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Abstract In this study, we used the probabilistic
models developed by us over the last several years to
analyze 158 proteins from coronaviruses in order to
determine which protein is more vulnerable to muta-
tions. The results provide three lines of evidence sug-
gesting that the spike glycoprotein is different from the
other coronavirus proteins: (1) the spike glycoprotein
is more sensitive to mutations, this is the current state
of the spike glycoprotein, (2) the spike glycoprotein
has undergone more mutations in the past, this is the
history of spike glycoprotein, and (3) the spike gly-
coprotein has a bigger potential towards future
mutations, this is the future of spike glycoprotein.
Furthermore, this study gives a clue on the species
susceptibility regarding different proteins.

Keywords Coronavirus Æ Protein Æ Probability Æ
SARS

Introduction

With the occurrence of new cases of severe acute respi-
ratory syndrome (SARS), the prognosis of a possible
return of SARS in the near future is coming true. Also
hypothesis that the new SARS cases could be somewhat
different from the previous SARS cases in possible mu-
tated forms appears to be true. Accumulating evidence
shows that there are mutations in the SARS-related

coronavirus (SARS-CoV), [1, 2] which may lead to dif-
ficulties in diagnosis, treatment, and prevention.

The SARS-CoV is an enveloped RNA virus. Natu-
rally, we would expect that the different components in
human SARS-CoV would have different sensitivities to
mutation, therefore it would minimize the difficulties in
identification of SARS-CoV and facilitate diagnosis,
treatment and prevention of SARS if we could identify
which component of human SARS-CoV is most subject
to mutations. Doubtlessly we should not limit ourselves
to sole SARS-CoV, not only because many species carry
coronaviruses [3, 4], but also, more importantly, because
the coronavirus from civets is likely to be the source of
SARS [5].

Among various components in coronavirus, we are
more interested in the proteins, because over the last
several years we have developed three models to analyze
the protein primary structure (for a review, see [6]),
including the proteins from SARS-CoV [7, 8]. In gen-
eral, our first model can classify a protein into the ran-
domly predictable and unpredictable portions, and our
findings demonstrate that the unpredictable portion is
more sensitive to mutations than the predictable one.
Thus, we can find which protein is more vulnerable to
mutations by comparing the unpredictable portion with
the predictable one among proteins.

So far the envelope protein, hemagglutinin-esterase
precursor, membrane glycoprotein, nonstructural pro-
tein, nucleocapsid protein, spike glycoprotein, replicase
polyprotein and hypothetical proteins have been iden-
tified in coronavirus [9–12]. These proteins have the
following functions: the hemagglutinin-esterase is the
major receptor determinant, binding to sialic acid-con-
taining receptors on the host cell and penetrating of
virus genome into host cell cytoplasm by fusion of virus
and host cell membranes. Both the envelope and mem-
brane glycoproteins are components of the viral enve-
lope that play a central role in virus morphogenesis and
assembly via its interactions with other viral proteins.
The nonstructural proteins mediate nuclear export of
viral RNPs and bind RNA, thereby inhibiting host
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mRNA translation, and regulating viral pre-mRNA
splicing and translation. The nucleocapsid protein is the
major structural component of virons that associates
with genomic RNA to form a helical nucleocapsid. The
replicase polyprotein is a multifunctional protein con-
taining the activities necessary for the transcription of
negative stranded RNA, leader RNA, subgenomic
mRNAs and progeny virion RNA as well as proteinases
responsible for the cleavage of the polyprotein into
functional products. The spike glycoprotein is respon-
sible for both binding to receptors on host cells and for
membrane fusion [13–21].

Currently, the sequences of 158 coronavirus proteins
from different species have been documented. Each
protein must have its own specific sensitivity to muta-
tions otherwise the proteins would have the same ratio
of mutations per amino acid sequences. However such
an expectation has yet been found, it is therefore
important to define which protein is more sensitive to
mutations than the others. The aim of the present study
is to discover which protein is more sensitive to muta-
tions among 158 coronavirus proteins using the model
developed by us over the last several years.

