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Abstract Vestibular function was established early in vertebrates and has remained, for the

most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary

processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved,

divergent and convergent features that define extant auditory systems. The vestibuloacoustic

nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal

framework on which to address the participation of developmental processes to the evolution of

neuronal circuits. We employed an electroporation strategy to unravel the contribution of two

dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and

auditory nuclei. We compare the chick developmental map with recently established genetic fate-

maps of the developing mouse hindbrain. Overall, we find considerable conservation of

developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the

developmental origin of hindbrain auditory structures echoes the complex evolutionary history of

the auditory system. In particular, we find that the developmental origin of the chick auditory

interaural time difference circuit supports its emergence from an ancient vestibular network,

unrelated to the analogous mammalian counterpart.

DOI: https://doi.org/10.7554/eLife.40232.001

Introduction
The colonisation of land by tetrapods led to a series of independent solutions to the problem of

adapting sensory systems from water to air. In particular, the auditory apparatus was modified sev-

eral times through a mixture of alteration of ancestral structures and de novo innovations

(Chagnaud et al., 2017; Fritzsch and Elliott, 2017; Fritzsch and Straka, 2014; Grothe and Pecka,

2014; Manley, 2000; Manley, 2017). These changes also required the evolution of associated neu-

ral processing networks in the hindbrain. Each extant neural circuit is therefore an elaboration of the

remarkably conserved brainstem groundplan (Nieuwenhuys, 2011) and has been resourced from a

repertoire of neural lineages that depicts an ancestral rhombomeric arrangement (Philippidou and

Dasen, 2013; Wullimann et al., 2011).

The interplay between ancestral and de novo responses to changing environmental context is

readily apparent when comparing the auditory and vestibular systems, which have interrelated devel-

opmental and evolutionary histories (Duncan and Fritzsch, 2012; Fritzsch and Straka, 2014;

Manley et al., 2004). Both systems process mechanical stimuli and share an ancestral receptor cell

type (the hair cells), which sit in specialised sensory epithelia located in the inner ear and develop

from the same ectodermal thickening, the otic placode (Fritzsch and Elliott, 2017; Fritzsch and

Straka, 2014; Whitfield, 2015). Vestibular sensory input has remained mostly unchanged and, cor-

respondingly, vestibular peripheral organs, hindbrain vestibular nuclei and their projection patterns

are highly conserved across vertebrates (Straka and Baker, 2013; Straka et al., 2014). All
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vertebrates possess a conserved set of vestibular sensory epithelia that project, via the eighth nerve,

to a conserved set of hindbrain vestibular structures: superior, lateral (or Deiters), medial and

descending (inferior or spinal) vestibular nuclei (Figure 1A).

In contrast, the transition from an aquatic to a land environment brought about a marked trans-

formation of the auditory scene and led to various specialisations for the detection of airborne sound

(Carr and Christensen-Dalsgaard, 2016; Carr and Soares, 2002; Clack, 2015; Fritzsch and Straka,

2014; Grothe et al., 2004; Grothe and Pecka, 2014; Manley, 2000; Manley, 2017). Paleontologi-

cal, morphological, functional and behavioural evidence suggests that a number of auditory periph-

eral and central innovations emerged separately in the different clades of land vertebrates

(Grothe and Pecka, 2014; Manley, 2000; Manley, 2017; Manley et al., 2004). Most striking

amongst them is the independent emergence during the Triassic period, more than 100 million years

after the separation of the tetrapod lineages, of at least five variants of a tympanic middle ear, which

operates as an impedance matching device for the efficient detection of airborne sounds

(Anthwal et al., 2013; Carr and Christensen-Dalsgaard, 2016; Clack, 2015; Kitazawa et al., 2015;

Manley, 2000; Tucker, 2017). This was accompanied by the independent elongation of the auditory

sensory epithelia, a parallel diversification of hair cell types and concomitant elaborations of hair cell

based sound amplification mechanisms, ultimately leading to fine tuning of sound detection and

expansions of the hearing range to higher frequencies in several amniote clades (Dallos, 2008; Hud-

speth, 2008; Köppl, 2011; Manley, 2000; Manley, 2017).

Alongside the independent emergence of middle and inner ear innovations, amniotes have devel-

oped neural mechanisms for processing sound stimulus of increasing frequency with increasing accu-

racy. As a result, the complement of brainstem auditory nuclei, the central targets of the auditory

Figure 1. Vestibular and auditory brainstem nuclei of mammals and birds. (A) Schematic diagrams of hindbrain coronal sections showing the four main

vestibular nuclei of vertebrates that receive direct input form the VIIIth (vestibular) nerve. VeS, Superior Vestibular Nucleus; LVN, Lateral Vestibular

Nucleus (Deiter’s Nucleus); VeM, Medial Vestibular Nucleus; VeD, Descending Vestibular Nucleus (Spinal or Inferior Vestibular Nucleus). D, dorsal; V,

ventral; M, medial; L, lateral. (B-C) Schematic diagrams of hindbrain coronal sections depicting the mammalian (B) and avian (C) hindbrain first order

auditory nuclei that receive direct input from the VIIIth (auditory) nerve and the main second order nuclei to which they project. DCN, Dorsal Cochlear

Nucleus; VCN, Ventral Cochlear Nucleus; LSO, Lateral Superior Olive; MSO, Medial Superior Olive; MNTB, Medial Nucleus of the Trapezoid Body;

LNTB, Lateral Nucleus of the Trapezoid Body; NA, Nucleus Angularis; NM, Nucleus Magnocellularis; NL, Nucleus Laminaris; SON, Superior Olivary

Nucleus. (D-E) Schematic representation of the main connections of the mammalian (D) and avian (E) ITD circuits. Insets. Close-up view of the

coincidence detection neurons showing the arrangement of ipsilateral and contralateral connections. Bilateral projection neurons, red and green.

Coincidence detection neurons, magenta. Inhibitory neurons, cyan. Auditory nerve inputs and inhibitory connections are drawn only on the right side

for simplicity.

DOI: https://doi.org/10.7554/eLife.40232.002
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branch of the eighth nerve, varies greatly between clades and no true homologies could be estab-

lished between them thus far (Carr and Christensen-Dalsgaard, 2016; Grothe et al., 2004;

Nothwang, 2016). Mammals (the first clade to split from the ancestral amniote branch) possess two

first order auditory nuclei, the ventral and dorsal cochlear nuclei. These project to second order

hindbrain nuclei: lateral and medial superior olive and lateral and medial nucleus of the trapezoid

body, as well as to other brainstem and higher order targets (Carr and Soares, 2002; Grothe et al.,

2004) (Figure 1B). In diapsids (reptiles and birds), two first order nuclei receive auditory nerve affer-

ents: the nucleus angularis and nucleus magnocellularis. These project as well to second order hind-

brain nuclei (superior olivary nucleus and nucleus laminaris) and higher order structures (Carr and

Soares, 2002; Grothe et al., 2004) (Figure 1C).

Notwithstanding the presence of such divergent arrays of hindbrain auditory structures, both

mammals and archosaurs (birds and crocodilians) have developed mechanisms for sound source

localisation based on hindbrain neural processing circuits. Functional analogies and convergent evo-

lution have been proposed for some sub-circuits (Carr and Christensen-Dalsgaard, 2016; Carr and

Soares, 2002; Grothe et al., 2010). An example is the interaural time difference (ITD) circuit that

compares the difference in time of arrival of sound to each ear to determine the location of the

sound source in the horizontal plane. In both mammals and archosaurs the overall organisation of

the circuit is similar, with bilaterally projecting first order neurons that converge in coincidence

detection neurons that are, in turn, modulated by inhibitory input (Figure 1D,E). However, a number

of circuit features reveal that the functional analogy is only superficial and indicate that the ITD cir-

cuits are an example of convergent evolution (Carr and Christensen-Dalsgaard, 2016; Carr and

Soares, 2002; Grothe et al., 2004; Grothe and Pecka, 2014; Grothe et al., 2010). Although coinci-

dence detection neurons are present in both groups, only the avian connectivity resembles a Jeffres

model circuit (Jeffress, 1948) (Figure 1E), with axonal delay lines that contact coincidence detection

neurons arranged as a place code (Ashida and Carr, 2011; Grothe et al., 2010). Such a wiring pat-

tern is not present in mammals (Grothe et al., 2010; Karino et al., 2011) (Figure 1D), and the ITD

coding strategies differ between the two clades (Grothe and Pecka, 2014; Grothe et al., 2010).

Moreover, inhibitory modulation plays different roles in avian and mammalian ITD circuits

(Grothe, 2003; Grothe and Pecka, 2014).

The notable disparity between the highly conserved vestibular hindbrain and the independently

elaborated auditory hindbrain provides a framework on which to interrogate the contribution of

developmental processes to the evolution of neuronal circuits, given that both systems are derived

from the ancestral octavolateral column. In particular, to what extent are the respective ITD circuits

de novo innovations for processing sound localisation, or a convergent assemblage based on a simi-

lar repertoire of ancestral neurons?

To answer these questions, we perform a comparative analysis of the developmental origin of

vestibular and hindbrain nuclei. We have exploited recent advances in genetic fate-mapping in chick

embryos (Green and Wingate, 2014; Kohl et al., 2012) to compare the origins of avian vestibular

and auditory neurons with that recently characterised in mouse (Di Bonito et al., 2013; Di Bonito

et al., 2017; Farago et al., 2006; Fujiyama et al., 2009; Marrs and Spirou, 2012;

Pasqualetti et al., 2007; Yamada et al., 2007). Specifically we have studied the rhombic lip lineage,

characterised by a progenitor pool expressing Atoh1 (Ben-Arie et al., 2000; Machold and Fishell,

2005; Rose et al., 2009; Wang et al., 2005), and a ventricular zone lineage whose precursors

express Ptf1a (Meredith et al., 2009; Yamada et al., 2007). These two lineages collectively define

the majority of the auditory circuit in mouse, including all first order auditory neurons

(Fujiyama et al., 2009). To underpin the Atoh1 and Ptf1a lineage contributions to avian hindbrain

vestibular and auditory nuclei we performed an electroporation-based fate-mapping in chick

embryos, using enhancer driven reporter constructs. Additionally, we traced their axial origin

through the electroporation of reporter constructs driven by enhancer elements from Egr2 (Krox20),

Hoxb1, Hoxa3 and Hoxd4.

