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ABSTRACT

Atherosclerosis is a major cause of coronary artery disease and stroke. A massive and new 
type of data has finally arrived in the field of atherosclerosis: single cell RNA sequencing 
(scRNAseq). Recently, scRNAseq has been successfully applied to the study of atherosclerosis 
to identify previously uncharacterized cell populations. scRNAseq is an effective approach 
to evaluate heterogeneous cell populations by measuring the transcriptomic profiles at 
the single cell level. Besides the studies of atherosclerosis, scRNAseq is being employed 
in various areas of biology, including cancer research and organ development. In order to 
analyze these new massive datasets, various analytic approaches have been developed. This 
review aims to enhance the understanding of this new technology by exploring how the 
single cell transcriptome has been applied to the study of atherosclerosis and further discuss 
potential analysis of using scRNAseq.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory disease driven by the interplay of many types 
of cells, including immune and stromal cells, with diverse phenotypic and transcriptomic 
changes.1-4 A major limitation to the current transcriptomic methods, such as bulk RNA-
sequencing (seq) analysis, is that they only capture transcriptional changes of the whole 
population rather than individual cells. Gene expression is heterogeneous, even in similar 
cell types.5 The stochastic nature of gene expression has a functional role and can lead to cell 
fate decisions.6,7 By measuring transcriptomic profiles at the single cell level, single cell RNA 
seq (scRNAseq) is an effective approach to deal with heterogeneous cell populations. The 
scRNAseq can detect the transcriptome of a rare cell population8 and study the trend of gene 
expression across the population of cells.9 The scRNAseq has been applied to various species, 
tissues (human and mouse), and studies to reveal cell-to-cell gene expression variability.10 
Compared with the analysis of bulk RNAseq, which is mainly focused on identifying 
differentially expressed genes, scRNAseq provides various angles to study heterogeneity, cell 
interactions and transcriptomic changes along development or upon treatment. Algorithmic 
development has followed the new type of data generation. Therefore, the appropriate 
analytical approaches must be applied to effectively handle scRNAseq data.
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In recent years, we have observed a number of atherosclerosis studies using scRNAseq.11-16 
In combination with various computational algorithms, the use of scRNAseq provided new 
information and knowledge about atherosclerosis, and it is expected that this new technology 
will become more popular. In this review, we aim to provide a guide about the scRNAseq 
technology used in recent studies of atherosclerosis. We will discuss the results from recent 
studies using scRNAseq in the field of atherosclerosis and introduce how the scRNAseq data 
were analyzed.

THE scRNAseq FOR THE STUDY OF ATHEROSCLEROSIS

The scRNAseq was first utilized in the field of atherosclerosis to investigate the driven 
plasticity of Forhead box P3+ T regulatory cells (Tregs) in an apolipoprotein E (ApoE) deficient 
mice model, a widely used system to study cardiovascular and respiratory diseases.11 Briefly, 
scRNAseq data were generated from 270 cells which were clustered into 3 groups: Treg, type 1 
T helper (Th1)/Treg, and Th1. It has been known that atherosclerosis promotes the formation 
of an intermediately plastic Th1/Treg subset. Th scRNAseq data was used to confirm the 
results of flow cytometry about the existence of the previously uncharacterized Th1/Tregs 
group. The scRNAseq was further used to expand the list of genes that are differentially 
regulated in the Th1/Treg cell population. For instance, compared with Treg and Th1 cell 
populations, the Th1/Treg cell population is characterized by the downregulation of multiple 
Treg immunosuppressive genes, such as Tnfrsf4, Tnfrsf9, Tnfrsf18, Icos, Ctla4, and Treg-lineage 
transcription factors, such as Ikzf2, Ikzf4, and Foxp3.11

In 2018, Cochain et al.12 obtained transcriptome profiles of 372 control cells and 854 cells 
from diseased aortas. Among 13 aortic cell clusters, they identified 3 types of macrophages 
(resident-like, inflammatory and the previously uncharacterized triggering receptor 
expressed on myeloid cells 2 [TREM2+]). The scRNAseq was essential to identify TREM2+ 
macrophages, which do not belong to any of the previously known 2 types (M1- and M2-
polarized) of macrophages. They found that the inflammatory macrophages and TREM2+ 
macrophages were almost exclusively observed in the cells from diseased aortas. In his study, 
Cochain et al.12 used the Seurat package (https://satijalab.org/seurat/)17 for clustering cells and 
identifying the marker genes associated with each cluster. Furthermore, they compared the 
number of diseased and control cells in each cluster.