Materials and methods

The amino acid sequences of 158 coronavirus proteins
were obtained from the Swiss-Prot databank [22]. These
proteins are grouped as envelope proteins, hemaggluti-
nin-esterase precursors, membrane glycoproteins, non-
structural proteins, nucleocapsid proteins, spike
glycoproteins and others including replicase polyprotein
and hypothetical proteins (for details, see Supplemen-
tary Material).

The detailed calculations of randomly predictable
and unpredictable portions in proteins have already
been published previously (for a review, see [6]). The
calculations governed by the simple permutation prin-
ciple [23] are described for the example of the spike
glycoprotein from human SARS-CoV, which consists of
1,255 amino acids. As we know that an amino-acid pair
in a protein is composed of any 20 kinds of amino acids,
so theoretically there are 400 possible types of amino-
acid pairs. In terms of amino-acid pairs, distinguishing
proteins is different either in the numbers of possible
types of amino-acid pairs or in the frequency of each
type, or both.

Randomly predictable present type of amino-acid pair
with predictable frequency

There are 39 arginines (R) and 96 serines (S) in spike
glycoprotein from human SARS-CoV, the random fre-
quency of the amino-acid pair ‘‘RS’’ is 3 (39/1,255·96/
1,254·1,254=2.983). Actually we find three ‘‘RS‘’s in
the spike glycoprotein, so the type of ‘‘RS’’ is present
and its frequency is 3. In such a case, both the presence

of type ‘‘RS’’ and its frequency are randomly predict-
able, and the difference between actual and predicted
values is 0.

Randomly predictable present type of amino-acid pair
with unpredictable frequency

There are 84 alanines (A) in the spike glycoprotein from
human SARS-CoV. The frequency of random presence
of ‘‘AA’’ is 6 (84/1,255·83/1,254·1,254=5.555). In fact
‘‘AA’’ appears ten times. Thus the presence of type
‘‘AA’’ is randomly predictable, but its frequency is
randomly unpredictable, and the difference between ac-
tual and predicted values is 4.

Randomly unpredictable present type of amino-acid
pair

There are 11 tryptophans (W) in the spike glycoprotein
from human SARS-CoV, the frequency of random
presence of ‘‘WR’’ is 0 (11/1,255·39/
1,254·1,254=0.342), i.e. the type ‘‘WR’’ would not ap-
pear in the spike glycoprotein. However ‘‘WR’’ appears
once in reality, so the presence of type ‘‘WR’’ is ran-
domly unpredictable. Naturally its frequency is unpre-
dictable too, and the difference between actual and
predicted values is 1.

Randomly predictable absent type of amino-acid pair

The frequency of random presence of ‘‘RW’’ is 0 (39/
1,255·11/1,254·1,254=0.342), i.e. the type ‘‘RW’’ would
not appear in the spike glycoprotein, which is true in the
real situation. This is the case that the absence of type
‘‘RW’’ with its frequency is randomly predictable, and
the difference between actual and predicted values is 0.

Randomly unpredictable absent type of amino-acid
pairs

There are 99 threonines (T) in the spike glycoprotein, the
frequency of random presence of ‘‘RT’’ is 3 (39/
1,255·99/1,254·1,254=3.076), i.e. there would be three
‘‘RT’’s in the spike glycoprotein. However no ‘‘RT’’ is
found, therefore the absence of ‘‘RT’’ from the spike
glycoprotein is randomly unpredictable. Naturally its
frequency is unpredictable too, and the difference be-
tween actual and predicted values is �3.

