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Defining rules for cancer cell proliferation in TRAIL
stimulation
William Deveaux1,2, Kentaro Hayashi2 and Kumar Selvarajoo 2,3

Owing to their self-organizing evolutionary plasticity, cancers remain evasive to modern treatment strategies. Previously, for
sensitizing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant human fibrosarcoma (HT1080), we developed
and validated a dynamic computational model that showed the inhibition of protein kinase (PK)C, using bisindolylmaleimide (BIS) I,
enhances apoptosis with 95% cell death. Although promising, the long-term effect of remaining ~ 5% cells is a mystery. Will they
remain unchanged or are they able to proliferate? To address this question, here we adopted a discrete spatiotemporal cellular
automata model utilizing simple rules modified from the famous “Conway’s game of life”. Based on three experimental
initializations: cell numbers obtained from untreated (high), treatment with TRAIL only (moderate), and treatment with TRAIL and
BIS I (low), the simulations show cell proliferation in time and space. Notably, when all cells are fixed in their initial space, the
proliferation is rapid for high and moderate cell numbers, however, slow and steady for low number of cells. However, when
mesenchymal-like random movement was introduced, the proliferation becomes significant even for low cell numbers.
Experimental verification showed high proportion of mesenchymal cells in TRAIL and BIS I treatment compared with untreated or
TRAIL only treatment. In agreement with the model with cell movement, we observed rapid proliferation of the remnant cells in
TRAIL and BIS I treatment over time. Hence, our work highlights the importance of mesenchymal-like cellular movement for cancer
proliferation. Nevertheless, re-treatment of TRAIL and BIS I on proliferating cancers is still largely effective.
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INTRODUCTION
Cancer cells are highly heterogeneous, not only in genetic
variability between individual cells, but also in their morphology,
intracellular constituents, and molecular expression dynamics.1

Recent works have shown that cancers can evolve non-genetically
and are able to make the epithelial-mesenchymal transition (EMT),
providing with high motility to form metastasis of surrounding
and other far-from-connected tissues.2,3 It is, therefore, concei-
vable why most, if not all, invasive and non-invasive treatment
strategies, based on the predominant “average cell” (all cells being
equal) approach, to tackle and control the complexity of cancer
succumb to cell proliferations. To understand the complexities of
dynamic cancer response, and to regulate them successfully,
experimental approaches alone are insufficient. Numerous math-
ematical and computational models have been developed to
interpret and predict the dynamics of cancer cell survival/
proliferation and to identify targets for enhancing apoptosis.4,5

Lavrik6 has edited an excellent book that provides a succinct
review on the numerous statistical, Boolean and kinetic models
developed to understand cancer cell apoptosis.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL),

a proinflammatory cytokine produced by our immune system, has
shown promising success in controlling cancer threat, owing to its
specific ability to induce apoptosis in cancers while having
nominal effect on normal cells.7,8 Nevertheless, several malignant
cancer types remain non-sensitive to TRAIL. A notable example of
TRAIL-resistant cancer is HT1080, where on average, only 40% of

cells respond to treatment.9,10 In a previous work, we developed
an ordinary differential equation-based kinetic model to track the
cell survival and apoptosis signaling, through MAP kinases/NF-κB
and caspase -8/-3 dynamics, respectively, in TRAIL-stimulated
HT1080.10 To sensitize HT1080 to TRAIL treatment, we performed
several in silico intracellular target suppression, and evaluated the
overall cell survival ratios. The model indicated protein kinase (PK)
C inhibition, together with TRAIL, is the best treatment strategy
that could induce 95% cell death. To confirm this result, we
subsequently performed experiments using the PKC inhibitor,
bisindolylmaleimide (BIS) I in HT1080 and another TRAIL-resistant
cell line (human adenocarcinoma HT29) and showed over 95% cell
death in both cell lines.11 Despite the use of the “average cell”
modeling approach, the simulations accurately predicted the
experimental outcome. Although the finding holds promise for
cancer treatment, the long-term fate of the remaining (~ 5%)
HT1080 remains unknown and may be difficult to predict using
popular current modeling approaches including our previous
models.12,13 Will they be quiescent, or are they able to self-
organize and proliferate? Hence, despite hugely challenging, we
require alternative approaches that could integrate cell signaling
outcomes with macroscopic cancer evolution considering cell-
to-cell contact.
The investigation of dynamic complexity, or self-organization in