In a similar study, Winkel et al.13 clustered 555 cells from control and 909 from disease cells and 
identified 11 leukocyte populations, including B cell subsets, using the Seurat package. Besides 
the cell subpopulation, they studied cell composition in the media, adventitia, and lesion and 
adventitia + tertiary lymphoid organs (ATLO). They calculated the composition of cells using 
the decomposition analysis based on bulk RNAseq and scRNAseq and reported that samples 
from lesions had a significantly smaller number of B cells compared to other samples.

More recently, Gu et al.14 also examined cell populations in normal and ApoE-deficient 
murine aortic adventitia. Besides clustering analysis to identify sub-populations, they 
studied cell communication between mesenchymal cells and macrophages in ApoE-deficient 
adventitia by evaluating the expression of ligand-receptor pairs.14 This analysis identified that 
chemokine (C-C motif ) ligand 2, a chemokine secreted mainly by inflammatory cells and 
dysfunctional endothelial cells in atherosclerosis, was selectively expressed in a mesenchymal 
population for communication with macrophages.
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Moreover, Kim et al.15 identified 11 leukocyte subpopulations, including diverse macrophage 
sub-clusters, in an atherosclerotic aorta using scRNAseq. These results were compared with 
the results from the foamy and non-foamy macrophage populations identified using flow 
cytometry.15 Another study investigated the features of monocyte-to-macrophage transition 
using scRNAseq in combination with genetic fate mapping of myeloid cells derived from 
CX3C chemokine receptor+ precursors during atherosclerosis progression and regression. 
They performed pseudo-time analysis after aligning cells along the pseudo-transition time.16

To generate scRNAseq data, Butcher et al.11 used Fluidigm C1. The C1 system enables size-
based cell selection and is currently able to collect up to 800 cells. Other studies used the 
Chromium System (10× Genomics) in which a droplet-based microfluidic platform is used to 
sequence thousands of cells in parallel. A recent review paper summarized the commercially 
available instruments for single-cell collection.18

Because of its ability to measure the transcriptome at the single cell level, scRNAseq is 
increasingly used in various areas in biology. We aim to review some of the analyses made 
possible by scRNAseq output, which can be used for the study of atherosclerosis as well.

THE scRNAseq DATA ANALYSIS

1. Pre-processing
Raw data generated by a sequencing machine are processed to have read counts or number 
of molecules. The count information can be represented in a matrix which shows the gene 
expression across cells (Fig. 1A). To exclude low-quality information from scRNAseq, a series 
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Fig. 1. The scRNAseq data processing for atherosclerosis. (A) scRNA procedure. The scRNAseq data are collected from each sample which are represented in a 
table. PCA and/or tSNE is applied to reduce the dimension for the sake of clustering. Genes expressed in each cluster are examined. (B) Clustering results using 
scRNAseq data from the study by Lin et al.16 
scRNAseq, single cell RNA sequencing; PCA, principal components analysis; tSNE, t-distributed stochastic neighbor embedding; Ear2, V-erbA-related protein 2; 
Irf7, interferon regulatory factor 7.



of quality controls (QC) are generally required. QC is employed to ensure that the quality 
of scRNAseq data is sufficient for subsequent downstream analysis. Common practices 
include removing cells with a low count depth or few detected genes. Some transcriptomic 
information can be from multiple cells (doublets). These unwanted doublets can be removed 
using doublet detection tools including Scrublet19 and DoubletFinder.20