Our results lend strong support to the hypothesis that vestibular nuclei are developmentally

homologous in chick and mouse to a fine level of detail, reflecting the ancestral origin and conserva-

tion of these hindbrain structures. By contrast, auditory nuclei show a mixture of conserved and

divergent developmental origin. In particular, functionally analogous circuit components in the ITD

circuit of the chick and mouse have different lineage contributions supporting a long-held hypothesis

that they represent an example of evolutionary convergence.
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Results
In order to determine the developmental origin of hindbrain auditory and vestibular nuclei, we per-

formed in ovo electroporation of chick embryos at stages 12 to 14 (Figure 2A) with two contrasting

sets of conditional reporter constructs. First, we used enhancer elements from the bHLH transcrip-

tion factors Atoh1 (Helms et al., 2000; Kohl et al., 2012) and Ptf1a (Meredith et al., 2009), which

are expressed in distinct dorsoventrally located neuronal progenitors (Figure 2B). Electroporation

with Atoh1-Cre + Flox-pA-GFP + CAGGS-mCherry (Figure 2C) or Ptf1a-Cre + PBase + Pb-Flox-pA-

GFP + CAGGS-mCherry (Figure 2D) resulted in broad expression of mCherry and specific GFP

labelling of cells located at the Atoh1+ rhombic lip or more ventrally located stripes of Ptf1a+ pro-

genitors, respectively. The expression of Atoh1 and Ptf1a revealed by in situ hybridisation

(Figure 2B) was faithfully recapitulated by the enhancer-driven GFP expression from the reporter

constructs (Figure 2C,D). Second, we used enhancer elements from four transcription factors whose

expression maps onto segmental boundaries of the early, rhombomeric hindbrain: Egr2 (Krox20),

Hoxb1, Hoxa3 and Hoxd4. The expression pattern of the segmental markers was recapitulated by

the reporter constructs employed. An Egr2 enhancer element directed GFP expression to r3 and r5

(Chomette et al., 2006); a Hoxb1 enhancer element directed GFP expression to r4 (Ferretti et al.,

2005); a Hoxa3 enhancer element directed GFP expression to r5 and r6 (Manzanares et al., 2001)

and finally a Hoxd4 enhancer element directed GFP expression caudal to the r6/r7 boundary

(Morrison et al., 1997) (Figure 2E).

To achieve a comprehensive anatomical identification of hindbrain structures, electroporated

embryos were incubated to embryonic day 10 (E10) and the distribution of cells within hindbrain

nuclei assessed in coronal cryosections. All structures were identified based on the fluorescent signal

from the electroporated constructs, nuclear counterstaining and in reference to Nissl stained sec-

tions of equivalent orientation and stage (Figure 3A). Fluorescent label was contrasted to Nissl

derived templates (Figure 3B) to identify nuclear boundaries on the basis of cytoarchitecture.

Ptf1a and Atoh1 lineages contribute distinct neuronal populations to
hindbrain vestibular nuclei
The vestibular nuclear complex extends rostro-caudally along the entire dorsal hindbrain. Six vestib-

ular nuclei are commonly recognised in birds: superior, Deiters dorsal, Deiters ventral, tangential,

medial and descending (Wold, 1976). Vestibular neuronal groups are also defined in terms of a rep-

ertoire of projection patterns (such as vestibulo-ocular, vestibulo-spinal and vestibulo-cerebellar) that

are common to all vertebrates (Pasqualetti et al., 2007; Straka and Baker, 2013; Straka et al.,

2002). However, neurons projecting to different targets are usually intermingled within a given

nucleus or span more than one nucleus (Büttner-Ennever, 1992; Daz and Puelles, 2003; Di Bonito

et al., 2015; Pétursdóttir, 1990). Accordingly, the different vestibular nuclei are comprised of highly

heterogeneous neuronal populations. With the exception of the tangential nucleus, all the vestibular

nuclei in birds have a homologous counterpart in vertebrates (Straka and Baker, 2013).

The Superior Vestibular Nucleus (VeS) is the most rostral of the vestibular nuclei and has a hetero-

geneous complement of cells (Wold, 1976). Electroporation with Atoh1-Cre + Flox-pA-GFP (Atoh1::

GFP) resulted in scattered labelling of cells in the VeS, with diverse morphology (Figure 4A). Electro-

poration with Egr2-Cre + PBase + Pb-Flox-pA-GFP (Egr2::GFP) also labelled diverse VeS neurons

(Figure 4B) that are most likely derived exclusively from r3, as r5-derived territory lies considerably

caudal to the nucleus, with no labelled cells found in the intervening, presumably r4 derived, terri-

tory. Upon electroporation with Hoxb1-Cre + PBase + Pb-Flox-pA-GFP (Hoxb1::GFP), we observed

a small number of isolated Hoxb1+ cells in the VeS (Figure 4C - arrowheads). The rhombic lip and

axial origin of VeS cells is summarised in Figure 4D.

The morphologically distinct Nucleus Deiters Ventralis (Dv) and Nucleus Deiters Dorsalis (Dd) are

characterised by the presence of giant cells, amidst a collection of smaller cells of diverse morpholo-

gies (Wold, 1976). Electroporation with Atoh1::GFP resulted in abundant labelling of cells in the Dd

and more scattered labelling in the Dv (Figure 4E). Giant, oval cells of the Dd were not observed

labelled with Atoh1::GFP, while a single giant multipolar Dv cell was labelled with Atoh1::GFP in

only one occasion, in contrast with more frequent labelling of smaller cells (Figure 4F). Electropora-

tion with Ptf1a-Cre + PBase + Pb-Flox-pA-GFP (Ptf1a::GFP) also resulted in abundant labelling of

cells in the Dd and Dv (Figure 4G), including numerous small cells (Figure 4H – top panel,
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Figure 2. Fate mapping the developmental origin of hindbrain auditory and vestibular nuclei. (A) Diagram of the

electroporation strategy. (B) Representative flatmount view of a HH21 chick hindbrain stained by in situ

hybridisation for Atoh1 (red) and Ptf1a (blue). (C-D) Top panels. Plasmid constructs employed for labelling Atoh1+

(C) and Ptf1a+ (D) progenitors. Bottom panels. Representative close up flatmount image of HH17 chick hindbrains,

electroporated at HH14 with Atoh1-Cre + CAG-Flox-pA-GFP + CAG-mCherry (C) or Ptf1a-Cre + CAG-PBase + Pb-

CAG-Flox-pA-GFP + CAG-mCherry (D). Scale bar: 50 mm. (E) Top panels. Plasmid constructs employed for

labelling cells arising from specific rhombomeres. Bottom panels. Representative close up flatmount images of

HH17 (HH28 for Hoxd4) chick hindbrains, electroporated at HH14 with CAG-PBase +Pb-CAG-Flox-pA-

Figure 2 continued on next page
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arrowheads), that showed a different morphology to the characteristic Dd giant oval cells

(Figure 4H – top panel, asterisks), and medium/small size cells in the Dv (Figure 4H – bottom panel,

arrowheads).

Axial markers allocated the origin of the Deiters nuclei to the middle hindbrain rhombomeres.

Electroporation with Egr2::GFP resulted in scattered labelling of Dd (Figure 4I – left panel) and Dv

(Figure 4I – right panel) cells, none of which showed morphological features of giant cells. Electro-

poration with Hoxb1:: GFP also resulted in labelling of cells in the Dd and Dv, showing a wider range

of morphologies, including giant oval cells in the Dd (Figure 4J – left panel) and giant multipolar

cells in the Dv (Figure 4J – right panel). In summary, both Atoh1 and Ptf1a progenitors from r3-r5

gave rise to cells in the dorsal and ventral Deiter’s nuclei (Figure 4D). The distinct giant cells

appeared to originate from r4 progenitors that may not correspond to either Atoh1+ or Ptf1a+

lineages.

The Nucleus Tangentialis (Ta) is composed of elongated cells that are located tangential to the

incoming VIIIth nerve fibres (Wold, 1976). Electroporation with Atoh1::GFP did not label cells in the

Ta (Figure 4K), while Ptf1a::GFP labelling showed only scattered small cells in the Ta territory, none

of which corresponded to the characteristic elongated Ta cells (Figure 4L). The latter were labelled

by electroporation with Egr2::GFP (Figure 4M), Hoxb1::GFP (Figure 4N) and Hoxa3-Cre + PBase +

Pb-Flox-pA-GFP (Hoxa3::GFP) (Figure 4O), indicating they may derive from Atoh1-/Ptf1a-negative

precursors from r4-r6 (Figure 4D).