biology, requires “integrated” knowledge gained from diverse
disciplines. There have been numerous computational efforts to
understand self-organization, where a large proportion utilizing
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continuous differential equation approaches.14,15 These
approaches require deep understanding on the underlying
mechanisms, and the appropriate parameter values for successful
modeling. Here, we needed a simpler method as most signaling,
transcriptomics or evolutionary details of cancer cell proliferation
are unknown.
Cellular automata (CA) is a discrete computational methodology

that utilizes user defined simple rules to predict the behavior of an
automaton or cell in time, space, and state.16 The rules adopted
can be based on physical laws or simple imagination, and can be
tailored to match experimental reality. Owing to the iterative
process of trying different rules for the convergence of the
intended outcome, one could be able to identify a set of rules that
best represent the underlying mechanism. The most popular CA is
Conway’s game of life.17 By using self-defined simple rules,
Conway produced diverse and complex self-organizing patterns.
Subsequently, other works have demonstrated its attractiveness in
various disciplines, including biology.18,19

Here, we adopted the CA approach to predict the outcome of
HT1080 under three experimental conditions; (i) untreated, (ii)
treatment with TRAIL only, and (ii) treatment with TRAIL and BIS I.
As details on cancer cell proliferation and self-organizing response
after any drug treatment is scanty, we wanted to investigate
whether (i) simple rules, such as CA rules, can be used to track
cancer cell proliferation and, (ii) models developed using such
rules can be experimentally tested.

RESULTS
Spatiotemporal CA model (model A)
We developed a CA model (Methods), initially using rules and
related parameters from Conway’s game of life:

i. Any cell with less than two live neighbors dies, caused by
under-population.

ii. Any cell with two or three live neighbors lives on to the next
generation.

iii. Any cell with more than three neighbors dies, caused by
overcrowding.

iv. Any dead/empty cell with three live neighbors becomes live
cell as by reproduction (division).

Although the rules, owing to its abstractness or oversimplifica-
tion, may not be sufficient to model cancer self-organization
successfully, nevertheless, they can generate complex self-
organizing spatiotemporal patterns that have been explored in
numerous scientific fields.20 We simulated to see how the
automata will evolve in a simulated dish for three experimental
conditions: (i) untreated HT1080 (WT), (ii) HT1080 treated with
TRAIL (TRAIL), and (iii) HT1080 treated with TRAIL and PKC
inhibitor BIS I (TR+ BIS) based on the actual cell numbers after
initial treatment. These conditions were taken from our previous
experimental work in a dish,11 where we estimated the actual cell
numbers for each condition to initialize the CA model. WT had an
average of 1 × 105 cells, TRAIL had 6 × 104 and TR+ BIS had 5 ×
103 cells after 24 h treatment.
In other words, we run the CA model with Conway’s game of life

in three initial conditions determined by the number of cancer
cells in unstimulated (WT), after 24 h treatment using TRAIL alone
(TRAIL), and TRAIL plus BIS I (TR+ BIS). The model was simulated
for 15 discrete arbitrary time steps and repeated 30 times to check
whether the random orientation of cells for each run at initial time
(= 0) will have any significant variable outcomes (Fig. 1). For WT
(high initial cell numbers), we observed the number of HT1080
cells decreased significantly for the first time-step, owing to
overcrowding (Rule iii), but quickly recovered and increased
rapidly with time (Fig. 1a, b, blue). For TRAIL (moderate initial cell
numbers), the simulations, although fluctuating, shows a general

increase with time and converged to similar cell numbers with
WT by 15 time steps (Fig. 1a, b, red). Note that the variability
between each of the 30 simulations were low for both WT and
TRAIL (Fig. 1c, blue & red). Contrary, TR+ BIS (low initial cell
numbers) showed stable population of cells in time, despite
relatively high variability between the simulations (Fig. 1a–c,
green). Note that in some runs, the actual cell numbers are even
decreased from time 0 (Fig. 1b, c, green). In other words, the CA
Model simulations indicate that, if all the initial cell numbers are
low (TR+ BIS) and fixed in their location (immovable), the cell
proliferation capacity will remain low. However, if the initial
numbers are moderate (TRAIL) or high (WT), the cells will
continue to proliferate over time. Thus, according to our
simulations, TR+ BIS may successfully control the progression
of HT1080 in cell cultures over time.

