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Aim: The purpose of this study was to identify potential diagnostic markers for aortic valve

calcification (AVC) and to investigate the function of immune cell infiltration in this disease.

Methods: The AVC data sets were obtained from the Gene Expression Omnibus.

The identification of differentially expressed genes (DEGs) and the performance of

functional correlation analysis were carried out using the R software. To explore hub

genes related to AVC, a protein–protein interaction network was created. Diagnostic

markers for AVC were then screened and verified using the least absolute shrinkage

and selection operator, logistic regression, support vector machine-recursive feature

elimination algorithms, and hub genes. The infiltration of immune cells into AVC tissues

was evaluated using CIBERSORT, and the correlation between diagnostic markers and

infiltrating immune cells was analyzed. Finally, the Connectivity Map database was used

to forecast the candidate small molecule drugs that might be used as prospective

medications to treat AVC.

Results: A total of 337 DEGs were screened. The DEGs that were discovered

were mostly related with atherosclerosis and arteriosclerotic cardiovascular disease,

according to the analyses. Gene sets involved in the chemokine signaling pathway

and cytokine–cytokine receptor interaction were differently active in AVC compared with

control. As the diagnostic marker for AVC, fibronectin 1 (FN1) (area the curve = 0.958)

was discovered. Immune cell infiltration analysis revealed that the AVC process may be

mediated by naïve B cells, memory B cells, plasma cells, activated natural killer cells,

monocytes, and macrophages M0. Additionally, FN1 expression was associated with

memory B cells, M0 macrophages, activated mast cells, resting mast cells, monocytes,

and activated natural killer cells. AVC may be reversed with the use of yohimbic acid, the

most promising small molecule discovered so far.

Conclusion: FN1 can be used as a diagnostic marker for AVC. It has been shown

that immune cell infiltration is important in the onset and progression of AVC, which may

benefit in the improvement of AVC diagnosis and treatment.
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INTRODUCTION

Aortic valve calcification (AVC) is the most frequent kind of
valvular disease in the world, and is the most common cause
of aortic stenosis (1, 2). There are between 2 and 7% of the
population aged 65 and older who are affected by this disease
(3). As the condition worsens over time, more and more fibrous
calcification and pathological thickening of the aortic valve lead
to a reduction in the mobility of the aortic valve leaflets, and
ultimately lead to serious obstruction of the heart outflow (4).
The disease burden of AVC is expected to double over the next 50
years, posing a serious threat to public health in an aging world
(4). Although the therapies used to treat aortic valve stenosis have
made progress, including valve replacement and interventional
therapy, the exact biological process of AVC is still mystery.

After statins failed to slow the progression of AVC,
angiotensin-converting enzyme inhibitors also failed, and there
is still no progress in the effectiveness of drug treatments (5–8).
To date, early surgery is the only effective treatment option for
improving clinical outcomes in patients with AVC (9). However,
surgery is related to high expenses, an inevitability of mortality,
as well as perioperative and long-term morbidity, such as those
related with anticoagulant medication and the necessity for
reoperation due to prosthetic valve failure. As a result, an urgent
medical need was recognized for a comprehensive understanding
of fundamental processes of AVC as well as for the development
of new treatment targets to slow the advancement of the disease’s
evolution. In order to diagnose and cure early, biomarkers
and pathways should be identified. This is essential for early
recognition, prevention, and accurate therapy.

Histopathological analysis reveals that the beginning phase
of AVC is an aggressive inflammation reaction, similar to
that of atherosclerotic lesions, consisting of processes ranging
from lipid deposition, infiltration of inflammatory cells such as
macrophages and T cells, and finally leading to the destruction
of the basement membrane (10). The final stage of AVC is
typically characterized by heterotopic ossification, which includes
mature lamellar bone formation and active bone remodeling
(11). According to several studies, signal transduction channels
that are associated with the progression of aortic calcification
are composed of various growth factors, cytokines, and tumor
necrosis factors (12–14). Current knowledge of the mechanisms
underlying AVC progression, including molecular actions,
cellular functions and biomechanics, has been established. The
most important of these are the morphology of the mitral aortic
valve, disturbances in endocrine regulation, valve osteogenesis,

Abbreviations: AVC, aortic valve calcification; DEGs, differentially expressed

genes; PPIN, protein–protein interaction network; FN1, fibronectin 1; GO, Gene

Ontology; DO, Disease Ontology; GSEA, Gene set enrichment analysis; STRING,

The Search Tool for the Retrieval of Interacting Genes; PPI, protein–protein

interaction; LASSO, least absolute shrinkage and selection operator; SVM-RFE,

support vector machine-recursive feature elimination; KEGG, Kyoto Encyclopedia

of Genes and Genomes; CXCL8, C-X-C motif chemokine ligand 8; CXCR4, C-X-

C motif chemokine receptor 4; CCR5, C-C motif chemokine receptor 5; MMP9,

matrix metallopeptidase 9; SYK, spleen-associated tyrosine kinase; TYROBP,

transmembrane immune signaling adaptor; CXCL12, C-X-C motif chemokine

ligand 12; SDC1, syndecan 1; TLR2, toll-like receptor 2; IL, interleukin; NF,

necrosis factor.

dysregulation of mineral metabolism, and lack of signaling by
osteoclasts (15).