The Medial Vestibular Nucleus (VeM) is located beneath the ventricular surface and closely associ-

ated with the auditory NM. Contralaterally projecting NM axons divide the VeM into dorsomedial

and ventrolateral parts (Figure 5A). Electroporations with Atoh1::GFP showed scattered labelling of

VeM cells (Figure 5A and inset), including neurons embedded within the NM fibre tract (Figure 5A

– arrow). Electroporation with Ptf1a::GFP revealed abundant Ptf1a derived neurons in both parts of

the nucleus (Figure 5B). The VeM has the longest rostrocaudal extent of all the vestibular nuclei

(Wold, 1976). Egr2::GFP electroporations labelled numerous cells in the rostral VeM (Figure 5C- left

panel), and only scattered cells more caudally, at the level adjacent to the rostral NM (Figure 5C –

right panel, arrowheads). VeM cells at this axial level were also labelled via electroporation with

Hoxb1 (Figure 5D) and Hoxa3 (Figure 5E) reporter constructs, whilst the middle and caudal VeM

was mainly labelled by Hoxd4-Cre + PBase + Pb-Flox-pA-GFP (Hoxd4::GFP) electroporations

(Figure 5F). In summary, VeM cells were observed originating from Atoh1+ and Ptf1a+ progenitors

spanning from r3 to axial levels caudal to r7 (Figure 5G).

The Descending Vestibular Nucleus (VeD) extends rostrocaudally from the level of the VIIIth nerve

root to the caudal end of the hindbrain (Wold, 1976). Electroporation with Atoh1::GFP resulted in

profuse labelling of neurons in the caudal VeD (Figure 5H) and more scattered cell labelling in the

rostral portion of the nucleus, through which NL axons course into the ventral hindbrain and SON

axons reach the NL (Lachica et al., 1994; Takahashi and Konishi, 1988) (Figure 5I). Electropora-

tions with Ptf1a::GFP resulted in labelling of small cells throughout the VeD (Figure 5J). The rostral

portion of the VeD showed cells labelled via electroporation with Egr2::GFP (Figure 5K) and

Hoxa3::GFP (Figure 5L). In turn, the middle and caudal portions of the VeD were labelled by electro-

poration with Hoxd4::GFP (Figure 5M). Finally, electroporations with Hoxb1::GFP labelled scattered

cells in the rostral VeD (Figure 5N), which may have migrated caudally from r4. In summary, our

characterisation of the VeD showed cells arising from both Atoh1 and Ptf1a progenitors that span r4

to levels caudal to r7 (Figure 5G).

Avian hindbrain first order auditory nuclei are defined by axially distinct
pools of Atoh1 and Ptf1a precursors
In birds, primary auditory afferents synapse at the Nucleus Magnocellularis (NM) and Nucleus Angu-

laris (NA) (Ryugo and Parks, 2003). NM neurons, characterised by their bifurcating ipsilateral and

Figure 2 continued

GFP + CAG-mCherry and Egr2-Cre, Hoxb1-Cre, Hoxa3-Cre or Hoxd4-Cre, from left to right, respectively. Dotted

lines outline the lateral border and the ventral midline. Scale bar: 100 mm.

DOI: https://doi.org/10.7554/eLife.40232.003
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Figure 3. Anatomy of hindbrain auditory and vestibular nuclei. (A) Representative images of coronal sections of Nissl stained E10 chick hindbrain (left

panels) and diagrams (right panels), showing the outlines of hindbrain nuclei. From left to right and top to bottom: rostral to caudal. Scale bars: 50 mm.

All drawings are to scale. B, Cell group B; Cbl, Nucleus Cerebellaris Internus; CE, Nucleus Cuneatus Externus; Dd, Nucleus Deiters Dorsalis; Dv,

Nucleus Deiters Ventralis; IO, Inferior Olive Nucleus; NA, Nucleus Angularis; nIX, Glossopharyngeal Nucleus; nIX-X, Glossopharyngei and Vagus

Nucleus; NL, Nucleus Laminaris; NM, Nucleus Magnocellularis; nVI, Abducens Nucleus; PL, Lateral Pontine Nucleus; PM, Medial Pontine Nucleus; RST,

Reticular Subtrigeminal Nucleus; S, Solitaris Nucleus; SON, Superior Olivary Nucleus; Ta, Tangential Nucleus; TDV, Descending Trigeminal Nucleus; TS,

Torus Semicircularis; VeD, Descending Vestibular Nucleus; VeM, Medial Vestibular Nucleus; VeS, Superior Vestibular Nucleus. (B) Example of a nucleus

identification by combining information from Nissl stained sections (top left), fluorescent protein expression and nuclear staining (top right) and

anatomical reference atlases (bottom left, modified from (Kuenzel and Masson, 1988; Wold, 1976)).

DOI: https://doi.org/10.7554/eLife.40232.004
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contralateral projections, are labelled by electroporation with Atoh1::GFP (Figure 6A). Ipsilateral

axonal projections from NM neurons were observed surrounding the lateral border of the NM on

their way towards the Nucleus Laminaris (NL) and terminating on its dorsal region (Figure 6B). At

the contralateral (non-electroporated) side, NM axons were observed contacting the ventral side of

NL neurons (Figure 6C). At its caudal end, the border between NM and the Descending Vestibular

Nucleus (VeD) is difficult to distinguish (Figure 6D). No Ptf1a labelled neurons were found within the

NM upon electroporation with Ptf1a::GFP (Figure 6E).

Electroporation with Egr2::GFP (Figure 6F) and Hoxa3::GFP (Figure 6G) resulted in scattered

labelling of NM cells, arising from r5 and r6. Electroporation with Hoxb1::GFP labelled cells in the

NM area, but not Atoh1+ NM neurons, labelled with Atoh1-Gal4 + UAS-tdT (Atoh1::tdT)

Figure 4. Developmental origin of avian Superior, Deiters and Tangential vestibular nuclei. (A) Close up view of the VeS from an E10 chick hindbrain

coronal section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Solid lines, hindbrain borders. Dotted lines, VeS borders. Scale bar: 100

mm. (B-C) Close up view of the VeS from an E10 chick hindbrain coronal section electroporated at HH14 with Egr2::GFP (B) or Hoxb1::GFP (C). Scale

bars: 100 mm. (D) Diagrams summarising the contributions of Atoh1+/Ptf1a+ progenitors (left panel) or different rhombomeres (right panel) to the

superior, deiters and tangential vestibular nuclei. Scale bars: 50 mm. (E) Close up view of the Dd and Dv from an E10 chick hindbrain coronal section

electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Solid lines, hindbrain borders. Dotted lines, Dd and Dv borders. Scale bar: 100 mm. (F)

Detailed view of Atoh1+ cells in the Dd (top panel) and the Dv (bottom panel). Scale bars: 100 mm. (G) Close up view of the Dd and Dv from an E10

chick hindbrain coronal section electroporated at HH14 with Ptf1a::GFP and CAG-mCherry. Solid line, hindbrain borders. Dotted lines, Dd and Dv

borders. Scale bar: 50 mm. (H) Detailed view of Ptf1a+ cells in the Dd (top panel) and the Dv (bottom panel). Scale bars: 50 mm. (I-J) Detailed view of

Egr2+ (I) and Hoxb1+ (J) cells in the Dd (left panel) and the Dv (right panel). Scale bars: 50 mm. (K) Close up view of the Ta from an E10 chick hindbrain

coronal section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Solid lines, hindbrain borders. Dotted line, Ta borders. Scale bar: 100 mm.

(L) Close up view of the Ta from an E10 chick hindbrain coronal section electroporated at HH14 with Ptf1a::GFP and CAG-mCherry. Scale bar: 100 mm.

(M-O) Detailed view of Egr2+ (M), Hoxb1+ (N), Hoxa3+ (O) cells in the Ta. Scale bars: 50, 100 and 100 mm, respectively.

DOI: https://doi.org/10.7554/eLife.40232.005
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(Figure 6H). Finally, electroporation with Hoxd4::GFP resulted in abundant labelling of NM cells

(Figure 6I). This caudal rhombic lip origin of NM cells was confirmed via a transectional labelling

strategy, wherein electroporation with Hoxd4-Cre + Atoh1-FLPo + Flox/FRT-Flox-pA-GFP + CAG-

mCherry resulted in GFP expression after double Cre/FLp recombination driven by Hoxd4 and

Atoh1 enhancer elements (Figure 6J). The rhombic lip and axial origin of NM cells is summarised in

Figure 6K.

The Nucleus Angularis (NA) is composed of at least four morphologically and electrophysiologi-

cally distinct neuronal types: radial, vertical, stubby and planar cells (Soares and Carr, 2001;

Figure 5. Developmental origin of avian Medial and Descending vestibular nuclei. (A) Close up view of the VeM from an E10 chick hindbrain coronal

section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Scale bar: 100 mm. Inset: detailed view of VeM Atoh1+ cells. Solid line, hindbrain

border. Dotted lines, VeM borders. Scale bar: 50 mm. (B) Close up view of the VeM from an E10 chick hindbrain coronal section electroporated at HH14

with Ptf1a::GFP and CAG-mCherry. Solid line, hindbrain border. Dotted lines, VeM borders. Scale bar: 100 mm. (C-F) Close up view of the VeM from E10

chick hindbrain coronal sections electroporated at HH14 with Atoh1-Gal4 + UAStdT and Egr2::GFP (C. left panel, rostral. Right panel, caudal), Hoxb1::

GFP (D), Hoxa3::GFP (E) or Hoxd4::GFP (F left panel, rostral. Right panel, caudal). Scale bars: 50 mm. (G) Diagrams summarising the contributions of

Atoh1+/Ptf1a+ progenitors (left panel) or different rhombomeres (right panel) to the medial and descending vestibular nuclei. Scale bars: 50 mm.

(H) Close up view of the VeD from an E10 chick hindbrain coronal section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Scale bar: 100

mm. (I) Detailed view of Atoh1+ cells in the rostral VeD. Solid lines, hindbrain border. Dotted line, VeD border. Scale bar: 50 um. (J) Close up view of the

VeD from an E10 chick hindbrain coronal section electroporated at HH14 with Ptf1a::GFP and CAG-mCherry. Dotted line, VeD border. Scale bar: 100

mm. (K-N) Close up view of the VeD from E10 chick hindbrain coronal sections electroporated at HH14 with Egr2::GFP (K), Hoxa3::GFP (L), Hoxd4::GFP

(M) or Hoxb1::GFP (N). Solid lines, hindbrain border (M). Dotted lines, NL borders (K, L and N), NM and VeD borders (M). Scale bars: 50 mm.