Once the matrix is obtained, normalization can be considered to compensate for cells with 
different numbers of barcodes or read depth. Normalization scales count data to a relative 
expression abundance. In addition, the batch effect should be removed when considering 
scRNAseq data from several sources. The batch effect is a common source of technical 
variation that can arise from various sources, including disparate cell dissociation protocol, 
library preparation, and sequencing platforms. Comprehensive benchmarking tests were 
applied for normalization and batch effect correction for the dataset for droplet-based 
scRNAseq data21 showing that pooling-based size factor estimation by Scran22 is one of the 
best working normalization approaches. The Seurat package is equipped with batch effect 
correction,17 but trying diverse approaches after considering the underlying biological 
processes is also recommended for batch effect correction.

2. Clustering
Clustering is a useful approach to identify various types of cells from scRNAseq. Hierarchical 
clustering has been widely used for bulk-cell RNAseq analysis. Butcher et al.11 used 
hierarchical clustering for 270 cells and identified 3 groups of cells. As the number of 
cells increases, the need for new approaches to handle high-dimensional scRNAseq data 
arises. Various algorithms for processing multi-dimensional scRNAseq data have been 
developed. Generally, these clustering methods rely on dimension reduction algorithms to 
avoid unnecessary noise (features). Dimensionality reduction approaches, such as principal 
components analysis (PCA), have been widely used to analyze both bulk RNA-seq data as 
well as scRNAseq data.17,23 For instance, PCA allows the conversion of a higher dimensional 
dataset into a lower, often 2 or 3, dimensional dataset with more important and uncorrelated 
variables (dimensions) called principal components. Subsequently, cells can be clustered 
and envisioned in 2- or 3-dimensional (2D or 3D) space. Similarly, t-distributed stochastic 
neighbor embedding (tSNE) has also been successfully used to visualize cells in a reduced 
space.17 Moreover, tSNE is used to visualize cells in 2D or 3D space while reflecting true 
distances in the original space as far as possible so that cells of a particular cell type tend to 
be located nearby in 2D space. Finally, clustering is performed on cells by grouping them in 
the reduced space. Fig. 1B shows the tSNE-based analysis using the dataset by Lin et al.16 to 
understand macrophage heterogeneity during atherosclerosis progression and repression. 
From the tSNE plot, we can identify sub-clusters with V-erbA-related protein 2 (Ear2) 
expression (corresponds to RentnlahiEar2hi macrophage) and interferon (IFN) regulatory 
factor 7 (type 1 IFN signature) (Fig. 1B). In a similar manner, cell types are assigned based on 
a priori known marker genes. Cochain et al.12 identified cells, such as B cells (using Cd79a, 
Cd79b, Ly6d, and Mzb1), C-X-C chemokine receptor type (CXCR)6+ T cells (using CXCR6, 
Icos, Cd3g, and Il7R) and natural killer cells (using Klrb1c, Ncr1, Klra8, and Klrc1), based on 
the associated marker genes.

A number of algorithms have also been exclusively proposed for scRNAseq data analysis, 
including SC324 and SIMLR.25 CellBIC was designed to identify small cell subpopulations without 
losing information by dimension reduction.26 GiniClust has also been proposed to identify rare 
cell population8. Recent advances allow for ultra-fast clustering of more than 1 million cells.27
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3. Cell composition comparison
One of the downstream applications of scRNAseq analysis is the comparison of cell 
compositions. For instance, Cochain et al.12 compared the number of cells from the control 
and the diseased aortas for each of the 3 clusters of macrophages and found that TREM2+ 
macrophages were almost exclusively observed in the cells from diseased aortas. In addition, 
the same quantitation could also provide an estimation of cell composition of bulk-cell 
RNAseq. This approach may be particularly useful when samples are collected from a 
different section of tissue. If scRNAseq is provided for a section (so that cell subpopulations 
are obtained), the cell composition of another section can be estimated from the bulk 
RNAseq using computational deconvolution based on scRNAseq28 (Fig. 2). Winkel et al.13 
used CIBERSORT29 to perform deconvolution of cells using bulk-RNA-seq from the media, 
adventitia, lesion and adventitia + ATLO.