In this study, we used CIBERSORT for the first time to analyze
the expression matrix of AVC and normal tissue samples, and
calculated the proportions of their immune cells. Moreover, we
investigated the association between the biomarkers discovered
and the infiltrating immune cells, providing the groundwork
for future study in this area. Most importantly, we have well
screened potential AVC targeted small molecule drugs, by using
the connection map (CMap) database.

MATERIALS AND METHODS

Data Download and Processing
The GSE12644 (16) and GSE51472 (17) datasets were obtained
from http://www.ncbi.nlm.nih.gov/geo/ (18), which the GPL570
platform of the 84 Affymetrix Human Genome U133 Plus 2.0
Aray served as the foundation. The GSE12644 dataset contained
10 AVC and 10 controls that were collected from the aortic valve,
and the GSE51472 dataset contained 10 AVC and 5 controls that
were collected from the aortic valve. The probes in each dataset
were translated to gene symbols based on the probe annotation
files that were provided by the researchers. As several probes
correspond to the same gene symbol, we use the average value
of the probes to represent the level of expression of that gene in
the tissue. In order to conduct additional integration research, the
two datasets were pooled into a metadata cohort. This was done
since GSE12644 and GSE51472 both share a similar platform and
are beneficial formerging data. Before performing normalization,
the expression values from both datasets were log2 transformed.
ComBat outperforms other tools in a systematic evaluation. As
a result, we choose ComBat in order to eliminate the batch
effect between the two datasets (19). We performed principal
component analysis (PCA) to determine if the batch effect
had been eliminated. Additionally, we identified an aortic valve
disease data set (GSE83453) (20) from the GEO database to
serve as a validation cohort, consisting of nine AVC samples and
eight control samples, which was performed using the Illumina
HumanHT-12 v4.0 Gene Expression BeadChip (Laval University,
Quebec, Canada; anthor:Yohan Bossé).

Identification of DEGs
The “limma” package (21) was used to screen for DEGs, and heat
and volcanomaps of DEGs were created by the “ggplot2” package
(22) to visualize their differential expression. With the P value
< 0.05 and |log2FC| > 0.585, DEGs were deemed statistically
significant in this study.

Functional Correlation Analysis
We performed Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Disease Ontology (DO)
enrichment analyses of DEGs using the “clusterProfiler” package
(23). Gene set enrichment analysis (GSEA) of the gene expression
matrix was performed using the “clusterProfiler” package,
with the reference gene sets “c5.go.v7.4.symbols.gmt” and
“c2.cp.kegg.v7.0.symbols.gmt” being used. q-value < 0.05 and
adjusted P-value < 0.05 were considered significantly enriched.
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Hub Genes Screening
The Search Tool for the Retrieval of Interacting Genes (STRING)
(24) database was used to analyze functional protein association
networks. The screened DEGs were submitted to the STRING
database. All protein–protein interaction (PPI) pairs with a
combined score of >0.7 were extracted. To maintain the overall
network’s stability, high-degree nodes seemed to be essential. We
use Cytoscape (v3.6.1) plug-in cytoHubba to calculate the degree
of all nodes (25). In this study, the top 10 genes with the greatest
degree rank are identified key genes.

Verification of Diagnostic Markers
To screen diagnostic markers for AVC, the least absolute
shrinkage and selection operator (LASSO) logistic regression (26)
as well as support vector machine-recursive feature elimination
(SVM-RFE) (27) were used by us. After quality control, the
expression matrices of the GSE12644 and GSE51472 datasets
were combined to create an independent dataset, and the
combined diagnosing efficacy of the gathered diagnostic markers
was determined using this dataset. The LASSO algorithm was
used in conjunction with the “glmnet” package (28). SVM-RFE
is a support vector machine-based machine learning technique,
which is used to exclude SVM-generated eigenvectors in order
to select the optimal variables. The “e1071” package established
an SVM module to further characterize the diagnostic utility of
the biomarkers in AVC (29).We integrated the hub genes with
the PPI network, LASSO and SVM-RFE algorithms to conduct
a more in-depth study. P < 0.05 was regarded statistically
significant on a two-sided basis.

Evaluation of Immune Cell Infiltration
In CIBERSORT (https://cibersortx.stanford.edu/), we filtered out
samples with a P < 0.05 and acquired the matrix about immune
cell infiltration as a result of submitting the gene expression
matrix information. The “ggplot2” software was then used to
conduct PCA analysis on the immune cell infiltration matrix
input, resulting in the creation of a two-dimensional PCA map.
The “corrplot” software is responsible for plotting correlative
data. Correlation heatmaps were created using the “corrplot”
package (30) in order to show the relationship between 22 distinct
kinds of infiltration immune cells. It was necessary to build violin
diagrams to display the discrepancies in immune cell infiltration,
which was accomplished using the “ggplot2” package.