Statistics

With respect to actual and predicted values in a single
protein, the statistical inference is carried out as follows.
Generally, each of 20 kinds of amino acids has a chance

9



of 1/20 (p=0.05) to repeat once, and a type of amino-
acid pair has the chance of 1/400 (p=0.0025) to repeat
once. In case of the spike glycoprotein from human
SARS-CoV, there are 99 Ts, the most abundant amino
acid, and 11 Ws, the least abundant amino acid. If the
first amino acid is ‘‘T’’, then the chance of the second
amino acid to be ‘‘T’’ is 98/1,254 (p=0.078>0.05), if the
first amino acid is ‘‘W’’, then the chance of the second
amino acid to be ‘‘W’’ is 10/1,254 (p=0.008<0.01).
Thus, the chance of first ‘‘TT’’ is 99/1,255·98/1,254
(p=0.0062<0.01), and the chance of second ‘‘TT’’ is 97/
1,253·96/1,252 (p=0.0059<0.01). If we consider the
lowest occurring amino acids ‘‘W’’, the chance of first
‘‘WW’’ is 11/1,255·10/1,254 (p=0.00007<0.001), and
the chance of second ‘‘WW’’ is 9/1,253·8/1,252
(p=0.00005<0.001). Clearly, the probability is less than
0.05 if the difference between actual and predicted values
is equal to or larger than 1.

With respect to the comparisons among proteins, the
statistical inference is conducted as follows. All the data
are examined by the Kolmogorov–Smirnov test to
determine their distribution properties. For normal dis-
tributions, the data are presented as mean ± SD. For
non-normal distributions, the data are presented as
median with interquartile range. Outliers are detected
according to Healy’s method [24]. The one-way ANO-
VA and the Friedman ANOVA rank tests are used for
parametric and non-parametric tests, respectively, fol-

lowed by comparison tests. SigmaStat for Windows
(SPSS Inc, 1992–2003) is used to perform all the statis-
tical tests, and the p<0.05 is considered statistically
significant.

Results

After such calculations, the amino-acid pairs in a protein
are classified into randomly predictable and unpredict-
able portions. By comparing the percentages of pre-
dictable and unpredictable portions among different
proteins, we can find which protein has a larger unpre-
dictable portion than others. Consequently this protein
is more sensitive to mutations according to our previous
studies [25–32].

Figure 1 shows the predictable and unpredictable
portions in coronavirus proteins. This figure can be read
as follows. The length of each bar presents 100%, which
is located at both unpredictable and predictable sites
separated by dotted line. For example, the unfilled bar in
spike glycoprotein group presents the absent types,
which are composed of 19.70% randomly predictable
portion with interquartile range from 16.67 to 26.89%
(right panel) and 80.30% randomly unpredictable por-
tion with interquartile range from 73.11 to 83.33% (left
panel). The statistical inference in Fig. 1 as well as Fig. 2
is conducted by using the ANOVA test to detect whether
or not there is a difference among different proteins in a
panel followed by a comparison test. For example,
regarding the absent type in Fig. 1, at first we use the
Friedman ANOVA rank test whether or not there is a
difference among different protein groups. Taking three
bars in Fig. 1 into account, the spike glycoproteins have
a larger unpredictable portion than others. These results
suggest that the spike glycoprotein is more sensitive to
mutations than other coronavirus proteins.

Although different proteins have different types of
unpredictable absent amino-acid pairs, some types are
absent from all members of a group of proteins. For

Percent of unpredictable/predictable portions
100 75 50 25 0 25 50 75 100

Envelope proteins (n = 8)

Hemagglutinin-esterase precursors (n = 10)

Membrane glycoproteins (n = 17)

Nonstructural proteins (n = 38)

Nucleocapsid proteins (n = 28)

Spike glycoproteins (n = 27)

Other proteins (n = 30)

Absent type 
Present type
Frequency of present type

PredictableUnpredictable

*
#

*
#

Fig. 1 Predictable and unpredictable portions in coronavirus
proteins. The data are presented as median with interquartile
range. * the predictable and unpredictable portions in spike
glycoprotein group are statistically different from any other protein
groups at p<0.05 level, except for hemagglutinin-esterase
precursor group. # the predictable and unpredictable portions in
spike glycoprotein group are statistically different from hemagglu-
tinin-esterase precursor, membrane protein and nucleocapsid
protein groups at p<0.05 level. � the predictable and unpredictable
portions in spike glycoprotein group are statistically different from
hemagglutinin-esterase precursor, and membrane protein groups at
p<0.05 level
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example, the amino-acid pair ‘‘WI’’ is absent from all 27
spike glycoproteins no matter which kind of species or
strain (Table 1).