4. Pseudo-time analysis
When cells are represented in a lower dimensional space, those with similar transcriptomes 
will be located nearby on a plot, e.g. using tSNE. When cells are collected in different 
time stamps during differentiation, mature cells will be located far from progenitors, and 
cells being differentiated will be located in the middle. The path that links the cells can be 
regarded as a “pseudo” time9 (Fig. 3). This allows for longitudinal analysis of gene expression 
(e.g. development). Pseudo-time can be used to model transcriptomic changes during the 
development of atherosclerosis. Gene expressions can be analyzed along pseudo-time. For 
instance, the expression level of elastin deceases during direct cardiomyocyte conversion, 
while the expression level of troponin I1, slow skeletal type increases (Fig. 3). Furthermore, 
Lin et al.16 used the pseudo-time analysis along the fate-mapping during atherosclerosis 
progression and regression. This analysis found 53 genes significantly correlated with 
pseudo-time score, including CXCR4 and Ctsd. Monocle has been used for pseudo-time 
analysis.9 TSCAN combines clustering with pseudo-time analysis.30 Partition-based graph 
abstraction could be useful when complex trajectories are expected.31
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Fig. 2. Cell decomposition using scRNAseq. When bulk RNAseq and scRNAseq are available, cell decomposition 
may be used to obtain the cell composition. 
scRNAseq, single cell RNA sequencing; RNAseq, RNA sequencing.



5. Reconstruction of gene regulatory networks
Reverse engineering reconstructs gene regulatory networks from gene expression 
information.32 It usually requires a large amount of expression data. By providing 
transcriptomic information for each single cell, scRNAseq can be a good resource for 
reconstructing the regulatory networks. Pseudo-time has also been used to identify potential 
downstream target genes9 (Fig. 3). Software tools such as SCODE were developed to 
reconstruct gene regulatory networks from scRNAseq data.

6. Adding spatial information to scRNAseq
Another major limitation of current transcriptomic analysis workflow is that once the cells 
are isolated from tissue for scRNAseq, the cell location and orientation information is lost. 
To restore approximate location information, tissues can be mechanically sampled from 
different spots. For instance, Winkel et al.,13 used the spatial information by comparing cells 
from whole-atherosclerotic aortas versus aortic leukocytes. Another strategy has also been 
introduced in which barcoding the native tissue location has been proposed.33 This approach 
dissects the histological section with a grid, and each spot is barcoded to provide position 
information. Currently, a grid contains 10–30 cells depending on the tissue. The RNAs along 
with the position information are sequenced together. Spatial transcriptomics is now part of 
10× Genomics (https://spatialtranscriptomics.com/). Another approach called MERFISH uses 
fluorescence in situ hybridization to provide spatial information in order to map the identity 
and location of specific cell types.34 Statistical test can be applied to identify genes whose 
spatial patterns are significantly different.35

7. Studying cell communications
The expression of ligand-receptor pairs can be utilized to study cell communication.36 
Specifically, Gu et al.14 investigated the ligand-receptor interaction between cell subtypes by 
considering the transcriptomic levels of ligands and their corresponding receptors. In cells 
from the adventitia, this computational prediction showed the importance of mesenchyme 
populations for maintaining adventitial homeostasis. For instance, cells expressing Cd34 and 
Cav1 interacted with Sell and Icam1 expressed by inflammatory macrophages, respectively, 
which may potentially modulate leukocyte influx to the adventitia. This ligand-receptor 
pair analysis predicted the manner in which resident mesenchyme cells interacted with and 
attracted immune cells in vivo.
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CONCLUSION

By providing transcriptomic profiles at single cell resolution, scRNAseq is a powerful tool to 
study heterogeneity and dynamic changes in cell populations.9,37-41 However, scRNAseq has 
limitations, such as biases in transcript coverage and low capture efficiency.42,43 We discussed 
how to handle some of these limitations in the pre-processing section.

