headache induction22. However, CGRP has been reported to 
show some protective effects on both ischemic brain injury, with increasing levels of vascular endothelial growth 
factor, which provides protection from neuronal injury10, and vasospasm following subarachnoid hemorrhage23 
due to its potent vasodilation effects. Additionally, CGRP has been shown to exert an anti-inflammatory effect in 
lipopolysaccharide-induced kidney injury8. Moreover, regarding effects on the central nervous system, we have 
reported that CGRP pre-administration alleviates stress-induced depression-like behavior with elevated nerve 
growth factor expression7. Furthermore, administration of CGRP in extinction training models diminishes fear 
memory24, and we have also demonstrated that i.c.v. administration of CGRP immediately after exposure to fear 
conditioning decreases fear memory retention3. Thus, CGRP has protective effects for cardiovascular injury, 
kidney injury, and stress behaviors. In the cardiovascular system, it has been reported that nasal administration 
of CGRP reduces cerebral vasospasm10 and cerebral ischemic injury11. Nevertheless, the potential behavioral 
effects of CGRP i.n. administration are still not defined, especially with regard to fear memory. In this study, 
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we found that i.n. CGRP can reach the hippocampus and induce decreases in fear memory retention with a 
concomitant elevation of Npas4 expression. These data demonstrate that CGRP could be a practical approach 
to diminish fear memory.

While these results are promising, this study also has some limitations. First, CGRP is well known as a key 
player in the pathogenesis of migraines25. For decades, CGRP-targeted drugs such as the selective CGRP recep-
tor antagonists BIBN409626 or CGRP antibody drugs have been studied for effective treatments for migraine 
headaches. Recently, the small molecule gepants that block the CGRP receptor and four anti-CGRP monoclonal 
antibodies, such as erenumab, have received FDA approval for the treatment of acute migraines27. Therefore, 
exogenous CGRP-induced migraine-like effects are unlikely to be avoided. Wattiez et al. have demonstrated 
that 1 h after intraperitoneal injection of CGRP mouse activity was attenuated and light aversive behaviors were 
induced28. Thus, when considering the clinical application of CGRP i.n. administration, likely headache side 
effects cannot be ignored. Second, CGRP is a multifunctional neuropeptide that is widely distributed in the cen-
tral and peripheral nervous systems, indicating that CGRP could have other side effects, such as gastrointestinal 
issues including diarrhea. Indeed, intraperitoneal injection of CGRP induced diarrhea, which was suppressed 
by either olcegapant, a CGRP receptor antagonist, or anti-CGRP antibodies in mice29. Additionally, CGRP can 
function in the transmission of nociception30,31. In the present study we applied 0.1 mM CGRP in a total fluid 
amount of 5 μL (approximately 20 nmol/kg) into each nostril using a manual micropipette. Encouragingly, 
mice that received i.n. CGRP did not apparently experience itching, severe discomfort, or any inflammatory 
responses. As CGRP is released from peripheral sensory nerves by a pain stimulus rather than acting as an 
algogenic substance, it is thought that CGRP does not directly induce a pain reaction. There has also been an 
investigation looking at whether CGRP affects taste response. Huang et al. have reported that CGRP acting on 
type III32 sour and salt taste cells33 via the CGRP receptor increases serotonin release and suppresses ATP release 
from type II cells34 (sweet, umami, bitter)32–34. Based on these previous reports, CGRP could have a sour or salty 
taste. Altogether, CGRP has wide-ranging functions and may have adverse effects that were not detected in the 
present study, therefore, further study into this important area is needed.

In this study, we focused on PKD/pHDAC5/Npas4 signaling, which has previously been reported to play a 
role in inhibiting fear memory in mice hippocampus3. Here we demonstrate that the CGRP receptor antagonist 
BIBN4096 suppresses CGRP-mediated Npas4 increases and inhibits the suppression of fear memory retention. 
We further show that Npas4 increases in the hippocampus are a result of the signaling pathway from CGRP. It is 
well known that CGRP activates protein kinase A as a second messenger by CGRP receptor activation35. More 
recently, CGRP has been shown to regulate both protein kinase C and MAP kinase36–38. In a previous study, 
we have reported that CGRP also activates PKD and that action of CGRP was inhibited by PKD knockdown3. 
PKD is a serine/threonine kinase that has been implicated in the regulation of the phosphorylation of HDAC5 
at Ser 49839,40. Consistent with previous reports, and similar to i.c.v. administration, we observed that i.n. CGRP 
increases PKD expression. Even though a previous study confirmed that PKD inhibition suppress the effects 
of CGRP, this present study did not conduct a PKD inhibition experiment. However, we believe that similar 
results would be obtained. There are still few reports on CGRP activation of PKD, and further study is required.