CA model with distinguishing E & M cells (model B)
It is now generally appreciated that EMT occurs during cancer cell
progression and metastasis.2,3 The EMT is a central process of
embryogenesis or normal cell development, in which epithelial (E)
cells reach fibroblast-like mesenchymal (M) state. In brief, the fairly
round shaped E cells are connected by cell–cell adhesion,
facilitating cell layer formation and remain largely static.21,22

Unlike the E cells, the thin and long shaped M cells are not
bounded to other cells and are free to move across a medium.23 It
is also known that, under stressed conditions, E cells can transform
into M cells, a process that is referred to as EMT.24

It is notable to mention here that HT1080 are fibrosarcoma cell
line derived from a mesenchymal lineage, and hence, often
considered not to exist in the epithelial stage. However, recent
works have indicated the occurrence of mesenchymal-to epithelial
transition in fibroblast cells.25 To investigate this, we performed
experiments on HT1080 cells, in 48 plated wells (Methods), left
untreated, stimulated with 200 ng/mL of TRAIL, and pre-treated
with 10 μM of BIS I prior to TRAIL stimulation (200 ng/mL). Notably,
the experiments reproduced previous observations of ~ 60% and
5% cancer cell survival (compared with unstimulated) after 24 h
for the TRAIL and TR+ BIS treatments, respectively (Fig. 2a–c, top
panels).
When the morphology of the HT1080 cells was checked on the

microscope, they mainly appeared to be made up of E cells for the
unstimulated and TRAIL-stimulated condition, whereas TR+ BIS
treatment showed visible M cells (Fig. 2a–c, top). To confirm this
observation, we used anti-Vimentin antibody with our HT1080 cell
culture to track its fluorescence (Vimentin, an intermediate
filament protein specifically expressed in M cells, is often used
as a marker for mesenchymal cells26–28). We noticed that
untreated HT1080 cell culture did not show any Vimentin
fluorescence, indicating large majority of E cells (Fig. 2a, bottom).
However, when we investigated the fluorescence for TRAIL, and
TR+ BIS-treated cells, we observed fluorescence for certain cells
for the former and majority for the latter (Fig. 2b, c, bottom). Based
on the fluorescence intensity, we estimated that the number of M
cells in HT1080 was low for untreated (~ 2%) and TRAIL treated
(~ 10%), but significantly higher for TR+ BIS treated (~ 95%)
(Fig. S1A). Thus, from these data, we gather that TR+ BIS treated
remnant cells have largely undergone EMT in a plate.
It is now conceivable that the rules for the automaton in our

model should be able to reflect the generalized cancer cell
proliferation, considering the EMT. Thus, rules (ii) and (iv) were
modified and two additional rules (v and vi, see below) to
distinguish E and M cells in the HT1080 population were included.
The overall rules are as follows:

i. Any E cell with less than two live neighbors dies, caused by
under-population.

ii. Any E cell with two or three live neighbors become M cells
on to the next generation.
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Fig. 1 Simulations of spatiotemporal evolution of HT1080 cells using CA model A. a 2-D top view of the simulations for 15 time steps, b the
total numbers of cells in time, c the number of survival cells at end time (= 15) for 30 simulations. Untreated (WT), TRAIL stimulated (TRAIL),
and TRAIL and BIS I treated (TR+ BIS)
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Fig. 2 Microscope and immunofluorescence images of HT1080. Cells were imaged by microscope (top) and Cytell imaging system using dyed
nucleus in blue (bottom). Based on the cell morphology and the intensity of green anti-Vimentin antibody fluorescence (Methods), cells can
be classified as epithelial or mesenchymal (see insert). a WT, b TRAIL, and c TR+ BIS
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iii. Any E cell with more than 3 neighbors dies, caused by
overcrowding.

iv. Any dead/empty cell with three live neighbors (E or M)
becomes live cell (E or M) as by division.

v. Any M cell is able to move randomly to an empty cell on to
the next generation.

vi. Any M cell that is unable to move becomes an E cell on to
the next generation.