Thereafter, we are particularly interested in the
unpredictable portions (left panel in Fig. 1), because
they are not engineered by randomness. As mentioned
under Materials and methods, an unpredictable portion
includes the unpredictable types and predictable types
with unpredictable frequency, which can be presented as
the actual values either larger or smaller than its pre-
dicted values. Our previous studies reveal that the
unpredictable types whose actual value is larger than its
predicted value are highly likely to be targeted by
mutations, whereas the unpredictable types whose actual
value is smaller than its predicted value are highly likely
to be formed after mutations [25–33].

Figure 2 illustrates the percentage of unpredictable
types and frequencies with respect to whether the actual
value is larger or smaller than its predicted value in
coronavirus proteins. Technically Fig. 2 is a subset of
Fig. 1 obtained by classifying the data in the left panel of
Fig. 1 into two criteria, i.e., the actual value is larger
than the predicted value, or vice versa. In view of the
unpredictable portion whose actual value is smaller than
its predicted value (left panel), the spike glycoproteins
have the largest percentages in both unpredictable type
and frequency among different coronavirus proteins.
Whereas in view of the unpredictable portion whose
actual value is larger than its predicted value (right pa-
nel), the spike glucoprotein group reveals a larger per-
centage of unpredictable type accompanied by a smaller

percentage of unpredictable frequency. This means that
the spike glycoprotein might have undergone more
mutations in the past than others.

Subsequently, we are still more interested in the
magnitude of difference between the actual and pre-
dicted values because our previous studies show that the
larger the difference between actual and predicted val-
ues, the bigger the potential towards future mutations
[25–33].

Figure 3 displays the magnitude of difference be-
tween actual and predicted values in coronavirus pro-
teins. It can be seen that the difference between actual
and predicted values is larger in the spike glycoprotein
group than in others. This implies that the spike glyco-
proteins have a high potential for future mutations.

In addition, the difference between the actual and
predicted values can tell us which species is more subject
to mutations if we arrange the number of amino-acid
pairs with respect to the difference between the actual
and predicted values in each group of proteins from
different species.

Figures 4, 5, 6, 7, 8, 9 and 10 show the difference
between the actual and predicted values in each group of
proteins from different species. The scale of the vertical
axes in Figs. 4, 5, 6, 7, 8, 9 and 10 is shown logarith-
mically in order to emphasize the amino-acid pairs with
large differences between the actual and predicted val-
ues. Due to the limitation of the graphic software, the
filled forms are duplicated in one or two bars. However
the data used in these figures can be found in the Sup-
plementary Material. These figures can be understood as
follows, the bars at two extremes along the horizontal
axis present the amino-acid pairs sensitive to mutations,
because our previous studies have shown that the larger
the difference between actual and predicted values is, the
more sensitive to the mutations is [25–33]. By comparing
the scales of horizontal axes from Figs. 4, 5, 6, 7, 8, 9
and 10, we can see that the spike glycoproteins are more
sensitive to mutations than other proteins because Fig. 9

Percent of unpredictable types and frequencies

90.0 67.5 45.0 22.5 0.0 22.5 45.0 67.5 90.0

Envelope proteins (n = 8)

Hemagglutinin-esterase precursors (n = 10)

Membrane glycoproteins (n = 17)

Nonstructural proteins (n = 38)

Nucleocapsid proteins (n = 28)

Spike glycoproteins (n = 27)

Other proteins (n = 30)

Unpredictable type
Unpredictable frequency

Actual value > Predicted valueActual value < Predicted value

# *# #

Fig. 2 Percent of unpredictable
types and frequencies with
respect to whether the actual
value is larger or smaller than
the predicted value in
coronavirus proteins. The data
are presented as mean ± SD.
* the percents of unpredictable
types/frequencies in spike
glycoprotein group are
statistically different from other
protein groups at p<0.05 level.
# the percents of unpredictable
types in spike glycoprotein
group are statistically different
from any other protein groups
at p<0.05 level, except for
hemagglutinin-esterase
precursor and nucleocapsid
protein groups

Table 1 Unpredictable absent amino-acid pairs that disappear
from a group of proteins

Hemagglutinin-esterase precursor Spike glycoprotein

RA, RD, NQ, DR, CA, CS, QF, IK,
LK, FA, FC, FQ, FP, VK

WI
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has a largest scale for the horizontal axis. Still we can see
which species is more sensitive to mutations in each
figure. For instance, the human spike glycoprotein is
more sensitive to mutation in Fig. 9.