In summary, we report that i.n. CGRP is effective in reducing fear memory retention via the PKD/p-HDAC5/
Npas4 pathway. As CGRP is effective immediately after fear exposure, a simple i.n. administration may be appro-
priate in clinical settings. Taken together, these results suggest that i.n. application of CGRP could be a practical 
approach to diminish fear memory.

Methods
All methods were performed in accordance with the relevant guidelines and regulations.

Animals.  Six-week-old C57BL/6 J male mice were purchased from Japan SLC, Inc. (Shizuoka, Japan). Mice 
housed in the Animal Research Center of Okayama University of Science were controlled with an ambient 
temperature of 22 °C, with 50 ± 10% relative humidity, and a 12-h light/dark cycle (lights on at 7:00 AM). Mice 
were housed in groups of 5 to 6 per cage (width 235 × depth 353 × height 160 mm) with wood flake litter for 
2 weeks and then used in experiments starting at 8 weeks of age. All animal procedures were approved by the 
ethics committee of the Animal institutional Research Center of Okayama University of Science (authorization 
numbers 2021002), in accordance with the ARRIVE guidelines to use the minimum number of mice necessary. 
A total of 123 mice were used with 16 mice being used for ELISA assays, 28 mice used in photophobic behavioral 
paradigms, and 79 mice used for fear conditioning tests and mRNA or protein analyses. As the behavioral tests 
showed variations in mice, each group was set to around eight mice. The biochemical parameters were around 
six animals per group. Mice were randomly divided into saline, i.n. CGRP, or i.c.v. CGRP groups.

Drug treatments.  Rat CGRP (PEPTIDE Institute, Inc. Osaka, Japan) and the CGRP antagonist BIBN4096 
(Sigma Aldrich CO. LLC. Japan) were diluted in saline and dimethyl sulfoxide, respectively. Isoflurane (1.5%–
2.0%) was used for brief anesthesia during i.c.v. injections. Drug administration was performed by direct injec-
tion into the right lateral ventricle, through the intact scalp, aiming at 1 mm posterior to the bregma and 1 mm 
to the right of the midline, as described previously3,7. For i.n. CGRP delivery, mice were hand-restrained, placed 
in a supine position, and given 5.0 μL CGRP (0.1 mM) or saline delivered into the nares using a standard pipette. 
The CGRP solution was applied in small drops alternately in each nostril and was actively inhaled. BIBN4096 
(1 mg/kg) was administered by intraperitoneal injection, 30 min before fear conditioning.

Behavioral assessments.  Photophobia test.  We modified a light/dark box apparatus 
(30 cm × 20 cm × 20 cm, width × length × height) to implement a photophobia test according to Recober et al.14. 



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1450  | https://doi.org/10.1038/s41598-022-05518-y

www.nature.com/scientificreports/

The box contained a partition between the light and dark compartments, with an entrance (5 cm × 5 cm) that 
allowed for free movement. Mice were always placed at the joint between light-facing boxes facing the light and 
allowed to freely move between the light and dark compartments for 5 min. In the baseline behavioral test, light 
intensity was regulated at approximately 200 LUX. All behaviors were recorded and measured as time spent in 
the light area. Two days after baseline testing in the light avoidance assay, each mouse was treated with saline 
or CGRP by i.c.v. injection or i.n. administration. After 60 min, the light intensity was increased to 1000 LUX, 
and time spent in the light area was measured again. After the test or training, mice were returned to their home 
cages. The floor of the apparatus was cleaned with 70% ethanol after testing.

Contextual fear conditioning experiments.  Contextual fear conditioning paradigms were performed as previ-
ously described3,41. To examine the effects of i.n. CGRP on memory retention, mice were placed in a round 
chamber apparatus (diameter: 16.5 cm; height: 7.5 cm). After 2 min of habituation in the chamber, mice were 
given foot shocks (0.3 mA, four times at 2-s intervals). Mice were then given i.c.v. CGRP, i.n. CGRP, or saline 1 h 
after receiving the foot shocks. The following day, freezing behavior was observed in the same chamber, in which 
mice were given foot shocks for 5 min. Chambers were cleaned using 70% ethanol between each trial.