DOI: https://doi.org/10.7554/eLife.40232.006
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Figure 6. Developmental origin of chick first order hindbrain auditory nuclei. (A) Representative image of an E10 chick hindbrain coronal section

electroporated at HH14 with Atoh1-Cre + CAG-Flox-pA-GFP (Atoh1::GFP) and CAG-mCherry. Scale bar: 100 mm. (B) Close up view of the NM from a

section caudal to the one shown in A. Solid line, hindbrain border. Scale bar: 50 mm. (C) Close up view of Atoh1+ NM projections to the contralateral

NL. Scale bar: 50 mm. (D) Close up view of the caudal NM showing a diffuse boundary with the VeD. Dotted line shows NM border. Arrows show VeD

projections that join the contralateral NM axons. Scale bar: 50 mm. (E) Close up view of the NM from an E10 chick hindbrain coronal section

electroporated at HH14 with Ptf1a-Cre, PBase, Pb-CAG-Flox-pA-GFP (Ptf1a::GFP) and CAG-mCherry. Dotted line shows NM border. Scale bar: 50 mm.

(F-I) Close up view of the NM from E10 chick hindbrain coronal sections electroporated at HH14 with CAG-PBase + Pb-CAG-Flox-pA-GFP + Atoh1-

Gal4 + UAS-tdT (Atoh1::tdT) and Egr2-Cre (F), Hoxa3-Cre (G), Hoxb1-Cre (H) or Hoxd4-Cre (I). Scale bars: 50 mm. Arrows point to Egr2+/Atoh1+ (F),

Hoxa3+/Atoh1+ (G) and Hoxd4+/Atoh1+ (I) cells. (J) Close up view of the NM from an E10 chick hindbrain coronal section electroporated at HH14 with

Hoxd4-Cre + Atoh1-FLPo + CAG-Flox-FLp-pA-GFP + CAG-mCherry. Dotted line shows NM border. Scale bar: 50 mm. (K) Diagrams summarising the

contributions of Atoh1+/Ptf1a+ progenitors (left panel) or different rhombomeres (right panel) to the first order auditory nuclei. Scale bars: 50 mm. (L)

Close up view of the NA from an E10 chick hindbrain coronal section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Solid lines, hindbrain

borders. Scale bar: 50 mm. (M) Close up views of representative vertical (top-left panel), planar (top-right panel) and radial (bottom panel) NA Atoh1+

cells. Scale bars: 25 mm. (N) Close up view of representative stubby NA Ptf1a+ cells. Scale bar: 20 mm. (O) Close up views of representative vertical, (left

panel), planar (middle panel) and radial (right panel) NA Egr2+ cells. Scale bars: 20 mm. (P) Close up views of representative vertical and stubby, (left

panel), planar (middle panel) and radial (right panel) NA Hoxb1+ cells. Scale bars: 20 mm.

DOI: https://doi.org/10.7554/eLife.40232.007
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Soares et al., 2002). Electroporation with Atoh1::GFP resulted in extensive labelling of NA neurons

(Figure 6L), that showed morphologies indicative of radial, vertical and planar cells (Figure 6M).

Electroporation with Ptf1a::GFP resulted in more scattered labelling of the NA. Ptf1a+ NA cells had

the distinctive spiny morphology of stubby cells (Figure 6N). Planar, radial and vertical cells (likely

Atoh1), but not stubby (likely Ptf1a) cells, were labelled following electroporation with Egr2::GFP

(Figure 6O). By contrast, all four cell types were labelled by Hoxb1::GFP electroporations

(Figure 6P). This suggests that, while Atoh1+ NA cells derived from r3, r4 and r5 (and this may

include vertical, planar and radial morphological types), only r4 Ptf1a+ progenitors gave rise to NA

stubby cells (Figure 4K).

In summary, we observed that the Atoh1 and Ptf1a electroporations labelled all the described

cell types in the avian first order hindbrain auditory nuclei. While the axial origin of NA cells was

located towards the more rostral rhombomeres, NM cells were observed arising from the caudal

rhombic lip (Figure 6K).

The Atoh1 positive rhombic lip is a main source of avian hindbrain
second order auditory neurons
In chick, the Nucleus Laminaris (NL) and Superior Olivary Nucleus (SON) comprise the hindbrain sec-

ond order neuronal populations. They receive input from the NA and NM and are involved in the

processing of monaural and binaural auditory cues (Carr and Soares, 2002). The NL sits ventral to

the NM and is composed of neurons aligned on a plane along the mediolateral axis. Electroporation

with Atoh1::GFP resulted in strong labelling of NL neurons (Figure 7A) that reveals their characteris-

tic bipolar dendritic morphology (Figure 7A - inset), with segregated dorsal and ventral dendrites.

Electroporations with Egr2::GFP resulted in the two distinct bands of GFP expression correspond-

ing to r3 and r5. Cells of the NL were observed in the caudal band of GFP expression (Figure 7B)

suggesting they originated from progenitors in r5, but not r3. NL cells were also labelled by electro-

poration with Hoxb1::GFP (Figure 7C) and Hoxa3::GFP (Figure 7D), indicating NL neurons derived

from r4-r6 progenitors as summarised in Figure 7E. No Ptf1a labelled neurons were found within

the NL.

The SON is located in the ventrolateral hindbrain (Figures 3 and 7F). Electroporation with

Atoh1::GFP resulted in extensive labelling of SON neurons (Figure 7F). By contrast, electroporation

with Ptf1a::GFP only occasionally labelled one or two small cells in the nucleus (Figure 7G -

arrowhead).

Electroporation with Egr2::GFP resulted in extensive labelling of SON neurons (Figure 7H). Co-

labelling with Egr2::GFP and Atoh1::tdT showed both Egr2+/Atoh1- and Egr2-/Atoh1+ cells, as well

as many double labelled Egr2+/Atoh1+ cells (Figure 7I). This suggested that, within r5, Atoh1+ pro-

genitors are not the exclusive source of SON neurons. In addition, electroporation with Hoxb1::GFP

(Figure 7J) and Hoxa3::GFP (Figure 7K) labelled scattered cells in the SON, suggesting a small con-

tribution from both r4 and r6 to the predominantly r5 derived SON (Figure 7E).

In summary, both second order auditory nuclei originated from mid-hindbrain progenitors,

namely, r4 to r6. The NL, composed of only one cell type, was labelled by Atoh1 electroporation,

indicating that it is derived from rhombic lip progenitors. In contrast, the SON is a more heteroge-

neous nucleus. Accordingly, we observed cells that originated from both Atoh1+ and Atoh1- progen-

itors. While the latter may include cells of Ptf1a origin, these most likely originated from other

progenitor populations.

Discussion
In this study, we have mapped the rhombic lip/Atoh1, ventricular zone/Ptf1a and axial origin of chick

hindbrain vestibular and auditory nuclei. This shows, for the first time, the origins of both systems by

rhombomeric identity and specific dorsoventral lineage. Our data give a solid framework by which

to assess divergence and convergence within hindbrain functional circuits in birds and mammals. We

evaluate the contribution of changes in hindbrain development to the evolution of neuronal circuits,

within the context of disparaging evolutionary histories of the different amniote vestibular and audi-

tory structures.
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Anatomical, morphological and developmental features indicate a high
degree of conservation of hindbrain vestibular nuclei across
vertebrates
Vestibular peripheral organs, hindbrain vestibular nuclei and their connectivity patterns are highly

conserved across vertebrates and clear evolutionary relationships can be established (Straka and

Baker, 2013). The axial developmental origin and location of vestibular neurons projecting to oculo-

motor, spinal cord, cerebellar and commissural targets are also conserved (Branoner et al., 2016;

Chagnaud et al., 2017; Malinvaud et al., 2010; Straka and Baker, 2013; Straka et al., 2014), how-

ever, a comparative analysis of the dorsoventral lineage of hindbrain vestibular neurons has been

lacking. Here, we show that in chick, cells derived from rhombic lip Atoh1+ progenitors were present

in the Superior, Deiters, Medial and Descending vestibular nuclei, while we observed no contribution

from this lineage to the avian exclusive Tangential nucleus (Figures 4 and 5). Moreover, we have

identified cells derived from Ptf1a+ progenitors in the Deiters, tangential, medial and descending

Figure 7. Developmental origin of avian second order hindbrain auditory nuclei. (A) Close up view of the NL from an E10 chick hindbrain coronal

section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Solid line, dorsal border of the hindbrain. Dotted line, NL border. Yellow dotted

square, approximate location of inset image. Scale bar: 50 mm. Inset: detailed view of Atoh1+ NL cells depicting bipolar morphology. Scale bar: 20 mm.

(B-D) Close up view of the NL from E10 chick hindbrain coronal sections electroporated at HH14 with Egr2::GFP (B), Hoxb1::GFP (C), Hoxa3::GFP (D)

and counterstained with NucRed. Dotted lines show NL borders. Scale bars: 50 mm. (E) Diagrams summarising the contributions of Atoh1+/Ptf1a+

progenitors (top panel) or different rhombomeres (bottom panel) to the second order auditory nuclei. Scale bars: 50 mm. (F) Close up view of the SON

from an E10 chick hindbrain coronal section electroporated at HH14 with Atoh1::GFP and CAG-mCherry. Solid lines, hindbrain borders. Dotted line,

SON border. Yellow dotted square, approximate location of inset image. Scale bar: 100 mm. Inset: detailed view of Atoh1+ SON. Scale bar: 50 mm. (G)

Close up view of the SON from an E10 chick hindbrain coronal section electroporated at HH14 with Ptf1a::GFP and CAG-mCherry. Dotted line shows

SON border. Scale bar: 100 mm. (H) Close up view of the SON from an E10 chick hindbrain coronal section electroporated at HH14 with Egr2::GFP and

counterstained with NucRed. Dotted line shows SON border. Scale bar: 50 mm. (I) Close up view of the SON from an E10 chick hindbrain coronal

section electroporated at HH14 with Egr2::GFP and Atoh1::tdT. Filled arrowheads show Egr2+/Atoh1+ cells; empty arrowheads show Egr2+/Atoh1- cells;

asterisks show Egr2-/Atoh1+ cells. Scale bar: 50 mm. (J-K. Close up view of the SON from E10 chick hindbrain coronal sections electroporated at HH14

with Hoxb1::GFP (J) or Hoxa3::GFP (K) and counterstained with NucRed. Dotted lines show SON borders. Scale bars: 50 mm.