In this review, we discussed certain scRNAseq studies about atherosclerosis which tried to 
identify heterogeneous cell populations by scRNAseq assay. Focusing on the data analysis 
aspect, we discussed some of the computational approaches that may be applied to the 
study of atherosclerosis. Clustering has been applied to all studies and has contributed to 
the identification of previously uncharacterized populations.11-13,15-17 Additionally, clustering 
various computational algorithms has provided new angles in studying atherosclerosis. 
For instance, pseudo-time analysis revealed key genes associated with atherosclerosis 
development.16 Cell-to-cell communications was investigated by studying the co-expression 
of ligand-receptor pairs.14 We also discussed spatial transcriptomic analysis which attempts 
to provide information about the locations of cells in the cell transcriptome. This can be used 
to identify tissue-morphology-specific gene expression.

There have been attempts to provide additional data collected from the same set of cells. 
G&T-seq44 provides information on DNA methylation as well as transcriptome from the same 
set of cells at the same time. TARGET-seq detects genetic mutations which together with 
transcriptome from a single cell.45 However, TARGET-seq only detects a limited number of 
known mutations. In comparison, SIDR46 enables parallel sequencing of the entire genomic 
DNA and messenger RNA of a cell. CITE-seq47 and REAP-seq48 quantify transcriptome 
with protein level using antibodies conjugated to a tripartite DNA sequence that contains 
a primer for amplification and sequencing (polymerase chain reaction handle), a unique 
oligonucleotide that acts as an antibody barcode, and an oligo (dA). These technologies 
can provide new insights into scRNAseq analysis. Overall, single-cell-resolution data will 
enhance our understanding about the development of morbid metabolic disorders such as 
atherosclerosis.

REFERENCES

 1. Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, et al. Cholesterol loading reprograms 
the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional 
macrophage-like phenotype. Arterioscler Thromb Vasc Biol 2015;35:535-546. 
PUBMED | CROSSREF

 2. Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a 
macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 2003;100:13531-13536. 
PUBMED | CROSSREF

 3. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, et al. Transdifferentiation of 
vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res 2014;115:662-667. 
PUBMED | CROSSREF

 4. Li Y, Lui KO, Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat 
Rev Cardiol 2018;15:445-456. 
PUBMED | CROSSREF

 5. Huang S. Non-genetic heterogeneity of cells in development: more than just noise. Development 
2009;136:3853-3862. 
PUBMED | CROSSREF

158https://doi.org/10.12997/jla.2019.8.2.152

Single Cell RNA-Sequencing for Atherosclerosis

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

http://www.ncbi.nlm.nih.gov/pubmed/25573853
https://doi.org/10.1161/ATVBAHA.114.304029
http://www.ncbi.nlm.nih.gov/pubmed/14581613
https://doi.org/10.1073/pnas.1735526100
http://www.ncbi.nlm.nih.gov/pubmed/25070003
https://doi.org/10.1161/CIRCRESAHA.115.304634
http://www.ncbi.nlm.nih.gov/pubmed/29748594
https://doi.org/10.1038/s41569-018-0023-y
http://www.ncbi.nlm.nih.gov/pubmed/19906852
https://doi.org/10.1242/dev.035139


 6. Maamar H, Raj A, Dubnau D. Noise in gene expression determines cell fate in Bacillus subtilis. Science 
2007;317:526-529. 
PUBMED | CROSSREF

 7. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature 2010;467:167-173. 
PUBMED | CROSSREF

 8. Jiang L, Chen H, Pinello L, Yuan GC. GiniClust: detecting rare cell types from single-cell gene expression 
data with Gini index. Genome Biol 2016;17:144. 
PUBMED | CROSSREF

 9. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell 
fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014;32:381-386. 
PUBMED | CROSSREF

 10. Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related computational data analysis. Front 
Genet 2019;10:317. 
PUBMED | CROSSREF

 11. Butcher MJ, Filipowicz AR, Waseem TC, McGary CM, Crow KJ, Magilnick N, et al. Atherosclerosis-
driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ Res 
2016;119:1190-1203. 
PUBMED | CROSSREF

 12. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-cell RNA-seq reveals the 
transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 
2018;122:1661-1674. 
PUBMED | CROSSREF