Immune Cells and Diagnostic Markers
The relationship between the amounts of infiltrating immune
cells and the levels of the discovered gene biomarkers was
investigated using Spearman’s rank correlation test in the R
software. The chart method provided by the “ggplot2” package
was used to display the generated correlations.

Identification of Small Molecules
CMap (http://www.broadinstitute.org/cmap/) is a repository of
databases containing thousands of gene transcription profiles,
obtained from cultured mammalian cells exposed to active small
molecule drugs. It was searched to identify small molecule
therapeutic candidates with the AVC gene signature. DEGs were

classified into two groups: up-regulated and down-regulated
groups. The similarity was quantified using enrichment scores
ranging from−1 to+1. A positive connecting value (near to+1)
suggests that a small compound may trigger the expression of the
AVC gene, while a negative connecting value (near to−1) implies
that a compound can mimic the condition of normal cells.

RESULTS

Supplementary File 1 lists data matrix information of the
training datasets (GSE12644 and GSE51472) and validation
dataset (GSE83453).

Data Preprocessing and DEG Screening
The batch effect between GSE12644 and GSE51472 was
evaluated and visualized using a PCA cluster diagram. A
batch effect existed between them (Figure 1A), and the inter-
batch variation had been eliminated. After normalization and
processing, two two-dimensional PCA cluster diagrams were
used to display the combined gene expression matrix before
normalization (Supplementary File 2) and after normalization
(Supplementary File 3), respectively (Figure 1B). After
normalization, the clustering of the two sample groups was
more evident, indicating a reliable sample source. Following
data preparing, we used R to identify 337 DEGs from the
normalized data, as described by the heat map as well as volcano
map (Figures 2A,B). Compared with normal samples, 203 of
these DEGs were upregulated and 134 were downregulated in
AVC. The top 10 upregulated and downregulated genes are
summarized in Table 1.

Functional Correlation Analysis
The findings of the GO analysis were separated into
three subcategories, which were biological process, cell
component, and molecular function, respectively (Figure 3A,
Supplementary File 4). Cell chemotaxis, leukocyte chemotaxis,
extracellular matrix organization, extracellular structure
organization, external encapsulating structure organization,
neutrophil activation, neutrophil degranulation, neutrophil
activation involved in immune response, neutrophil-mediated
immunity, and myeloid leukocyte migration were all observed
during the biological process. The DEGs were enriched in
cell components including the extracellular matrix containing
collagen, the external side of the plasma membrane, collagen
trimer, complex of collagen trimers, secretory granule lumen,
cytoplasmic vesicle lumen, vesicle lumen, endoplasmic reticulum
lumen, tertiary granule, and ficolin-1-rich granule. The DEGs
were enriched in chemokine activity, extracellular matrix
structural constituent, cytokine activity, chemokine receptor
binding, and integrin binding for molecular function. Otherwise,
the KEGG pathway was enriched for viral protein interaction
with cytokine and cytokine receptor, chemokine signaling
pathway, extracellular matrix-receptor interaction, rheumatoid
arthritis, and cytokine–cytokine receptor interaction (Figure 3B,
Supplementary File 4). The findings of the DO study are
depicted in Figure 4 and Supplementary File 4. The most
common diseases enhanced by DEGs were osteoarthritis, lung
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FIGURE 1 | Principal component analysis (PCA) analysis of gene expression datasets. The scatter plots’ points depict samples based on the top two principal

components (PC1 and PC2) of gene expression profiles without and with batch effect removal. (A) PCA cluster plot of GSE12644 and GSE51472 before sample

correction and remove batch effect. (B) PCA cluster plot of GSE12644 and GSE51472 after sample correction and remove batch effect. The colors denote samples

from two distinct datasets, respectively. Each dot represents a sample; green represents a sample from GSE12644; purple represents a sample from GSE51472.

disease, chronic obstructive pulmonary disease, obstructive lung
disease, arteriosclerosis, arteriosclerotic cardiovascular disease,
atherosclerosis, myocardial infarction, and coronary artery
disease. GSEA results indicated that in normal samples, GO
biological processes primarily involved fatty acid beta oxidation,
mRNA processing, RNA splicing, and RNA splicing via
transesterification reaction (Figure 5A, Supplementary File 5).
In disease samples, GO biological processes primarily involved
inactivation of immune response and adaptive immune response
based on somatic recombination of immune receptors built
(Figure 5B, Supplementary File 5). The KEGG enrichment
analysis in the normal group (Figure 6A, Supplementary File 5)
revealed significant enrichment in fatty acid metabolism,
histidine metabolism, xenobiotic metabolism via cytochrome
p4, propanoate metabolism, and valine leucine and isoleucine
degradation. In the disease group, significantly enriched in the
KEGG pathway (Figure 6B, Supplementary File 5) including
chemokine signaling pathway, cytokine-cytokine receptor
interaction, and hematopoietic cells. The aforementioned results
indicate that that the immune response significantly affects the
process of AVC.