DOI: https://doi.org/10.7554/eLife.40232.008
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vestibular nuclei (Figures 4 and 5). These results are similar to fate maps in mouse showing that

rhombic lip Atoh1+ progenitors contribute to the superior (Wang et al., 2005), lateral, medial and

spinal vestibular nuclei (Rose et al., 2009), while Ptf1a+ progenitors give rise to vestibular hindbrain

neurons, possibly located in all four nuclei (Yamada et al., 2007). Of note, Atoh1 and Ptf1a cells do

not account for the whole diversity of cell types, in either chick or mouse (Figure 8), and further

mapping efforts are required to fully characterise the genetic lineages that give rise to the myriad of

hindbrain vestibular neurons.

Our high resolution electroporation-based labelling allowed for a detailed characterisation of the

axial origin of vestibular neuronal types (Figure 8). The Nucleus Deiters Ventralis (Dv) and Nucleus

Deiters Dorsalis (Dd) of birds are homologous to the rostroventral and dorsocaudal part of the mam-

malian lateral vestibular nucleus, respectively (Passetto et al., 2008), which is mainly derived from r4

progenitors (Chen et al., 2012; Di Bonito et al., 2015), with additional contribution from r3 and r5

(Pasqualetti et al., 2007). Here, we observed a similar axial origin for both the Dv and Dd, with pro-

genitors allocated to r3, r4 and r5 (Figures 4I,J and 8). Moreover, Dv and Dd giant cells derived

from Hoxb1+ (r4) progenitors. These may constitute a homologous cell type to the r4 derived large

stellate cells of the murine lateral (and medial) vestibulospinal tract (Di Bonito et al., 2015;

Di Bonito et al., 2017). Finally, we observed a minor group of small r4 derived cells that integrate

into the VeS and VeM, invading r3 and r5 derived territories, respectively (Figures 4B and 5 D). A

similar group of cells has been described in mouse (Di Bonito et al., 2017) and shown to also

belong to the highly conserved vestibulospinal tract. Taken together, these observations support a

homologous axial and dorso-ventral origin for spinal cord projecting neurons from both species and

highlight the high degree of conservation in the detailed organisation of the ancestral vestibulospi-

nal tract (Straka and Baker, 2013).

Avian first order hindbrain auditory neurons may be related to
vertebrate ancestral vestibuloacoustic neurons
Our electroporation-based fate mapping showed neurons in the chick first order NA arising from

either Atoh1 or Ptf1a progenitors (Figures 6K–N and 8), thus sharing a developmental origin with

the neurons of the mammalian ventral cochlear nucleus (VCN) (Figure 8 and (Fujiyama et al.,

2009)). Moreover, both NA and VCN neurons share a common axial origin from rostral rhombo-

meres (Figures 6K,O–P and 8 and (Cramer et al., 2000; Di Bonito et al., 2013; Di Bonito et al.,

2017; Farago et al., 2006; Marı́n and Puelles, 1995)). This developmental conservation suggests

that anterior neurons of the ascending auditory pathway of amniotes may be homologous. Further-

more, first order NA neurons in birds/reptiles were proposed to be related to dorsal neurons of the

fish anterior octaval nucleus (Walton et al., 2017). These anteriorly derived neurons may thus com-

prise a developmentally conserved brainstem first order relay point for auditory (particle vibration)

information.

The first order NM occupies a major portion of the diapsid caudal/dorsal hindbrain. NM neurons

are derived from progenitors in the alar plate, the dorsal half of the neuroepithelium (Tan and Le

Douarin, 1991) of the caudal hindbrain (Cambronero and Puelles, 2000; Cramer et al., 2000;

Marı́n and Puelles, 1995). Our enhancer-based mapping confirmed this and further showed that

NM neurons originate exclusively from rhombic lip (Atoh1+) progenitors located caudal to r5

(Figures 6A–K and 8). In zebrafish, Atoh1 is required for the development of a subpopulation of zn-

5+ and Lhx2/9+ cells that may correspond to contralaterally projecting octaval neurons (Sassa et al.,

2007) and preliminary mapping data shows Atoh1 labelling of neurons on the caudal octaval nucleus

(Wullimann et al., 2011). Moreover, it has been proposed that NM neurons may derive from an

ancestral population equivalent to extant neurons of the dorsal descending octaval nucleus of fish

(Carr and Christensen-Dalsgaard, 2016; Walton et al., 2017), which are part of a binaural circuit

that sharpens directional information from the saccule (Edds-Walton, 2016). Overall, this suggests

that extant caudal octaval (vestibuloacoustic) neurons in chick that belong to the auditory NM and

the vestibular DeV may be ancestrally related. Morphologically, a close association was observed

between the two nuclei at the level of the caudal end of the NM (Figure 6D) with some VeD cells

extending contralateral projections that join the NM dorsal (cochlear) commissure (Figure 6D -

arrows). Finally, our observation that NM and VeD neurons share a developmental origin in the cau-

dal rhombic lip, with a significant number of VeD neurons labelled via Atoh1 electroporations

(Figure 5H) supports a common evolutionary origin for NM and rhombic lip derived VeD neurons.
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The analogous avian and mammalian ITD circuits have separate
evolutionary and developmental origins
Both mammals and diapsids have brainstem interaural time difference (ITD) sound localisation cir-

cuits, with overall similar organisation. However, functional and morphological studies have shown

that the similarities are superficial and indicate that the ITD circuits are an example of convergent

evolution (Carr and Christensen-Dalsgaard, 2016; Carr and Soares, 2002; Grothe et al., 2004;

Figure 8. Comparative developmental origin of mammalian and avian vestibular and auditory hindbrain nuclei.

Schematic diagram showing the lineage origin of cells in the auditory and vestibular nuclei (blue circles, Atoh1; red

triangles, Ptf1a; green stars, En-1; empty pentagons, unknown), alongside their rhombomeric origin (left to right,

r1 to >r8, white to black grey scale). Chick mapping data, this work and (Cambronero and Puelles, 2000;

Cramer et al., 2000; Marı́n et al., 2008; Marı́n and Puelles, 1995). Mouse mapping data from (Altieri et al.,

2015; Chen et al., 2012; Di Bonito et al., 2015; Di Bonito et al., 2013; Di Bonito and Studer, 2017; Di Bonito

et al., 2017; Farago et al., 2006; Fujiyama et al., 2009; Maricich et al., 2009; Marrs et al., 2013; Marrs and

Spirou, 2012; Pasqualetti et al., 2007; Rose et al., 2009; Wang et al., 2005; Yamada et al., 2007). An r3

contribution to nuclei of the superior olivary complex cannot at present be completely ruled out.

DOI: https://doi.org/10.7554/eLife.40232.009
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Grothe and Pecka, 2014; Grothe et al., 2010). Our developmental analysis supports this hypothesis

by 1) corroborating differences in origin of first order nuclei, 2) revealing divergence in the origins of

second order coincidence detectors and 3) showing a multifaceted developmental and evolutionary

history for the neurons that provide inhibitory modulation to the ITD circuit.

NM neurons are the bilaterally projecting neurons of the diapsid ITD circuit and they are broadly

considered the functional counterpart of the first order spherical bushy cells (SBCs) of the mamma-

lian VCN (Carr and Soares, 2002). Both neuronal types have bifurcating ipsilateral and contralateral

projections to coincidence detection nuclei. However, SBCs and NM neurons follow different projec-

tion trajectories and, while contralateral NM axons are arranged in a delay line that spans the medio-

lateral extent of the NL (Figure 1D,E) in accordance with the Jeffres model (Ashida and Carr,

2011), no such arrangement is present for SBCs axons reaching the contralateral medial superior

olive (MSO) (Karino et al., 2011). Also, while NM neurons contact exclusively the NL within the audi-

tory brainstem (Carr and Soares, 2002; Takahashi and Konishi, 1988; Wild et al., 2010), SBCs

send collateral projections to the lateral superior olive (LSO) and nucleus of the trapezoid body

(NTB), in addition to the MSO (Cant and Benson, 2003; Smith et al., 1993), indicating that they

participate in multiple instances of auditory information processing. Finally, while both NM neurons

and SBCs arise from Atoh1+ rhombic lip progenitors (Figures 6A–E,K and 8 and (Di Bonito and

Studer, 2017; Fujiyama et al., 2009)), their axial origin differs. NM cells originate from the caudal

hindbrain, posterior to rhombomere 5 (Figures 6F–K and 8 and (Cambronero and Puelles, 2000;

Cramer et al., 2000; Marı́n and Puelles, 1995)), while SBCs originate from rostral rhombomeres

(Di Bonito and Studer, 2017; Farago et al., 2006). This is in agreement with the proposition that

NM cells derive from ancestral vestibuloacoustic cells of the caudal octaval column (previous section

and (Carr and Christensen-Dalsgaard, 2016; Walton et al., 2017)), while bilaterally projecting

SBCs may be an elaboration of components of an interaural level difference (ILD) circuit, which, in

mammals, is proposed to predate the ITD circuit (Grothe and Pecka, 2014). The comparison of the

developmental origin of NM neurons and SBCs thus supports an independent evolutionary origin for

these functionally analogous cell types.