 13. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, et al. Atlas of the immune cell 
repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 
2018;122:1675-1688. 
PUBMED | CROSSREF

 14. Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, et al. Adventitial cell atlas of wt (wild type) and ApoE 
(apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler Thromb Vasc Biol 
2019;39:1055-1071. 
PUBMED | CROSSREF

 15. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, et al. Transcriptome analysis reveals nonfoamy 
rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 
2018;123:1127-1142. 
PUBMED | CROSSREF

 16. Lin JD, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, et al. Single-cell analysis of fate-mapped 
macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression 
and regression. JCI Insight 2019;4:124574. 
PUBMED | CROSSREF

 17. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across 
different conditions, technologies, and species. Nat Biotechnol 2018;36:411-420. 
PUBMED | CROSSREF

 18. Valihrach L, Androvic P, Kubista M. Platforms for single-cell collection and analysis. Int J Mol Sci 
2018;19:E807. 
PUBMED | CROSSREF

 19. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell 
transcriptomic data. Cell Syst 2019;8:281-291.e9. 
PUBMED | CROSSREF

 20. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing 
data using artificial nearest neighbors. Cell Syst 2019;8:329-337.e4. 
PUBMED | CROSSREF

 21. Büttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for assessing single-cell RNA-seq 
batch correction. Nat Methods 2019;16:43-49. 
PUBMED | CROSSREF

 22. Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many 
zero counts. Genome Biol 2016;17:75. 
PUBMED | CROSSREF

 23. Lall S, Sinha D, Bandyopadhyay S, Sengupta D. Structure-aware principal component analysis for single-
cell RNA-seq data. J Comput Biol 2018;25:1365-1373. 
PUBMED | CROSSREF

159https://doi.org/10.12997/jla.2019.8.2.152

Single Cell RNA-Sequencing for Atherosclerosis

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

http://www.ncbi.nlm.nih.gov/pubmed/17569828
https://doi.org/10.1126/science.1140818
http://www.ncbi.nlm.nih.gov/pubmed/20829787
https://doi.org/10.1038/nature09326
http://www.ncbi.nlm.nih.gov/pubmed/27368803
https://doi.org/10.1186/s13059-016-1010-4
http://www.ncbi.nlm.nih.gov/pubmed/24658644
https://doi.org/10.1038/nbt.2859
http://www.ncbi.nlm.nih.gov/pubmed/31024627
https://doi.org/10.3389/fgene.2019.00317
http://www.ncbi.nlm.nih.gov/pubmed/27635087
https://doi.org/10.1161/CIRCRESAHA.116.309764
http://www.ncbi.nlm.nih.gov/pubmed/29545365
https://doi.org/10.1161/CIRCRESAHA.117.312509
http://www.ncbi.nlm.nih.gov/pubmed/29545366
https://doi.org/10.1161/CIRCRESAHA.117.312513
http://www.ncbi.nlm.nih.gov/pubmed/30943771
https://doi.org/10.1161/ATVBAHA.119.312399
http://www.ncbi.nlm.nih.gov/pubmed/30359200
https://doi.org/10.1161/CIRCRESAHA.118.312804
http://www.ncbi.nlm.nih.gov/pubmed/30830865
https://doi.org/10.1172/jci.insight.124574
http://www.ncbi.nlm.nih.gov/pubmed/29608179
https://doi.org/10.1038/nbt.4096
http://www.ncbi.nlm.nih.gov/pubmed/29534489
https://doi.org/10.3390/ijms19030807
http://www.ncbi.nlm.nih.gov/pubmed/30954476
https://doi.org/10.1016/j.cels.2018.11.005
http://www.ncbi.nlm.nih.gov/pubmed/30954475
https://doi.org/10.1016/j.cels.2019.03.003
http://www.ncbi.nlm.nih.gov/pubmed/30573817
https://doi.org/10.1038/s41592-018-0254-1
http://www.ncbi.nlm.nih.gov/pubmed/27122128
https://doi.org/10.1186/s13059-016-0947-7
http://www.ncbi.nlm.nih.gov/pubmed/30133312
https://doi.org/10.1089/cmb.2018.0027