Hub Genes Screening
STRING tools were used to predict the protein-protein
interactions of the 337 DEGs. The protein-protein interaction
network contained 165 nodes and 420 edges (Figure 7A). The
top 10 key genes are identified by the degree of connectivity
in the protein-protein interaction network. With a connection
degree of 28, fibronectin 1 (FN1) was the most prominent gene,
followed by C-X-C motif chemokine ligand 8 (CXCL8) (degree

= 23), C-X-C motif chemokine receptor 4 (CXCR4) (degree
= 23), C-C motif chemokine receptor 5 (CCR5) (degree =

20), matrix metallopeptidase 9 (MMP9) (degree = 19), spleen-
associated tyrosine kinase (SYK) (degree = 19), transmembrane
immune signaling adaptor TYROBP (TYROBP) (degree = 18),
C-X-C motif chemokine ligand 12 (CXCL12) (degree = 18),
syndecan 1 (SDC1) (degree = 18), and toll-like receptor 2
(TLR2) (degree = 17). All of the key genes listed above are
upregulated. Additionally, the PPIN of the 10 discovered hub
genes were created, indicating a substantial interaction between
them (Figure 7B).

Verification of Diagnostic Markers
To use the LASSO logistic regression approach, we were able
to recognize 11 genes from DEGs (Figure 8A). The SVM-
RFE technique is used to determine eight genes from DEGs
(Figure 8B). By combining the genes identified by the two
techniques and the hub gene, a diagnostic-related gene was
generated (Figure 8C). FN1 was matched to a variable and had
a diagnostic efficiency of 0.958 in the training set (Figure 8D).
To further evaluate the diagnostic efficacy of FN1, we used the
GSE83453 dataset as the validation set (Figure 8E). FN1 achieved
a high level (area the curve = 0.833) (Figure 8F), showing that
FN1 had a high diagnostic value.

Results of Immune Cell Infiltration
GSE12644 and GSE51472 merged data matrices were
analyzed using CIBERSORT and the results are described
in Supplementary File 6. In order to examine the uniformity
of biological repetition and the variation between the AVC
and the normal samples, PCA analysis is used. On the basis
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FIGURE 2 | Visualizing the results of differential genes. (A) Clustering heatmap of the genes exhibiting significantly differential expression AVC vs. normal group.

Statistically significant DEGs were defined as |log2Foldchange| > 0.585 and P-value < 0.05. DEG, differentially expressed gene; AVC, Aortic valve calcification group.

Cyan represents AVC groups; red-orange represents normal groups. (B) Volcano map of DEGs; red represents up-regulated differential genes, black represents no

significant difference genes, and green represents down-regulated differential genes.
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TABLE 1 | The top 10 up- and down-regulated DEGs in AVC and normal sample.

Gene symbol Fold-change P-value

Top 10 up-regulated DEGs

MMP12 2.979149817 2.92E-05

SPP1 2.632830567 3.03E-05

MMP9 2.037460333 5.66E-05

IGJ 2.008886783 0.001292002

PPBP 1.956678033 6.77E-06

MMP1 1.889498133 0.000862519

SCG2 1.815960233 8.12E-08

IGLC1 1.732297767 0.000284768

IBSP 1.645398033 7.50E-05

COL11A1 1.577731517 0.000201496

Top 10 down-regulated DEGs

ADIPOQ −1.5926205 0.006759383

WIF1 −1.46850865 6.57E-05

NANOS1 −1.426355333 0.000681789

MUM1L1 −1.403391017 0.010340331

ITLN1 −1.393083817 0.002074118

COL6A6 −1.318182983 0.000392129

TCEAL2 −1.260862617 0.006721387

TSPAN8 −1.223407683 0.000891201

ATP1A2 −1.209701467 1.43E-05

PDZRN4 −1.1820793 0.010880592

of the findings of the PCA cluster analysis, it was discovered
that there was a statistically significant difference in immune
cell infiltration (Figure 9A). We compared the composition
of immune cell infiltration in AVC and normal samples using
the data matrix of the combined datasets of GSE12644 and
GSE51472 (Figure 9C). The study’s findings indicated that the
fraction of naïve B cells (P < 0.05), activated natural killer cells
(P < 0.05), and monocytes (P < 0.05) was significantly higher in
normal tissues than in AVC tissues. However, in normal tissues,
the ratio of memory B cells (P < 0.05), plasma cells (P < 0.05),
and macrophages M0 (P < 0.05) was much lower than in AVC
tissues (Figure 9D). Additionally, the relationship between 22
immune cells was analyzed (Figure 9B). Naïve B cells strongly
positively connected with activated natural killer cells (r = 0.32),
but substantially negatively associated with macrophages M0 (r
= −0.31), plasma cells (r = −0.36), and monocytes (r = −0.18).
Memory B cells were strongly positively connected with with
plasma cells (r = 0.06) and macrophages M0 (r = 0.29), but
substantially negatively associated with naïve B cells (r=−0.25),
monocytes (r = −0.25), and activated natural killer cells (r =
−0.27). Plasma cells were strongly positively connected with
memory B cells (r = 0.06) and macrophages M0 (r = 0.05), but
substantially negatively associated with naïve B cells (r=−0.36),
monocytes (r = −0.01), and activated natural killer cells (r =
−0.11). Activated natural killer cells were strongly positively
connected with naïve B cells (r = 0.32) and monocytes (r =