Second order coincidence detection nuclei of mammals and birds (MSO and NL, respectively)

show remarkably similar morphologies, with a linear arrangement of bipolar neurons that receive

segregated binaural input. (Figure 1D,E and (Carr and Soares, 2002)). However, the NL and MSO

differ in their location within the brainstem (Figure 1C,D and (Grothe et al., 2004)), employ differing

neural coding strategies (Grothe and Pecka, 2014; Grothe et al., 2010) and most likely have sepa-

rate evolutionary origins (Carr and Christensen-Dalsgaard, 2016; Grothe et al., 2004; Grothe and

Pecka, 2014; Walton et al., 2017). In mammals, the MSO is proposed to be an elaboration of the

LSO which computes ILDs (Grothe and Pecka, 2014). The MSO contains coincidence detection glu-

tamatergic bipolar neurons that derive from Atoh1+ rhombic lip progenitors in r5, in addition to

GABAergic neurons of unknown origin (Altieri et al., 2015; Di Bonito and Studer, 2017;

Maricich et al., 2009; Marrs et al., 2013; Marrs and Spirou, 2012; Rose et al., 2009). By contrast,

we showed here that the avian NL, composed of a single type of bitufted neurons, is derived from

Atoh1+ progenitors that overlap with the rostral end of the rhombic lip derived NM at r5 and r6,

with an additional contribution from r4 (Figure 7A–E). The development of NL neurons progresses

within the auditory anlage together with that of NM neurons (Book and Morest, 1990;

Hendricks et al., 2006). On the whole, this supports a common developmental and evolutionary ori-

gin for NM and NL neurons of the avian ITD circuit, with both cell types deriving from the ancestral

descending octaval nucleus (Grothe et al., 2004), and contrasts with the separate developmental

and evolutionary histories of first order SBCs and bipolar MSO neurons of the mammalian ITD circuit

(Grothe and Pecka, 2014).

Finally, inhibitory modulation of coincidence detection neurons is fundamentally different

between amniote ITD circuits. In mammals, inhibitory input to MSO neurons is glycinergic, bilateral,

phased-locked and provided by LNTB and MNTB neurons (Grothe, 2003; Grothe and Pecka, 2014;

Grothe et al., 2010; Myoga et al., 2014). In birds, inhibition of NL neurons is GABAergic, unilateral,

tonic and provided by the SON (Burger et al., 2011; Grothe, 2003; Grothe and Pecka, 2014;

Grothe et al., 2010). No individual mammalian nucleus has been identified as equivalent to the

diapsid SON (Burger et al., 2005; Burger et al., 2011; Grothe et al., 2004; Grothe et al., 2010;

Tabor et al., 2012; Wild et al., 2010). Neurons in the SON originate from both the alar and basal

plates, dorsal and ventral parts of the neuroepithelium respectively (Tan and Le Douarin, 1991) in
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rhombomeres 4 and 5 (Figures 7E–K and 8 – (Cambronero and Puelles, 2000; Cramer et al.,

2000; Marı́n and Puelles, 1995), and possibly rhombomere 6, and include a large complement of

Atoh1+ rhombic lip derived neurons that, most likely, do not provide the inhibitory modulation to

the ITD circuit. Although we could not identify the origin of the GABAergic neurons that comprise

about 70% of the SON cells (Lachica et al., 1994) and provide descending input to the NL, NM and

NA (Burger et al., 2005; Wild et al., 2010), it is likely that these are specifically born in r5 (Figures 7

and 8) and of basal origin (Tan and Le Douarin, 1991). Interestingly, this raises the possibility of a

common developmental origin with neurons of the mammalian NTB that also originate in rhombo-

mere 5, from basal plate progenitors belonging to the En-1 lineage (Altieri et al., 2015; Di Bonito

and Studer, 2017; Maricich et al., 2009; Marrs et al., 2013). Moreover, the mixed developmental

origin of the SON resembles that of the mammalian olivary complex as a whole (to which the LSO,

MSO and NTB belong) and that is also derived from both basal and alar (including rhombic lip) pro-

genitors. This suggests the possibility of an alar/basal plate derived ancestral amniote second order

vestibuloacoustic nucleus located in the ventral hindbrain and composed of multiple neuronal types

that would have integrated ascending pathways and provided descending modulatory input to other

brainstem vestibuloacoustic nuclei. The extant diapsid SON and mammalian superior olivary com-

plex would thus be independent elaborations of this ancestral second order ventral nucleus.

In summary, the comparative development of ITD circuit components shows a mixture of ances-

tral and derived features. Subcircuits belonging to the ascending pathways seem to be conserved

(e.g. NA and VCN neurons). However, while the mammalian bilateral input (SBC) and coincidence

detection neurons (MSO) likely emerged as an elaboration of the ancestral mammalian ILD circuit

(Grothe and Pecka, 2014), our developmental analysis supports the hypothesis that the avian NM/

NL subcircuit may have emerged as an elaboration of a more ancient vertebrate vestibular network

(Carr and Christensen-Dalsgaard, 2016; Walton et al., 2017).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

CAG-mCherry Dr.Murakami
(Osaka University)

Recombinant
DNA reagent

Atoh1-Cre DOI: 10.1523/
JNEUROSCI.
4231–11.2012

Avihu Klar,
Hebrew University
Medical School

Recombinant
DNA reagent

Atoh1-Gal4 this paper Atoh1 enhancer
from Atoh1-Cre
subcloned
upstream of
Gal4 coding
sequence
(Martin Meyer,
King’s College
London) -
Primers in Table 1

Recombinant
DNA reagent

Atoh1-FLPo this paper Atoh1 enhancer
from Atoh1-Cre
subcloned upstream
of FLPo recombinase
coding sequence
(Avihu Klar,
Hebrew University
Medical School) -
Primers in Table 1

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

Ptf1a-Cre this paper Ptf1a short
enhancer
(Meredith et al., 2009)
- DOI: 10.1523/JNEUROSCI
.2303–09.2009) was
subcloned upstream
of the Cre
recombinase
coding sequence
replacing the Atoh1
enhancer in the
Atoh1-Cre plasmid
(Avihu Klar,
Hebrew University
Medical School) -
Primers in Table 1

Recombinant
DNA reagent

Egr2-Cre this paper Egr2 enhancer
sequence (mm10
chr:67320405–67321006) described in
Chomette et al., 2006
(doi:10.1242/
dev.02289) was
subcloned upstream
of the Cre r
ecombinase coding
sequence replacing
the Atoh1 enhancer
in the Atoh1-Cre
plasmid (Avihu Klar,
Hebrew University
Medical School) -
Primers in Table 1

Recombinant
DNA reagent

Hoxb1-Cre this paper Hoxb1 enhancer
sequence (mm10
chr11:96365175–96365784) described in
Ferretti et al., 2005
(doi:10.1128/
MCB.25.19.8541–8552.2005) was subcloned
upstream of the
Cre recombinase
coding sequence
replacing the Atoh1
enhancer in the
Atoh1-Cre plasmid
(Avihu Klar, Hebrew
University Medical
School) - Primers
in Table 1

Recombinant
DNA reagent

Hoxa3-Cre this paper Hoxa3 enhancer
sequence (mm10
chr6:52177190–52177795) described
in Manzanares
et al., 2001
(PMID: 9895323)
was subcloned
upstream of the Cre
recombinase coding
sequence replacing
the Atoh1 enhancer
in the Atoh1-Cre
plasmid (Avihu Klar,
Hebrew University
Medical School) -
Primers in Table 1

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

Hoxd4-Cre this paper Hoxd4 enhancer
sequence (mm10
chr2:74729772–74731362) described in
Morrison et al.
(1997)
(PMID: 9272954)
was subcloned
upstream of the
Cre recombinase
coding
sequence replacing
the Atoh1 enhancer
in the Atoh1-Cre
plasmid (Avihu Klar,
Hebrew University
Medical School) -
Primers in Table 1

Recombinant
DNA reagent

Pbase Sanger Institute

Recombinant
DNA reagent

pCAG-LoxP-pA-
LoxP-EGFP

DOI: 10.1523/
JNEUROSCI.4231–11.2012

Avihu Klar,
Hebrew University
Medical School

Recombinant
DNA reagent

pCAG-FRT-pA-FRT-
LoxP-pA-LoxP-EGFP

DOI: 10.1093/nar/gku750 Avihu Klar, Hebrew
University
Medical School

Recombinant
DNA reagent

UAS-tdT Martin Meyer
(King’s College
London)

Recombinant
DNA reagent

chick Atoh1 riboprobe Wilson and
Wingate, 2006
(doi:10.1016/
j.ydbio.2006.05.028)

Recombinant
DNA reagent

chick Ptf1a riboprobe ChEST1028o4 Green and Wingate, 2014
(doi:10.1242/
dev.099119)

Antibody rabbit polyclonal anti-GFP Invitrogen -ThermoFisher Cat no. A11122 IHC (1:500)

Antibody Alexa 488-conjugated
goat polyclonal
anti-rabbit IgG

Molecular Probes
- ThermoFisher

Cat no. A11034 IHC (1:500)

Commercial
assay or kit

Gibson Assembly kit New England Biolabs Cat no. E5510S

Cloning of enhancer elements and plasmids
An Atoh1 enhancer (Helms et al., 2000) was used to direct Cre recombinase expression to cells

derived from the rhombic lip (Kohl et al., 2012). The same element was also subcloned upstream

the Gal4 coding sequence (kind gift from Martin Meyer, King’s College London) or the FLPo recom-

binase coding sequence (Hadas et al., 2014) to allow for the intersectional labelling of cells. A Ptf1a

short enhancer element (Meredith et al., 2009) was subcloned upstream the Cre recombinase clon-

ing sequence and used to identify a population of cells originating from the ventricular zone. All sub-

clonings were performed using the Gibson Assembly kit (New England Biolabs).