Discussion

Without clearly identifying the source of SARS-CoV, its
fast-spreading process, and its mutations, the battle with
SARS is unlikely to be finished soon, therefore sooner or
later we would expect to see new mutated forms of
SARS-CoV. In such a case the determination of vul-
nerable proteins in SARS-CoV is important and press-
ing.

The coronaviruses exhibit considerable serologic and
sequence variation, with the most extreme variability
being within S genes [3]. Variant spike glycoproteins [34]
are now known to impact pathogenic outcome [15, 35–
37].

This study provides three lines of evidence that sug-
gest that the spike glycoprotein is different from the
others: (1) the spike glycoprotein is more sensitive to
mutations, this is the current state of spike glycoprotein,

(2) the spike glycoprotein had experienced more muta-
tions in the past, this is the history of spike glycoprotein,
and (3) the spike glycoprotein has a bigger potential
towards future mutations, this is the future of spike
glycoprotein.

With respect to the first line of evidence, the argu-
ment is that the randomly unpredictable portion is larger
in spike glycoproteins than in others (Fig. 1). If we
compare the unpredictable portion in spike glycopro-
teins with the proteins we have studied in the past
(columns I and II in Table 2, similar to the left panel in
Fig. 1), we find that the unpredictable portion of the
present types is statistically larger in spike glycoproteins
than in others, and statistically similar in the unpre-
dictable portion of the present frequencies. This suggests
that the spike glycoprotein is not only more sensitive to
mutations than other coronavirus proteins, but also
more sensitive than the proteins in Table 2.

With respect to the second line of evidence, we find
that the spike glycoprotein has a larger percentage of
unpredictable types and frequencies whose actual values
are smaller than the predicted values in Fig. 2. Actually,
172 mutations have currently been documented in cor-
onavirus proteins, of which 153 occur in spike glyco-
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Fig. 4 Number of amino-acid
pairs in envelop proteins from
different species with respect to
the difference between their
actual and predicted values.
The data are presented as
mean ± SD
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Fig. 3 Magnitude of difference
between actual and predicted
values in coronavirus proteins.
The data are presented as
mean ± SD. * indicates the
difference between actual and
predicted values in spike
glycoprotein group is
statistically different from any
other protein group at p<0.05
level. # indicates the difference
between actual and predicted
values in spike glycoprotein
group is statistically different
from other protein groups at
p<0.05 level, except for
envelope protein group

12



proteins. This supports our argument that the spike
glycoprotein has undergone more mutations in the past.
Moreover, if we look at the nine proteins which have
been documented with more mutations (column IX in
Table 2), we find that the percentage of unpredictable
type in spike glycoproteins is statistically similar to the
proteins in Table 2 (columns III and IV in Table 2,
similar to right panel in Fig. 2), but the difference
regarding the percentage of unpredictable frequencies is

statistical significant. This suggests that the intensity of
mutations in spike glycoproteins is weaker than the first
nine proteins listed in Table 2.

With respect to the third line of evidence, we find that
the difference between actual and predicted values in
spike glycoproteins is larger than in others (Fig. 3).
Comparison with the first nine proteins in Table 2
(columns V, VI, VII and VIII in Table 2, similar to
Fig. 3) shows that the difference between actual and
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Fig. 5 Number of amino-acid
pairs in hemagglutinin-esterase
precursor proteins from
different species with respect to
the difference between their
actual and predicted values.
The data are presented as
mean ± SD

13



predicted values is statistically larger in spike glycopro-
teins regarding unpredictable types and is statistically
smaller regarding unpredictable frequency. This suggests
that the spike glycoprotein still has more potential for
mutations than the first nine proteins in Table 2.