0.38), but substantially negatively associated with memory B
cells (r = −0.27), macrophages M0 (r = −0.34), and plasma

cells (r = −0.11). Monocytes were strongly positively connected
with activated natural killer cells (r = 0.38), but substantially
negatively associated with naïve B cells (r = −0.18), memory
B cells (r =-0.25), plasma cells (r = −0.01), and macrophages
M0 (r = −0.35). Macrophages M0 were strongly positively
connected with memory B cells (r = 0.29) and plasma cells (r
= 0.05), but substantially negatively associated with naïve B
cells (r = −0.31), activated natural killer cells (r = −0.34), and
monocytes (r=−0.35).

FN1 and Infiltrating Immune Cells
We analyzed the correlation of the above results of immune
infiltration with FN1. As shown in Figure 10A, FN1 was
positively correlated with memory B cells (r = 0.40, P = 0.0018;
Figure 10B), macrophages M0 (r= 0.44, P = 0.008; Figure 10C)
and activated mast cells (r = 0.45, P = 0.007; Figure 10D), but
significantly negatively correlated with resting mast cells (r =-
0.39, P = 0.021; Figure 10E), monocytes (r = −0.35, P = 0.040;
Figure 10F) and activated natural killer cells (r =-0.58, P =

0.0003; Figure 10G). The correlation between FN1 and immune
cells is presented in Supplementary File 7.

Identification of Small Molecule Drugs
DEGs were first separated into up-regulated and down-regulated
categories, and then enriched with substantially altered genes
acquired from treatment with small compounds from the CMap
database. As part of the AVC tissue study, yohimbic acid was
identified as one of the expected small compounds that might
block the expression of genes related with AVC (Table 2).

DISCUSSION

AVC is a term that refers to a collection of aortic valve
diseases ranging from calcification to hardness to stenosis
(31). Its occurrence rises as a person ages, affecting ∼9% of
patients over the age of 80 years. Aortic sclerosis is more
prevalent, affecting 25-30% of people over the 65 years old
and progressing at a rate of around 2% every year to aortic
valve stenosis (32). AVC is a complex and dynamic process
that is regulated by a variety of physiological and pathological
factors such as lipoprotein deposition, inflammatory response,
activation of renin-angiotensin-aldosterone, extracellular matrix
transformation, and cellular ossification (33, 34), thereby
destroying valve-specific cells including endothelial cells as well
as interstitial cells, aggravating valvular calcification, causing
valve orifice stenosis, and obstructing the left ventricular outflow
path (35). For advanced AVC or AVC accompanied by significant
clinical symptoms, surgery and transcatheter aortic valve
replacement are presently the most effective therapies. However,
these procedures are associated with increased costs, risk of
mortality, and perioperative and postoperative adverse events
including anticoagulation-related bleeding or thrombotic events,
and reoperation owing to artificial valve insufficiency (4). Thus,
the importance of expanding our understanding of the molecular
mechanism of degenerative cardiac valve diseases is emphasized
(36, 37). Gene sequencing and bioinformatics technology have
advanced substantially in recent decades, making it feasible to
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FIGURE 3 | Functional enrichment analyses of DEGs. (A) Gene Ontology (GO) enrichment analyses of DEGs. The x-axis shows the number of genes enriched on the

terms, and the y-axis shows the pathway terms. The q-value of each term is colored according to the legend. BP, biological process; CC, cellular component; MF,

molecular function; (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs. Select the first 30 DEGs to connect to the enriched

pathway terms. The q-value of each term is colored according to the legend. The different colors represent different pathway terms.
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FIGURE 4 | Disease Ontology (DO) enrichment analysis was performed on DEGs and the top 30 terms were selected for visualization. The x-axis shows the number

of genes enriched on the terms and the y-axis shows the pathway terms.The q-value of each term is colored according to the legend.

evaluate and utilize massive amounts of sequencing data (38).
Nevertheless, few studies have examined the association between
abnormally expressed genetic markers and immunological
invasion in AVC vs. normal tissues. Therefore, through the
analysis of AVC and normal tissues, we try to identify potential
diagnostic biomarkers and further observe the role of immune
cell infiltration in the disease.