For the labelling of cells originating at different antero-posterior levels along the hindbrain, a set

of rhombomere specific enhancer elements were employed. An Egr2 (Krox20) enhancer element

(Chomette et al., 2006) was used to direct Cre recombinase expression to r3 and r5. An enhancer

element from Hoxb1 (Ferretti et al., 2005) was used to direct Cre expression to r4. A Hoxa3

enhancer element (Manzanares et al., 2001) was used to direct Cre expression to r5/r6. Finally, an

enhancer element from Hoxd4 (Morrison et al., 1997) was used to direct Cre expression to >r7.

The enhancer elements were PCR amplified from mouse genomic DNA, and subcloned upstream of
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the Cre recombinase coding sequence using the Gibson Assembly kit (New England Biolabs). Pri-

mers used for each step are listed in Table 1.

The different enhancer driven expression plasmids were co-electroporated with their correspond-

ing reporter plasmids, driving Cre, FLPo or Gal4 dependent expression of fluorescent proteins. The

following reporter plasmids were employed: pCAG-LoxP-pA-LoxP-EGFP (CAG-Flox-pA-GFP),

pCAG-FRT-pA-FRT-LoxP-pA-LoxP-EGFP (CAG-Flox-FLp-pA-GFP) and UAS-tdT. On experiments

using Ptf1a, Egr2, Hoxb1, Hoxa3 and Hoxd4 enhancers, the PiggyBac DNA-transposition system was

used to achieve integration of the reporter gene into the chick genome and therefore persistent

labelling of the targeted cells (Hadas et al., 2014). The reporter construct in this case consisted of a

Cre-dependent GFP cloned between the two PB arms and was co-electroporated with an enhancer-

Cre plasmid and a plasmid encoding for the Pbase transposase (Sanger Institute). As a control for

the successfully targeted area, a CAG-mCherry plasmid was co-electroporated in most experiments.

All plasmids and sequences are available upon request.

In ovo electroporations
Fertilised hen’s eggs were incubated at 38˚C. Electroporations were performed at stages HH12-15

(Hamburger and Hamilton, 1951). Briefly, eggs were windowed using sharp surgical scissors. The

fourth ventricle was injected with ~100–200 nl of the corresponding plasmids DNA at equimolar con-

centrations and to a final concentration of 1–3 mg/ml. Three 20 ms/10 V square waveform electrical

pulses were passed between electrodes placed on either side of the hindbrain. Tyrode’s solution

supplemented with penicillin/streptomycin (Sigma) was added before the eggs were resealed and

incubated for a further 1 or 8 days at 38˚C. A minimum of three batches of independent electropora-

tions were performed for each of the enhancer plasmid combinations employed. A minimum of two

embryos were fully processed (dissected, sectioned, stained, imaged and analysed) for each of the

Table 1. Restriction enzymes and sequences of the oligos used for cloning of expression constructs.

Uppercase, gene-specific portion. Lowercase, vector specific portion.

Plasmid PCR/digest Restriction enzymes or primers sequences

Atoh1-Gal4 Vector NcoI + NotI digest of pBatubGal4 vector

Insert PCR ctccaccgcggtggcAGAGCTTCCACTTCACCTCTCTGAGTG

On Atoh1-Cre vector gtttcttcttgggcccGGGGAGCGGCGAGAGGCT

Atoh1-FLPo Vector NcoI + NotI digest of CAG-FLPo vector

Insert PCR agcagagcgcggcgcCTCCTGGGCAACGTGCTG

On Atoh1-Cre vector cctgaggagtgaattggcGAATTCCTCATCAGATCCGCC

Ptf1a-Cre Vector NcoI + SacI digest of Atoh1-Cre vector

Insert PCR gggcgaattggagctAGGATCGTCAGCCACAGAGTTCATGG

On Ptf1a-GFP vector ctgcagatatccagccCATGGCGCCGCGCTCTGC

Egr2-Cre Vector SacI + XmaI digest of Atoh1-Cre vector

Insert PCR gggcgaattggagctGGGTTGTGAATGGAGCCAG

On mouse gDNA attcctgcagcccggGCAAGCCGACCAAACTCC

Hoxb1-Cre Vector SacI + XmaI digest of Atoh1-Cre vector

Insert PCR gggcgaattggagctCTAGTCATCCTTTTGTCCC

On mouse gDNA attcctgcagcccggTCTTGCCCTACAACCTTTC

Hoxa3-Cre Vector SacI + XmaI digest of Atoh1-Cre vector

Insert PCR gggcgaattggagctATCAAATAGCAGCGAATCTTCG

On mouse gDNA attcctgcagcccggGGGACGTGTAGGAGGTGA

Hoxd4-Cre Vector SacI + XmaI digest of Atoh1-Cre vector

Insert PCR gggcgaattggagctCTAGAAGCCCACAGAAGTTG

On mouse gDNA attcctgcagcccggCTAGAGCAGGTTCCCAGATG

DOI: https://doi.org/10.7554/eLife.40232.010
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electroporations performed. Table 2 shows a summary of the plasmid combinations used, the struc-

tures labelled, the figures showing representative images of the labelling observed and the number

of embryos analysed.

Tissue processing, in situ hybridisation, immunostaining and imaging
Embryos were collected after 3 to 10 days of incubation, the hindbrain was dissected out and fixed

in 4% paraformaldehyde (in phosphate-buffered saline). For in situ hybridisation E4 dissected hind-

brain tissue was stained as previously described (Myat et al., 1996) with digoxygenin or fluorescein-

labelled riboprobes (Roche) for: Atoh1 (Wilson and Wingate, 2006) and Ptf1a (ChEST1028o4,

(Green et al., 2014)), flatmounted on 80% glycerol and imaged from the dorsal side.. A different set

of E10 dissected hindbrains were sectioned at 10 um and stained with cresyl violet.

Electroporated E3/E6 wholemount hindbrains were flatmounted on 80% glycerol and imaged

from the dorsal side. Electroporated E10 hindbrains were cryoprotected using a sucrose gradient,

embedded in OCT (VWR) and frozen on liquid nitrogen. Floating coronal cryosections of 80 mm

thickness were washed three times in PBS. All sections were counterstained with NucRed (Molecular

Probes). Sections labelled for Egr2, Hoxb1, Hoxa3 or Hoxd4 were immunostained for GFP. Briefly,

floating cryosections were washed three times 30 min in PBS/1% TritonX-100 (PBSTx) before being

Table 2. Summary of the plasmid combinations used, the structures labelled, the figures showing representative images of the

labelling observed and the number of embryos analysed.

Enhancer/reporter plasmid combinations Abbreviation Structures labelled (Figures) – [# embryos]

Hindbrain flatmounts (embryos fixed at E4/E6)

Atoh1-Cre + CAG Flox-pA-GFP+CAG-mCherry Atoh1::GFP + mCherry RL (2C) – (12)

Ptf1a-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+CAG-mCherry Ptf1a::GFP + mCherry VZ (2D) – (7)

Egr2-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+CAG-mCherry Egr2::GFP + mCherry r3, r5 (2E) – (5)

Hoxb1-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+CAG-mCherry Hoxb1::GFP + mCherry r4 (2E) – (5)

Hoxa3-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+CAG-mCherry Hoxa3::GFP + mCherry r5, r6 (2E) – (5)

Hoxd4-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+CAG-mCherry Hoxd4::GFP + mCherry �r7 (2E) – (5)

Hindbrain coronal cryosections (embryos fixed at E10)

Atoh1-Cre + CAG Flox-pA-GFP+CAG-mCherry Atoh1::GFP + mCherry VeS (4A), Dd/Dv (4E-F), Ta
(4K), VeM (5A), VeD (5H-I),
NM (6A-D), NA (6 L-M), NL
(7A), SON (7F) – (10)

Atoh1-Cre + CAG-
Flox-pA-GFP

Atoh1::GFP NL (7A - inset), SON (7F -
inset) – (4)

Ptf1a-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+CAG-mCherry Ptf1a::GFP + mCherry Dd/Dv (4 G-6H), Ta (4L),
VeM (5B), VeD (5J), -NM
(6E), NA (6N), SON (7G) –
(9)

Egr2-Cre + CAG PBase+Pb-CAG-Flox-pA-GFP Egr2::GFP VeS (4B), Dd/Dv (4I), Ta (4M),
VeD (5K), NA (6O), NL (7B),
SON (7H) – (4)

Hoxb1-Cre + CAG PBase+Pb-CAG-
Flox-pA-GFP

Hoxb1::GFP VeS (4C), Dd/Dv (4J), Ta
(4N), VeD (5N), NA (6P), NL
(7C), SON (7J) – (7)

Hoxa3-Cre + CAG PBase+Pb-CAG-Flox-pA-GFP Hoxa3::GFP Ta (4O), VeD (5L), NL (7D),
SON (7K) – (4)

Hoxd4-Cre + CAG PBase+Pb-CAG-Flox-pA-GFP Hoxd4::GFP VeD (5M) – (7)

Egr2-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+Atoh1 Gal4+UAS-tdT Egr2::GFP + Atoh1::tdT VeM (5C), NM (6F), SON (7I)– (4)

Hoxb1-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+Atoh1 Gal4+UAS-tdT Hoxb1::GFP + Atoh1::tdT VeM (5D), -NM (6H)– (7)

Hoxa3-Cre + CAG PBase+Pb CAG-Flox-pA-GFP +Atoh1 Gal4+UAS-tdT Hoxa3::GFP + Atoh1::tdT VeM (5E), NM (6G) – (4)

Hoxd4-Cre + CAG PBase+Pb CAG-Flox-pA-GFP+Atoh1 Gal4+UAS-tdT Hoxd4::GFP + Atoh1::tdT VeM (5F), NM (6I) – (7)

Hoxd4-Cre + Atoh1 FLPo+CAG Flox-FLp-pA-GFP+CAG-mCherry Hoxd4 + Atoh1::GFP + mCherry NM (6J) – (2)

DOI: https://doi.org/10.7554/eLife.40232.011
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washed in a blocking solution of 10% goat serum in PBSTx twice for one hour at room temperature.