The rationale for choosing rule (v) is based on the fact that M
cells are mobile,21 hence, they are allowed to move anywhere in
the lattice randomly. For rule (vi), it is now known the reverse of
EMT, the mesenchymal-to-epithelial or MET, is also a possibility
when cells become crowded.29

We simulated the revised CA model with actual E and M cells for
the initial proportions of cells identified at time 0. For both WT and
TRAIL, the resultant simulations show a general increase in the
overall HT1080 population survival levels compared with the
previous model without E and M cell distinction (Fig. 3a, red &
blue). For TR+ BIS, where each cell has a low probability of
contact with another cell due to large between space, the
populations remain little changed when all are E cells as observed
from Fig. 1. Introducing M cells here increases the probability of
contact by the moving cells. This feature allows the proliferation
capacity of isolated cells through rules (ii) and (v), which this time
resulted in significant cell proliferation for the TR+ BIS (Fig. 3a,
green).
Notably, the simulations show that at early time steps, cells that

form small initial clusters through cell-cell interaction tend to grow
more rapidly in time, unlike isolated cells (Fig. 3b, yellow and blue
arrows). Thus, the simulations predict that even with a highly
effective treatment strategy of TRAIL with BIS I for HT1080 cells,
with the increased proportion of M cells relative to E cells, in the
longer term, the treatment could become ineffective due to the
spatial-temporal re-organization of the clustered cancers.

Experimental investigation
To scrutinize our CA predictions, we prepared time course
experiments that can be directly compared with the simulation
results. To monitor the proliferation of remnant HT1080 cells, we
removed the existing media from the remaining cells at 24 h and
replaced it with a new media without any treatment for all three
conditions (Fig. 4a and Methods). The cells were monitored using
live microscopy and counted at 0, 6, 24, 48, 96, and 144 h after the
media were replaced.
Notably, in general accordance with our CA simulations, the

HT1080 cells in (i) untreated and (ii) TRAIL-treated conditions
rapidly grew and filled the entire wells within 24 h (Fig. S2–S3 and
Fig. 4b). For (iii) TR+ BIS treatment, the cells remained stable upto
48 h or 96 h, after which sharp proliferation occurred (Fig. S2–S3
and Fig. 4b). These data demonstrate, even after treatment that
kills over 95% cells, that the remaining small number of cancer
cells are able proliferate quickly after a limited lag time, and
highlights the difficulty facing current therapeutics.
To check for the EMT or MET process in our cancer proliferation,

we once again targeted Vimentin for fluorescence tracking in the
culture with time (Methods). We noticed, for each condition, the
proportion of M cells increased in time initially (indicating EMT
process), but subsequently decreased when the respective
cultures became overcrowded with cells for all three conditions
(Fig. S2, bottom), reminiscent of MET process.26 Using cytell cell
imaging system, this was verified by the actual counting of E and
M cells’ proportions (Table 1 and Fig. S1B–F).
Finally, to test whether our TR+ BIS treatment strategy will still

be effective despite the self-organization of cancer cells, we
specifically re-treated TR+ BIS cell cultures after 144 h. Remark-
ably, we observed the re-treatment yielded ~ 90% cell death
despite the regrowth of cells after the initial treatment (Fig. 4c).

These data show that although cancer cells are able to proliferate
after treatment, they do not become resistant to the second
treatment within the timeframe of the experiments. Thus, we
believe the cyclic treatment of TR+ BIS can still be an effective
long-term strategy, despite the self-organizing or proliferative
ability of the remaining treated cells.

Finalizing rules for CA Model with experimental fitting (model C)
Now that the experimental cancer cell proliferations have been
tracked, we incorporated a genetic algorithm-based (GA) para-
meter fitting function into our model B and searched for a best fit
using minimization of distances between experimental and
simulated points (Methods). We, iteratively, modified the rules
manually and allowed GA to automatically fit the cell numbers for
each rule. The best result (Fig. 5a) follows:

i. Any E cell with less than four live neighbors become M cell
on the next generation.

ii. Any M cell with more than eight live neighbors become E
cell on the next generation.

iii. Any dead/empty cell with two to six live neighbors (E or M)
becomes live cell (E or M) as by division.

iv. Any M cell is able to move randomly to an empty cell on to
the next generation.

v. Any M cell that is unable to move becomes an E cell on to
the next generation.