To examine the effects of i.n. CGRP on fear memory reactivation, mice were fear conditioned in a chamber 
with foot shocks and returned to their home cages. The following day (Day 2), mice were placed in the same 
chamber but without foot shocks to reactivate the fear memory, followed by administration of CGRP or saline 
by nasal administration. On the following day (Day 3), the freezing behavior was observed for 5 min and quan-
titated as freezing time.

To examine the effects of i.n. CGRP on fear memory extinction, mice were fear conditioned in a chamber 
using foot shocks. The following day (Day 2), mice were placed in the same chamber. We measured mice freez-
ing behavior for 30 min and then administered CGRP or saline by nasal treatment. On the following day (Day 
3), freezing time was observed for 5 min.

Analysis of CGRP contents.  Mice were anesthetized with a mixture of three anesthetic agents (medeto-
midine hydrochloride 0.3 mg/kg, midazolam 4.0 mg/kg, and butorphanol 5.0 mg/kg) administered intraperi-
toneally as previously described3. Mice serum, CSF, or hippocampus samples were collected 30 min after i.n. 
CGRP administration. CGRP levels were measured using a sandwich ELISA kit (Bertin Technologies, Mon-
tigny-le-Bretonneux, France).

Quantitative analysis by real‑time PCR.  Real-time PCR was carried out as previously described3. The 
sequences of primers, designed by the authors, were based on the coding sequences of mouse genes deposited 
in GenBank. The data were analyzed using the mean threshold cycle equation. The primer information is shown 
in Table 1.

Western blotting.  We conducted western blot analyses as previously described3. Briefly, the collected 
hippocampus was homogenized in a sodium dodecyl sulfate (SDS) sample buffer and boiled for five minutes. 
Protein extracts were separated by SDS–polyacrylamide gel electrophoresis and then transferred onto a polyvi-
nylidene difluoride membrane (HybondP; GE Healthcare UK Ltd.). The membrane was blocked with a block-
ing agent (GE Healthcare) and then incubated at 4 °C overnight with the following primary antibodies: mouse 
monoclonal anti-Npas4 (1:5,000, Santa Cruz Biotechnology, Inc.), rabbit polyclonal anti-HDAC5 (phospho 
S498) (1:5,000, Abcam plc, Cambridge, UK), mouse monoclonal anti-HDAC5 (1:5,000, Santa Cruz Biotechnol-
ogy), rabbit polyclonal anti-PKD1/2/3 PKC micro antibody (Gene Tex, Inc. CA), mouse anti-beta actin anti-
body (1:20,000; Sigma-Aldrich) and rabbit anti-GAPDH antibody (1:20,000; Sigma-Aldrich CO. LLC. Japan). 
After washing, the membranes were incubated with horseradish peroxidase-conjugated secondary antibody 
(1:20,000). The antibody-reactive bands were visualized using a chemiluminescent substrate kit (FUJIFILM 
Wako Chemicals, Tokyo, Japan).

Statistical analysis.  GraphPad Prism 9 software (GraphPad Software Inc., San Diego, CA, USA) was used 
for main statistical analyses. G*Power 3 (Faul, Erdfelder, Lang & Buchner, 2007: http://​www.​psycho.​uni-​duess​
eldorf.​de/​abtei​lungen/​aap/​gpowe​r3/) was used for power analyses. The results of power analysis showed in Sup-
plementary 1: Data. Data analysis of mice was performed blind to group assignment. All data are expressed as 
the mean ± S.E.M. Comparisons between two values were analyzed using the Welch’s t test. We also performed 
Tukey–Kramer multiple comparison test to determine significant differences. We used the ROUT test to remove 
outliers from groups. A P value < 0.05 was considered statistically significant.

Table 1.   Oligonucleotide sequences for real-time PCR amplification.

Forward Reverse

Npas4 5′-CAT​GCT​AAG​GAC​CTA​GCC​CTA​CTG​-3’ 5′-GGT​GTA​GCA​GTC​CAT​ACC​ATGA-3′

Actin 5′-GGT​CAG​AAG​GAC​TCC​TAT​GTG-3′ 5′-GGT​GTG​GTG​CCA​GAT​CTT​CTCC-3′

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
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