Anti-GFP antibody (rabbit IgG - 1:500, Invitrogen) was diluted in blocking solution and the sections

were incubated at 4˚C for 3 days. Samples were then rinsed in blocking solution and washed three

times for one hour in blocking solution before adding an Alexa 488-conjugated goat anti-rabbit IgG,

at 1:500 (Molecular Probes) diluted in blocking solution and incubating at 4˚C for a further 2 days.

Sections were then washed three times in PBS and nuclei were stained with NucRed (Molecular

Probes). Sections were mounted on Prolong Diamond (Molecular probes).

Digital brightfield images were acquired on a stereo microscope (Leica MZFLIII). Laser scanning

confocal microscopy images were acquired on an Olympus AX70 microscope. Image analysis and

processing was performed in ImageJ and Photoshop.

All reports of positive labelling of cells belonging to a specific lineage, labelled by a given

enhancer, at a given nucleus represent at least three independent observations in embryos obtained

from three independent electroporations.

Acknowledgements
We would like to thank Dr Martin Meyer and Dr Avihu Klar for kindly providing plasmid constructs

and Prof Anthony Graham for invaluable comments on the manuscript. This work was supported by

a Newton International Fellowship (Royal Society) to ML.

Additional information

Funding

Funder Grant reference number Author

Royal Society NF120319 Marcela Lipovsek

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Marcela Lipovsek, Conceptualization, Resources, Formal analysis, Funding acquisition, Investigation,

Visualization, Methodology, Writing—original draft, Project administration, Writing—review and

editing; Richard JT Wingate, Conceptualization, Resources, Project administration, Writing—review

and editing

Author ORCIDs

Marcela Lipovsek http://orcid.org/0000-0001-9328-0328

Richard JT Wingate https://orcid.org/0000-0002-1662-6097

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.40232.014

Author response https://doi.org/10.7554/eLife.40232.015

Additional files

Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.40232.012

Data availability

Images included in Figures 2-7 are representative of all the data generated and analysed during this

study.

Lipovsek and Wingate. eLife 2018;7:e40232. DOI: https://doi.org/10.7554/eLife.40232 21 of 25

Research article Developmental Biology Neuroscience

http://orcid.org/0000-0001-9328-0328
https://orcid.org/0000-0002-1662-6097
https://doi.org/10.7554/eLife.40232.014
https://doi.org/10.7554/eLife.40232.015
https://doi.org/10.7554/eLife.40232.012
https://doi.org/10.7554/eLife.40232


References
Altieri SC, Jalabi W, Zhao T, Romito-DiGiacomo RR, Maricich SM. 2015. En1 directs superior olivary complex
neuron positioning, survival, and expression of FoxP1. Developmental Biology 408:99–108. DOI: https://doi.
org/10.1016/j.ydbio.2015.10.008, PMID: 26542008

Anthwal N, Joshi L, Tucker AS. 2013. Evolution of the mammalian middle ear and jaw: adaptations and novel
structures. Journal of Anatomy 222:147–160. DOI: https://doi.org/10.1111/j.1469-7580.2012.01526.x,
PMID: 22686855

Ashida G, Carr CE. 2011. Sound localization: Jeffress and beyond. Current Opinion in Neurobiology 21:745–751.
DOI: https://doi.org/10.1016/j.conb.2011.05.008, PMID: 21646012

Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY. 2000.
Functional conservation of atonal and Math1 in the CNS and PNS. Development 127:1039–1048.
PMID: 10662643

Book KJ, Morest DK. 1990. Migration of neuroblasts by perikaryal translocation: role of cellular elongation and
axonal outgrowth in the acoustic nuclei of the chick embryo medulla. The Journal of Comparative Neurology
297:55–76. DOI: https://doi.org/10.1002/cne.902970105, PMID: 2376633

Branoner F, Chagnaud BP, Straka H. 2016. Ontogenetic Development of Vestibulo-Ocular Reflexes in
Amphibians. Frontiers in Neural Circuits 10:91. DOI: https://doi.org/10.3389/fncir.2016.00091, PMID: 27877114

Burger RM, Cramer KS, Pfeiffer JD, Rubel EW. 2005. Avian superior olivary nucleus provides divergent inhibitory
input to parallel auditory pathways. The Journal of Comparative Neurology 481:6–18. DOI: https://doi.org/10.
1002/cne.20334, PMID: 15558730

Burger RM, Fukui I, Ohmori H, Rubel EW. 2011. Inhibition in the balance: binaurally coupled inhibitory feedback
in sound localization circuitry. Journal of Neurophysiology 106:4–14. DOI: https://doi.org/10.1152/jn.00205.
2011, PMID: 21525367
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Malinvaud D, Vassias I, Reichenberger I, Rössert C, Straka H. 2010. Functional organization of vestibular
commissural connections in frog. Journal of Neuroscience 30:3310–3325. DOI: https://doi.org/10.1523/
JNEUROSCI.5318-09.2010, PMID: 20203191

Manley GA. 2000. Cochlear mechanisms from a phylogenetic viewpoint. Proceedings of the National Academy
of Sciences 97:11736–11743. DOI: https://doi.org/10.1073/pnas.97.22.11736, PMID: 11050203

Manley GA, Popper AN, Fay RR. 2004. Evolution of Vertebrate Auditory System. New York: Springer.
DOI: https://doi.org/10.1007/978-1-4419-8957-4

Manley GA. 2017. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears.
Journal of the Association for Research in Otolaryngology 18:1–24. DOI: https://doi.org/10.1007/s10162-016-
0579-3, PMID: 27539715

Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R.
2001. Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate
hindbrain involve auto- and cross-regulatory mechanisms. Development 128:3595–3607. PMID: 11566863

Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, Zoghbi HY. 2009. Atoh1-lineal neurons are
required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory
nuclei. Journal of Neuroscience 29:11123–11133. DOI: https://doi.org/10.1523/JNEUROSCI.2232-09.2009,
PMID: 19741118

Marı́n F, Aroca P, Puelles L. 2008. Hox gene colinear expression in the avian medulla oblongata is correlated with
pseudorhombomeric domains. Developmental Biology 323:230–247. DOI: https://doi.org/10.1016/j.ydbio.
2008.08.017, PMID: 18786526

Marı́n F, Puelles L. 1995. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of
hindbrain nuclei. European Journal of Neuroscience 7:1714–1738. DOI: https://doi.org/10.1111/j.1460-9568.
1995.tb00693.x, PMID: 7582126

Marrs GS, Morgan WJ, Howell DM, Spirou GA, Mathers PH. 2013. Embryonic origins of the mouse superior
olivary complex. Developmental Neurobiology 73:384–398. DOI: https://doi.org/10.1002/dneu.22069,
PMID: 23303740

Marrs GS, Spirou GA. 2012. Embryonic assembly of auditory circuits: spiral ganglion and brainstem. The Journal
of Physiology 590:2391–2408. DOI: https://doi.org/10.1113/jphysiol.2011.226886, PMID: 22371481

Meredith DM, Masui T, Swift GH, MacDonald RJ, Johnson JE. 2009. Multiple transcriptional mechanisms control
Ptf1a levels during neural development including autoregulation by the PTF1-J complex. Journal of
Neuroscience 29:11139–11148. DOI: https://doi.org/10.1523/JNEUROSCI.2303-09.2009, PMID: 19741120

Morrison A, Ariza-McNaughton L, Gould A, Featherstone M, Krumlauf R. 1997. HOXD4 and regulation of the
group 4 paralog genes. Development 124:3135–3146. PMID: 9272954

Myat A, Henrique D, Ish-Horowicz D, Lewis J. 1996. A chick homologue of Serrate and its relationship with
Notch and Delta homologues during central neurogenesis. Developmental Biology 174:233–247. DOI: https://
doi.org/10.1006/dbio.1996.0069, PMID: 8631496

Myoga MH, Lehnert S, Leibold C, Felmy F, Grothe B. 2014. Glycinergic inhibition tunes coincidence detection in
the auditory brainstem. Nature Communications 5:3790. DOI: https://doi.org/10.1038/ncomms4790, PMID: 24
804642

Nieuwenhuys R. 2011. The structural, functional, and molecular organization of the brainstem. Frontiers in
Neuroanatomy 5:33. DOI: https://doi.org/10.3389/fnana.2011.00033, PMID: 21738499

Nothwang HG. 2016. Evolution of mammalian sound localization circuits: A developmental perspective. Progress
in Neurobiology 141:1–24. DOI: https://doi.org/10.1016/j.pneurobio.2016.02.003, PMID: 27032475

Pasqualetti M, Dı́az C, Renaud JS, Rijli FM, Glover JC. 2007. Fate-mapping the mammalian hindbrain: segmental
origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the
mouse embryo. Journal of Neuroscience 27:9670–9681. DOI: https://doi.org/10.1523/JNEUROSCI.2189-07.
2007, PMID: 17804628

Passetto MF, Britto LR, Toledo CA. 2008. Morphometric analysis of the AMPA-type neurons in the Deiter’s
vestibular complex of the chick brain. Journal of Chemical Neuroanatomy 35:334–345. DOI: https://doi.org/10.
1016/j.jchemneu.2008.02.003, PMID: 18396009
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