Although the simulations curves captured the general trends,
WT and TRAIL cell number simulations were overpredicted for
most of the time points (Fig. 5a). We conjectured that this might
be owing to each condition possessing different model para-
meters. Thus, to better match the experimental proliferation
numbers, we varied the model C parameters for rules (i) to (iii)
individually to match each condition. That is, we kept the rules the
same but the parameters within the rules were varied. Notably,
this time, we were able to better fit the experimental data
according to each condition (Fig. 5c, d).

DISCUSSION
In this paper, we have shown how a CA model with simple rules
on cancer proliferation can be used to predict the spatial-temporal
effects of cancer cells in a dish (treated or untreated). Here, it is
remarkable how the complex cancer proliferations can be
understood using five simple macroscopic rules. Moreover, our
experiments showed that cancer cells are able to proliferate even
after treatment that eradicates 95% of cells in a dish. Nevertheless,
our repeated treatment still remains largely effective after cancer
regrowth. In the future, it will be critical to investigate whether
TRAIL+ BIS treatment will successfully suppress cancer prolifera-
tions in vivo.
We also believe that the CA rules defined here may extend

beyond HT1080, possibly as general principles for cancer
proliferation. For example, recent experimental works on drug-
resistant melanoma and patient-derived primary cells have shown
the aggregation of drug resistant colonies (Fig. 1e of ref. 30 and
Fig. 1a of ref. 31) similar to the clustering of cells predicted by our E
& M model (Figs. 3b, 5c). Further work investigating the underlying
dynamic signaling or transcriptome-wide response of such
clustered resistant cells may open new doors for targeted cancer
therapeutics using systems biology approaches.

METHODS
CA model
A three-dimensional CA model (named Cancer AutoMata) was developed
in Matlab code consisting of 550 × 550 × 4 cubic (1,210,000) cells, with
each cell having maximum 17 neighbors for the top and bottom planes,
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Fig. 3 Simulations of spatiotemporal evolution of HT1080 cells using revised EMT CA model B. a–c Similar layout to Fig. 1. Note, epithelial and
mesenchymal cells are represented in green and red, respectively. d Time evolution of isolated and clustered cells for TR+ BIS Simulation.
(bottom panel) Close-up views of the simulations, Blue arrow: isolated cell remains largely unaffected. Yellow arrow: cell-to-cell contact of
clustered cells invokes proliferation according to CA rules
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whereas 26 neighbors for other planes. Note that the eight corners have a
maximum of 7 neighbors, and 11 neighbors on the edges. However, who
choose the empty initial cells large enough to avoid reaching the edges/
corners within 15 time steps. We used the above initialization for lattice
configuration to mimic our in vitro experiments,11 where cells are mainly

grown in circular dishes with only a few layers of cells overlapping each
other.
At time= 0 h, for each condition (Fig. 1), the cells were populated with

live cells in random orientation that filled 100,000 cells for the WT, 60,000
cells for TRAIL (60% of WT) and 5000 cells for TR+ BIS (5% of WT). The
outcomes of different initial orientations (random distributions) of cells
were tested through 30 simulations. The CA rules (see maintext) were
applied from time-step 1 onwards.
The size of E and M cells were kept the same, however, M cells were able

to move randomly to any available empty cell on the next generation in
the three-dimensional space, using rand in Matlab, whereas E cells
remained static throughout.
The final model C parameter values (cell numbers) were fitted using the

ga function (https://www.mathworks.com/help/gads/ga.html). The fitness
function simply minimizes the weighted distance x between the
experimental and simulated data summed across the total simulated
time. As there are five experimental time points (excluding the start point
t= 0), x is summed for the five time points and minimized. The four
parameters that were allowed to evolve in the model are only the cell
numbers for rules 1–3 (they were allowed to vary between 0 and 26
depending on their maximum available neighbors, see above). The
number of generations for fitting is automatically chosen (default is 100
generations) by the ga function in Matlab through the “MaxStallGenera-
tions” in the optimization options. As this is a simple two-dimensional