For the species susceptibility, the vulnerability of
species depends on the number of amino-acid pairs with
the largest difference between actual and predicted val-
ues. Figures 4, 5, 6, 7, 8, 9 and 10 may, at least partly,
highlight the species susceptibility. For example, why

have so many mutations been found in the human spike
glycoproteins?

Although it is obvious that an individual protein is
different from the other proteins of a genome, our results
quantitatively and systematically determine the differ-
ence between the spike and other proteins by comparing
their predictable and unpredictable portions of amino-
acid pairs. One may argue that it is also known that
spike proteins interact with the host, the environment
and the immune system and so their structure is par-
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ticularly vulnerable to mutations both in the past and in
the future and also regarding its specific phenotypic ef-
fects in the numerous interactions it is involved in.
However we would like to argue that the host, the
environment and the immune system are the external
factors imposed on the spike proteins, while the internal
factor in the spike proteins, which is particularly inter-
esting to us, is the structure that can be partially
explained by our random approach. In another study on
the spike protein, we specifically discussed the spike
proteins from three human coronaviruses classified with
our approach and gave predictions of possible and

potential mutation forms regarding the spike protein
structure [7].

At this stage of study, it is still difficult to define the
reason and to give a biological explanation to the results
that the absent types in the spike protein behave differ-
ently from and opposed to other proteins, although we
have discussed the biological explanation in the present
types in rat monoamine oxidase B in the past [38].
However it is certain that the randomly unpredictable
absent types should be deliberately eliminated from a
protein rather than being self-organized and self-
empowered. This is so because such an absence cannot
be explained by randomness which suggests the least
time- and energy-consuming.

In this study, we do not consider the situation that
individual variation within the other protein groups
could not in specific cases lead to similar values as ob-
served for specific spike proteins. This is so because the
individual variation within the other protein groups
would lead to a mutated form of a protein, while this
study deals with proteins without mutations. However, a
mutated form of protein may lead its predictable and
unpredictable portions to shift to similar values as ob-
served for specific spike proteins. In the current form of
this study, we cannot make any solid prediction from the
present analysis for the behavior of individual proteins,
but only observe an overall trend.

The medical implication is that the mutation sensi-
bility in spike glycoprotein leads to the difficulties in
producing vaccines that provide us with long-lasting
protection against SARS. This finding can be correlated
with hemagglutinin and neuraminidase from influenza A
virus. Both hemagglutinin and neuraminidase are sur-
face proteins, and subject to the pressure of the antibody
and the selective pressure for the appearance of host cell
variant with altered receptor binding specificity. Mean-
while the spike glycoprotein is responsible for both
binding to receptors on host cells and for membrane
fusion. In this viewpoint, the spike glyprotein is quite
similar to hemagglutinin and neuraminidase.

The multiple sequence alignments are a phenomeno-
logical technique by comparing the similarity among
proteins. The phenomenological analogy can be classi-
fied into at least three types. For the simplest example,
we compare the letters that construct a word to guess the
meaning of the word. Another type of phenomenologi-
cal analogy is equivalent in physical laws, for example,
Fick’s law and Kirchhoff’s law are equivalent to the law
of conservation. The third type of phenomenological
analogy is mathematically similar, for example, the
transfer of energy, mass, heat and momentum can be
described by using similar differential equations. [39, 40]
In fact, what the multiple sequence alignments are doing
is language similarity. On the other hand, our approach
is a mechanism-driven technique by calculating the
randomly predictable and unpredictable portions in a
protein. Our approach is not a phenomenological tool,
and is studying the internal power engineering the
mutations. Multiple sequence alignments cannot predict