To our information, compared to previous studies (39,
40), the analytical approach to filtering the biomarkers of
the AVC was first investigated using the lasso and SVM

algorithms. Lasso logistic regression, a machine learning method,
identifies variables by selecting those with the lowest probability
of classification error (41). SVM-RFE is a machine learning
technique that has been used in ranking features and selecting
the most important features for classification in multiple
applications (42). Recently, Akter et al. (43) found that
combining multiple machine learning methods could improve
predictive performance and thus provide a highly accurate
predictive diagnostic model. Thus, taking advantage of the
two machine learning methods is beneficial for us to discover
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FIGURE 5 | LogFC values were calculated for all genes, and Gene set enrichment analysis (GSEA) analysis was performed based on logFC using

c2.cp.kegg.v7.4.symbols.gmt and c5.go.v7.4.symbols.gmt in the normal and AVC groups using. (A) Analysis of the GO pathway terms for all genes enriched in the

normal group using GSEA. (B) Analysis of the GO pathway terms for all genes enriched in the AVC group using GSEA.
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FIGURE 6 | Analysis of the top 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms for all genes enriched in the normal and AVC groups using

Gene set enrichment analysis (GSEA). (A) Analysis of the KEGG pathway terms for all genes enriched in the normal group using GSEA. (B) Analysis of the KEGG

pathway terms for all genes enriched in the AVC group using GSEA.
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FIGURE 7 | PPIN and hub gene identification. (A) PPIN was constructed by all the 337 DEGs using STRING database. The protein-protein interactions are

represented by linkages. The number of nodes: 320; the number of edges: 420; the average node degree: 2.62; the PPI enrichment p-value < 1.0e-16. (B) The top

10 hub genes in the PPIN were screened by Cytoscape (v3.6.1) plugin cytoHubba based on their connectivity degree. The 10 identified hub genes such as FN1,

CXCL8, CXCR4, CCR5, MMP9, SYK, TYROBP, CXCL12, SDC1, and TLR2 are displayed from red (high degree value) to yellow (low degree value). PPIN,

protein-protein interaction network; DEG, differentially expressed gene; STRING, search tool for the retrieval of interacting genes.
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FIGURE 8 | Screening and verification of diagnostic markers. (A) Tuning feature selection in the least absolute shrinkage and selection operator (LASSO) model. The

DEGs were narrowed down using the LASSO regression algorithm, resulting in the identification of 11 variables as diagnostic biomarkers for AVC. The ordinate is the

value of the coefficient, the lower abscissa is log(λ), and the upper abscissa is the number of non-zero coefficients in the model at this time. (B) A plot of biomarkers

(Continued)
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FIGURE 8 | selection via support vector machine-recursive feature elimination (SVM-RFE) algorithm. A subset of five features among the DEGs was determined using

the SVM-RFE algorithm. (C) Venn diagram demonstrating one diagnostic marker shared by the least absolute shrinkage and selection operator and SVM-RFE

algorithms and hub genes. (D) The diagnostic performance of the calculated based on the FN1 expression in AVC diagnosis in training data set. (E) FN1 mRNA

expression in AVC compared to normal groups in the validation set. (F) The diagnostic performance of the calculated based on the FN1 expression in AVC diagnosis

in test data set. The distinction was considered good when the AUC value was between 0.8 and 0.9, and exceptional when the AUC value was > 0.9. ROC, receiver

operating characteristic; AUC, area under the ROC curve.

potentially important biomarkers, which is very meaningful
for our research on AVC. We collected two cohorts from the
GEO datasets and analyzed the data in an integrated manner.
A total of 337 DEGs were discovered, comprising 203 up-
regulated and 134 down-regulated genes. Diseases enriched
by DEGs, according to the results of enrichment analyses,
were mostly associated with arteriosclerosis and arteriosclerotic
cardiovascular disease. Following analysis, it was shown that the
enriched pathways were mostly associated with the inflammation
and immunological response, such as cytokine-cytokine receptor
interactions and chemokine signaling. These results corroborate
previous findings that inflammation plays a role in the
development and progression of AVC (44, 45) and that AVC
is an inflammation-dependent process (46). Initially thought to
be a “degenerative” procedure, AVC is now identified as an
active condition in which interplay between valvular interstitial
cells, the major biological constituent of the aortic valve, and
circulatory inflammatory cells and endothelial progenitor cells
drive tissue restructuring (47). Numerous findings revealed the
presence of many pro-inflammatory cytokines, including tumor
necrosis factor, oxidized low-density lipoprotein cholesterol, and
interleukin (IL)-1/2/6, in calcified valves (48, 49).

Inflammation is speculated to play a role in the etiology
of AVC, with T lymphocytes (50) and macrophages (10)
being found in early aortic valve lesions. IL-6 has been
reported to perform as a proinflammatory factor, activating
biomineralization and osteogenic signaling mechanisms in the
cardiovascular system (11, 44, 51, 52). This result is congruent
with our findings, validating the credibility of the current
study’s findings and indicating the critical role of the immune
response in AVC. The immunological response is perhaps the
most varied and complicated reaction that occurs after the
activation of inflammatory processes within the aortic valve, and
it has been shown to impact various calcification processes (53).
Furthermore, to provide a safe and effective therapy, it is also vital
to precisely regulate development of various immune cell types
in aortic valve. Thus, novel biomarkers of disorders associated to
immune cell infiltration may be discovered using bioinformatics
analysis to block related pathways to improve AVC therapy.