Fig. 4 Experimental evolution of HT1080 cells. a Schematic experimental design. HT1080 cells were plated in 48-well plate prior to 48 h of
medium change. After 24 h of plating cells, cells were treated following conditions (i) untreated (n= 3), (ii) TRAIL stimulated (200 ng/ml) (n=
3), (iii) TRAIL+ BIS treated (10 μM of BIS was pre-treated 30min prior to 200 ng/ml of TRAIL stimulation) (n= 3). b Average plot (with S.D.) of
three independently repeated experiments (Fig. S3) for cell numbers against time at 0, 6, 24, 48, 96, and 144 h. Untreated in blue (WT), TRAIL-
stimulated in red (TRAIL), and TRAIL+ BIS in green (TR+ BIS). Note that the S.D within the replicates are low (Fig. S3), but between
independent runs are larger due to variable initial (t= 0) cancer cell numbers. c The effect of retreating TR+ BIS for evolving HT1080
cells. HT1080 cells, treated initially with TR+ BIS, were again re-treated with the same dosage of TRAIL (200 ng/ml) and BIS (10 μM) after 144 h
(n= 3). Note that about 90% of the evolving cells died for the repeated treatment after 24 h

Table 1. Experimental (averaged over three replicates) proportion of
epithelial (E) over mesenchymal (M) cells

Time (h) E/M cell ratio (mean ± S.D.) %

WT TR TR+ BIS

0 98.2 ± 0.4 90.6 ± 2.1 5.1 ± 1.6

6 92.8 ± 1.9 81.2 ± 1.8 4.2 ± 1.6

24 91.6 ± 0.1 91.4 ± 2.0 5.4 ± 1.2

48 81.3 ± 0.4 81.4 ± 0.3 15.2 ± 7.6

96 99.6 ± 0.1 98.5 ± 0.9 99.5 ± 0.2

144 98.5 ± 0.2 98.5 ± 0.7 98.8 ± 0.4
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growth curves fitting, the total number of generations was kept with
default values as the fitting convergence occurred before 100 generation.
The entire final model C, with a configuration of 550 × 550 × 2 cubic

(605,000), cells is downloadable from (in matlab code with all details):
https://github.com/Eclion/Cancer-AutoMata.

Experiments
Reagents and cell cultures. Recombinant human TRAIL was purchased
from Peprotech. BIS-I was purchased from Merck Millipore. Human
fibrosarcoma cell lines (HT1080) were obtained from Japanese Collection
of Research Bioresources (JCRB) cell bank. HT1080 was grown in Dulbecco's
Modified Eagle's medium (DMEM, Nissui Pharmaceuticals Co., Ltd., Tokyo,
Japan) supplemented with 10% fetal bovine serum, 100 U/mL penicillin,
100mg/mL streptomycin, and 0.25mg/mL amphotericin B at 37 °C in a
humidified atmosphere with 5% CO2. Cells were seeded 2.5 × 104 cells in
each 48-well plate and incubated for 24 h.

Cell counting. Cells were detached with 50 µL of trypsin and suspended in
DMEM, imaged and counted using microscopy and hemocytometer.

Imaging analysis. HT1080 were imaged using Cytell (GE Healthcare)
microscope and × 10 objective lens. Cells are washed one time in
phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde for

15min. Cells were stained using mouse monoclonal anti-Vimentin
antibody (Abcam) as primary antibody and diluted in PBS with Tween
(PBST) at 1:500 proportion with donkey serum (1:200) for overnight at 4℃.
Next, cells were washed in PBS three times and stained using fluorescein
isothiocyanate (1:500) and donkey serum (1:200) in PBST for 2 h at room
temperature. Nuclei were strained in Hoechst for 15min at 1:250
proportions. Analysis was performed using Cytell cell imaging system
software.

DATA AVAILABILITY
The CA model with user instructions is found on URL: https://github.com/Eclion/
Cancer-AutoMata. All raw experimental data are available from the authors.
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