 24. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of 
single-cell RNA-seq data. Nat Methods 2017;14:483-486. 
PUBMED | CROSSREF

 25. Wang B, Ramazzotti D, De Sano L, Zhu J, Pierson E, Batzoglou S. SIMLR: a tool for large-scale genomic 
analyses by multi-kernel learning. Proteomics 2018;18:1700232. 
PUBMED | CROSSREF

 26. Kim J, Stanescu DE, Won KJ. CellBIC: bimodality-based top-down clustering of single-cell RNA 
sequencing data reveals hierarchical structure of the cell type. Nucleic Acids Res 2018;46:e124. 
PUBMED | CROSSREF

 27. Wan SJ, Kim J, Won KJ. SHARP: single-cell RNA-seq hyper-fast and accurate processing via ensemble 
random projection. bioRxivorg. Forthcoming 2018.

 28. Shen-Orr SS, Gaujoux R. Computational deconvolution: extracting cell type-specific information from 
heterogeneous samples. Curr Opin Immunol 2013;25:571-578. 
PUBMED | CROSSREF

 29. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from 
tissue expression profiles. Nat Methods 2015;12:453-457. 
PUBMED | CROSSREF

 30. Ji Z, Ji H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic 
Acids Res 2016;44:e117. 
PUBMED | CROSSREF

 31. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, et al. PAGA: graph abstraction reconciles 
clustering with trajectory inference through a topology preserving map of single cells. Genome Biol 
2019;20:59. 
PUBMED | CROSSREF

 32. Tegner J, Yeung MK, Hasty J, Collins JJ. Reverse engineering gene networks: integrating genetic 
perturbations with dynamical modeling. Proc Natl Acad Sci U S A 2003;100:5944-5949. 
PUBMED | CROSSREF

 33. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of 
gene expression in tissue sections by spatial transcriptomics. Science 2016;353:78-82. 
PUBMED | CROSSREF

 34. Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, et al. Molecular, spatial, and 
functional single-cell profiling of the hypothalamic preoptic region. Science 2018;362:eaau5324. 
PUBMED | CROSSREF

 35. Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods 
2018;15:343-346. 
PUBMED | CROSSREF

 36. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network 
of ligand-receptor-mediated multicellular signalling in human. Nat Commun 2015;6:7866. 
PUBMED | CROSSREF

 37. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA 
sequencing reveals rare intestinal cell types. Nature 2015;525:251-255. 
PUBMED | CROSSREF

 38. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq 
highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344:1396-1401. 
PUBMED | CROSSREF

 39. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic 
paracrine control of cellular variation. Nature 2014;510:363-369. 
PUBMED | CROSSREF

 40. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA 
sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. 
Nat Biotechnol 2014;32:1053-1058. 
PUBMED | CROSSREF

 41. Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lönnberg T, Svensson V, et al. Single-cell analysis of 
CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. 
Genome Biol 2016;17:103. 
PUBMED | CROSSREF

 42. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-
cell RNA sequencing. Mol Cell 2015;58:610-620. 
PUBMED | CROSSREF