Based on two machine-learning algorithms and hub gene
identification, one diagnostic marker was identified. Fibronectin
is a glycoprotein ligand that is extensively expressed in a
variety of cell types that bind cell surfaces and compounds
including collagen, fibrin, heparin, DNA, and actin (54). FN1
belongs to this family and plays a role in a variety of biological
activities, including cell migration, adhesion, and cytoskeleton
structure (55). Aberrant FN1 expression is also associated with
a multitude of diseases, including cancer, atherosclerosis, and
arthritis (56–58). A previous study showed that osteoblasts are

accompanied by type I collagen production during proliferation
and differentiation, and found high expression of FN1,
implying that osteoblasts are accompanied by upregulation of
FN1 during active bone formation (58). Moreover, FN1 is
engaged in osteoblast compaction through matrix assembly
processes mediated by FN fibrillogenesis cells, which are
essential for osteoblast mineralization (59). Yang et al. (60)
have recently discovered FN1 as a molecular regulator in
promoting osteogenic differentiation in vitro. In vitro, FN-
1 knockdown decreases β-catenin expression and inhibits
WNT/-catenin signaling, hindering osteoblast differentiation and
mineralization., while overexpression of FN1 stimulatesWNT/β-
catenin signaling and promotes pre-osteoblast differentiation
and mineralization (60).As AVC advances, inflammatory cells
inside the subendothelium and fibrosa cause oxidative stress
and generate a variety of growth factors and cytokines (11),
including transforming growth factors, tumor necrosis factors,
interleukin-1b (IL-1b), and receptor activator of nuclear factor-
κB ligand. These growth factors and cytokines are major
inducers of valve osteoblast development by activating multiple
signaling pathways (including Notch, bone morphogenetic
proteins and WNT/β-catenin) and establishing an environment
conducive to osteogenesis (61). In this study, we believe that
by stimulating the WNT/β-catenin signaling pathway, FN1
may play a critical role in the development of osteogenesis
in calcified aortic valve disease. In addition, Jun et al. (62)
revealed that the expression and release of Fn had a substantial
impact on the effects of ATP and caspase-1 generated by
inflammasome activators. Moreover, As an endogenous danger
signal, it boosts the inflammatory process by stimulating caspase-
1 and resulting in the death of inflammatory cells. The high
concentration of FN-fibrin complex in plasma can promote the
release of inflammatory factors from tissues to the circulation
during the progression of a variety of diseases, including
thrombosis, plaque formation, the development and progression
of atherosclerosis, and aging arteries Wall lesions, which further
aggravates the inflammatory response and promotes disease
progression (63). FN-fibrin complexes have been associated
with numerous diseases, including diabetes mellitus (64),
rheumatoid arthritis (65), osteoarthritis (66), chronic obstructive
pulmonary disease (67), and coronary artery disease (68).
Thus, our findings suggest that the FN1 may be critical in
the evolution of the inflammatory process in calcified aortic
valve disease.

By using CIBERSORT to analyze the immune cell types
between AVC and normal samples, it is found that the basic
biological processes related to AVC are closely related to a variety
of immune cells. The analysis results found that memory B
cells and macrophages M0 are significantly expressed in AVC
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FIGURE 9 | Comparing the composition of immune cell infiltration in the normal and AVC samples by using the combined data matrix of GSE12644 and GSE51472

and visualized the results. (A) PCA cluster plot of immune cell infiltration between normal and AVC groups. (B) Correlation heat map of 22 types of immune cells. The

size of the colored squares represents the strength of the correlation; red represents a positive correlation, blue represents a negative correlation. The redder the color,

the stronger the correlation. (C) The heat map of the 22 subpopulations of immune cells. (D) Violin diagram of the proportion of 22 types of immune cells. (The normal

controls group was marked as blue color and AVC group was marked as red color. P-values < 0.05 were considered as statistically significant.)
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FIGURE 10 | Visualization of the results of immune cell infiltration and FN1 correlation analysis based on the combined data matrix of GSE12644 and GSE51472. (A)

Correlation between FN1 and infiltrating immune cells. The size of the dots represents the strength of the correlation between genes and immune cells; the larger the

dots, the stronger the correlation, and the smaller the dots, the weaker the correlation. The color of the dots represents the p-value, the greener the color, the lower

(Continued)
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FIGURE 10 | the p-value, and the yellower the color, the larger the p-value < 0.05 was considered statistically significant. (B) The correlation analysis in the

expression of FN1 and B cells memory. (C) The correlation analysis in the expression of FN1 and Macrophages M0. (D) The correlation analysis in the expression of

FN1 and Mast cells activated. (E) Correlation between FN1 and Mast cells resting. (F) The correlation analysis in the expression of FN1 and Monocytes. (G) The

correlation analysis in the expression of FN1 and NK cells activated.

TABLE 2 | List of the 10 most significant small molecule drugs that can reverse

the calcified status of AVC.