Table 2 Characteristics of the proteins that we have studied in the
past

Protein I II III IV V VI VII VIII IX Reference

BTK 62.46 71.88 36.25 12.77 �1.26 �1.30 1.46 1.72 112 [32]
CA54 73.75 93.47 36.50 20.31 �3.86 �10.96 4.68 41.52 151 [28]
FA9 62.35 72.83 32.00 9.35 �1.13 �1.09 1.37 1.60 99 [30]
GLCM 59.77 71.59 37.25 14.39 �1.12 �1.12 1.51 1.93 109 [31]
HBA 61.62 68.57 10.75 4.29 �1.02 �1.00 1.19 1.49 133 [27]
LDLR 69.61 80.21 40.50 18.74 �1.43 �1.32 1.86 2.43 127 [26]
Human
p53

57.14 68.37 30.75 5.87 �1.15 �1.13 1.45 1.84 190 [29]

PH4H 59.83 71.84 28.50 7.10 �1.16 �1.06 1.39 1.62 187 [25]
VHL 72.46 78.30 18.00 9.91 �1.07 �1.05 1.24 1.634 109 [33]
RUN1 64.22 75.22 6 [41]

ADHA 55.98 64.61 [42]

CTGF 58.46 70.40 [43]

GSHR 57.70 68.71 1 [44]

AO FB 62.40 73.94 [38]

LIS1 56.76 71.32 5 [45]

TNFA 59.24 69.40 [46]

TYRO 45.45 58.14 64 [47]

ATTY 53.36 67.55 1 [48]

Bovin
p53

62.44 71.95 [49]

Mouse
p53

60.85 74.29 3 [50]

Sheep
p53

60.19 70.34 [51]

AMPC 54.63 66.32 9 [52]

DOPO 61.13 73.75 8 [53]

BTK human Bruton’s tyrosine kinase, CA54 human collagen a5(IV) chain
precursor, FA9 human coagulation factor IX precursor, GLCM human b-
glucocerebrosidase, HBA haemoglobin a chain, LDLR human low-density
lipoprotein receptor, PH4H human phenylalanine hydroxylase protein, VHL
Von Hippel-Lindau disease tumor suppressor, RUN1 human acute myeloid
leukemia 1 protein, ADHA human alcohol dehydrogenase a-chain, CTGF
human connective tissue growth factor, GSHR human glutathione reductase,
AOFB human monoamine oxidase B, LIS1 human platelet-activating factor
acetylhydrolase a-subunit, TNFA human tumor necrosis factor, TYRO hu-
man tyrosinase, ATTY human tyrosine aminotransferase, AMPC_ CITFR
Citrobacter Freundii b-lactamase, DOPO human dopamine b-hydroxylase, I
percent of unpredictable portion of present types, II percent of unpredictable
portion of present frequencies, III percent of unpredictable present types
whose actual values are smaller than predicted values, IV percent of
unpredictable present frequencies whose actual values are smaller than
predicted values, V difference between actual and predicted values in
unpredictably present types whose actual values are smaller than predicted
values, VI difference between actual and predicted values in unpredictably
present frequencies whose actual values are smaller than predicted values,
VII difference between actual and predicted values in unpredictably present
types whose actual values are larger than predicted values, VIII difference
between actual and predicted values in unpredictably present frequencies
whose actual values are larger than predicted values, IX number of muta-
tions
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the future, while our approach can predict the likelihood
of future mutations. Technically, multiple sequence
alignments need a large database for searching, while
our approach needs a few data but a large amount of
calculations. In general, multiple sequence alignments
are the first step for the understanding of proteins,
DNA, etc., and science must advance to seek other new
techniques for the understanding of proteins, DNA, etc.
However, our approach at this moment is only related to
the primary structure, therefore it cannot give informa-
tion on loop regions, as multiple sequence alignments
also cannot. With respect to the evolutionary pressure,
our approach is using the randomly unpredictable por-
tion to account, as we argue that the randomly unpre-
dictable portion should be deliberately developed
through the evolutionary process. This is so because
randomness suggests the least time- and energy-con-
suming to construct proteins.

In conclusion, our results suggest that the spike gly-
coproteins are more vulnerable to mutations among
coronavirus proteins, however the chance of occurring
of mutations would be less in spike glycoproteins than in
highly-frequently-mutated proteins, e.g. the human p53
protein.
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