160https://doi.org/10.12997/jla.2019.8.2.152

Single Cell RNA-Sequencing for Atherosclerosis

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

http://www.ncbi.nlm.nih.gov/pubmed/28346451
https://doi.org/10.1038/nmeth.4236
http://www.ncbi.nlm.nih.gov/pubmed/29265724
https://doi.org/10.1002/pmic.201700232
http://www.ncbi.nlm.nih.gov/pubmed/30102368
https://doi.org/10.1093/nar/gky698
http://www.ncbi.nlm.nih.gov/pubmed/24148234
https://doi.org/10.1016/j.coi.2013.09.015
http://www.ncbi.nlm.nih.gov/pubmed/25822800
https://doi.org/10.1038/nmeth.3337
http://www.ncbi.nlm.nih.gov/pubmed/27179027
https://doi.org/10.1093/nar/gkw430
http://www.ncbi.nlm.nih.gov/pubmed/30890159
https://doi.org/10.1186/s13059-019-1663-x
http://www.ncbi.nlm.nih.gov/pubmed/12730377
https://doi.org/10.1073/pnas.0933416100
http://www.ncbi.nlm.nih.gov/pubmed/27365449
https://doi.org/10.1126/science.aaf2403
http://www.ncbi.nlm.nih.gov/pubmed/30385464
https://doi.org/10.1126/science.aau5324
http://www.ncbi.nlm.nih.gov/pubmed/29553579
https://doi.org/10.1038/nmeth.4636
http://www.ncbi.nlm.nih.gov/pubmed/26198319
https://doi.org/10.1038/ncomms8866
http://www.ncbi.nlm.nih.gov/pubmed/26287467
https://doi.org/10.1038/nature14966
http://www.ncbi.nlm.nih.gov/pubmed/24925914
https://doi.org/10.1126/science.1254257
http://www.ncbi.nlm.nih.gov/pubmed/24919153
https://doi.org/10.1038/nature13437
http://www.ncbi.nlm.nih.gov/pubmed/25086649
https://doi.org/10.1038/nbt.2967
http://www.ncbi.nlm.nih.gov/pubmed/27176874
https://doi.org/10.1186/s13059-016-0957-5
http://www.ncbi.nlm.nih.gov/pubmed/26000846
https://doi.org/10.1016/j.molcel.2015.04.005


 43. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for 
biomedical research and clinical applications. Genome Med 2017;9:75. 
PUBMED | CROSSREF

 44. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-cell 
genomes and transcriptomes. Nat Methods 2015;12:519-522. 
PUBMED | CROSSREF

 45. Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling intratumoral 
heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol 
Cell 2019;73:1292-1305.e8. 
PUBMED | CROSSREF

 46. Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, et al. SIDR: simultaneous isolation and parallel 
sequencing of genomic DNA and total RNA from single cells. Genome Res 2018;28:75-87. 
PUBMED | CROSSREF

 47. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. 
Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 2017;14:865-868. 
PUBMED | CROSSREF

 48. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins 
and transcripts in single cells. Nat Biotechnol 2017;35:936-939. 
PUBMED | CROSSREF

 49. Liu Z, Wang L, Welch JD, Ma H, Zhou Y, Vaseghi HR, et al. Single-cell transcriptomics reconstructs fate 
conversion from fibroblast to cardiomyocyte. Nature 2017;551:100-104. 
PUBMED | CROSSREF

161https://doi.org/10.12997/jla.2019.8.2.152

Single Cell RNA-Sequencing for Atherosclerosis

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

http://www.ncbi.nlm.nih.gov/pubmed/28821273
https://doi.org/10.1186/s13073-017-0467-4
http://www.ncbi.nlm.nih.gov/pubmed/25915121
https://doi.org/10.1038/nmeth.3370
http://www.ncbi.nlm.nih.gov/pubmed/30765193
https://doi.org/10.1016/j.molcel.2019.01.009
http://www.ncbi.nlm.nih.gov/pubmed/29208629
https://doi.org/10.1101/gr.223263.117
http://www.ncbi.nlm.nih.gov/pubmed/28759029
https://doi.org/10.1038/nmeth.4380
http://www.ncbi.nlm.nih.gov/pubmed/28854175
https://doi.org/10.1038/nbt.3973
http://www.ncbi.nlm.nih.gov/pubmed/29072293
https://doi.org/10.1038/nature24454

	Single Cell RNA-Sequencing for the Study of Atherosclerosis
	INTRODUCTION
	THE scRNAseq FOR THE STUDY OF ATHEROSCLEROSIS
	THE scRNAseq DATA ANALYSIS
	2. Clustering
	3. Cell composition comparison
	4. Pseudo-time analysis
	5. Reconstruction of gene regulatory networks
	6. Adding spatial information to scRNAseq
	7. Studying cell communications

	CONCLUSION
	REFERENCES