AVC tissue CMap name Enrichment P-value

Yohimbic acid −0.899 0.00192

PF-00539745-00 −0.769 0.0252

Hemicholinium −0.665 0.02847

Brinzolamide −0.655 0.03284

AVC vs. normal Pepstatin −0.645 0.0377

Lithocholic acid −0.612 0.01114

Minoxidil −0.567 0.04652

Salbutamol 0.625 0.02159

Colchicine 0.634 0.00735

Physostigmine 0.636 0.04307

AVC, aortic valve calcification.

tissues, and naïve B cells, plasma cells, activated natural killer
cells, andmonocytes are significantly expressed in normal tissues.
In addition, FN1 was significantly expressed in the AVC tissue.
Correlation analysis showed that memory B cells, macrophages
M0, activated mast cells were positively correlated with FN1,
and resting mast cells, monocytes, as well as activated natural
killer cells were negatively correlated with FN1, which meaning
that the high expression of FN1 tissues greatly promotes the
infiltration of memory B cells, macrophages M0 to the tissues,
on the contrary, may inhibit the activation of activated natural
killer cells and monocytes. Therefore, FN1 and a variety of
inflammatory cells participate in the progress of AVC, which
provides effective evidence for further research on the molecular
mechanism of AVC in the future. Inflammatory and immune
circulating cells, such as memory B cells, neutrophils and
macrophages, have been shown to have a significant influence
in the development of heart-related diseases in the prior (69),
which is consistent with our research. Endothelial damage caused
by increased mechanical stress and decreased shear stress is
thought to be the first stage in AVC development (70). As a
consequence, localized subendothelial plaque-like lesions may be
detected, involving infiltration of inflammatory cells, buildup of
subendothelial lipids, breakdown of the extracellular matrix, and
fracturing of the surrounding elastic lamina (71). Furthermore,
oxidized lipids also induce an inflammatory response in valve
tissue. In response to the uptake of oxidized lipids, macrophages,
monocytes, CD4+ and CD8+ T lymphocytes, and mast cells
in the surrounding area become activated (10). Monocytes and
macrophages stimulate the osteogenic differentiation of valvular
interstitial cells and calcification via secretion of tumor necrosis
factor, which is followed by activation of NF-κB and IL-1β and IL-
6 (72). Following this, as a result of endothelial dysfunction and
inflammation, localized cell death leads to the release of apoptotic
bodies, which promote microcalcification. This process is further

promoted by the release of extracellular vesicles by macrophages
and valvular interstitial cells (73, 74). Such calcification induces
an even stronger immune response, resulting in a vicious loop
and ultimately leading to the disease’s propagation phase. AVC
patients’ natural killer cells accumulate in cardiac valves and
blood circulation, which has been associated to an increase in
their valve pressure gradient, according to Mazur’s research (75).
We suggest that the enormous amount of evidence described
earlier, combined with our present study findings, indicates that
a variety of infiltrating immune cells play an essential role in AVC
and future study should be focused on this point.

The CMAP database, which contains 7,056 gene expression
profiles triggered by 1,309 small compounds, is commonly used
to investigate the unknown functions of currently available
medications in disease (76). To begin, the 337 DEGs were
categorized into up- and down-regulated categories. Then, these
genes from two groups were uploaded to the CMAP database
to identify possible small therapeutic compounds, with a cut-
off value of P < 0.05 used. Finally, enrichment scores (−1 to
+ 1) were generated to determine the similarity between genes
and medicines. Specifically, an enrichment score > 0 indicated
that the molecules had potential synergistic effects with AVC,
implying that they could mimic the biological state of the cells
that induce AVC; whereas, an enrichment score < 0 indicated
that the molecules had potential inhibitory action with AVC,
implying that they could reverse the AVC state and serve as
therapeutic agents. We therefore successfully identified the top
10 small molecules with the smallest enrichment scores, of which
yohimbic acid was the first. However, very little research has been
done on yohimbic acid, with only a few studies reporting its
vasodilatory (77) and sympathetic activity effects (78). There is
still a lack of a large pharmacological base to verify its function.
Therefore, further studies are necessary to confirm its reversal or
delaying effect on AVC in the future.

This study has several limitations. First, it was retrospective
in nature; thus, there was a lack of critical clinical information.
Secondly, the GSE83453 validation cohort included a small
number of cases, which could be considered as a constraint.
Thirdly, it is challenging to account for critical aspects such
as area, race, and age. Considering that AVC is caused by
a multitude of environmental and genetic variables, certain
unmeasurable factors, such as geography and family history,
need additional investigation. Additionally, potential key genes
should be validated in clinical samples using RT-qPCR. However,
since there are not enough normal aortic valve samples in our
department, it is difficult to carry out the verification experiment.
In the future, we will collect the aortic valve tissue transplanted
in our department to further explore the mechanism of FN1
on AVC. Finally, the method by which these genes operate
is unknown. Additional evidence is evaluated to confirm the
biological basis.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 16 February 2022 | Volume 9 | Article 832591

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Xiong et al. Diagnostic Markers for AVC

In conclusion, we present bioinformatic evidence
demonstrating that FN1 might be a potential biomarker for
discrimination of AVC. Yohimbic acid was also identified as
a potential anti-calcification drug in calcified aortic disease (P
< 0.05). Given that the pathogenic processes of AVC remain
unknown, our findings may have a wide influence on AVC
biology and treatment. Nonetheless, larger sample sizes and
further mechanistic investigations are required to corroborate
our conclusions.
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