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Purpose: Skeletal muscle insulin resistance (IR) is an important etiology of type 2 diabetes mellitus (T2DM); however, its molecular
mechanism is yet to be fully defined. This study attempted to identify the gene expression patterns and molecular disorders in T2DM
patients’ skeletal muscle samples.

Methods: First, the difference in genetic expression among GSE25462 data was analyzed. Next, PPI network analysis of differential
genes was carried out, after which the maladjustment module was identified. Then, an enrichment analysis and gene set enrichment
analysis (GSEA) were carried out. Finally, the transcription factors that regulate the modular genes by raid were predicted.
Results: Most differentially expressed genes were found to be able to form an interaction network and cluster into 9 modules. These
modular genes were shown to possess a significant correlation with immune inflammation and metabolic response. Importantly, the top
15 genes of area under receiver operating characteristic curve (AUC) were identified, and the expression of 10 genes by GSE12643,
GSE18732 and GSE29221 was confirmed. The expression and AUC value of ALDH6A1 were then verified according to three sets of
data, where ALDH6A1 was found to be negatively correlated with follicular helper T cells. However, among the predicted
transcription regulators, HDAC was shown to have a better regulatory effect.

Conclusion: The findings highlight that the dysregulation of ALDH6A1 expression in IR of T2DM may serve as a potential
therapeutic target. ALDH6AL is involved in the immune inflammation and metabolic pathways.
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Introduction

Diabetes has been recognized as one of the four major non-infectious diseases, which has resulted in about 1.6 million
deaths worldwide. It is regarded as the third risk factor of premature death due to complications, including cardiovascular
diseases." It has been estimated that the global prevalence of diabetes is 8.8% (as of 2017), which is expected to rise to
9.9% by 2045.% In China, the prevalence of diabetes reached 11.6% in 2010, affecting about 113.9 million adults.’ Type 2
diabetes mellitus (T2DM) is the most common type of diabetes, accounting for 95% of all global cases.* Skeletal muscle
insulin resistance (IR) has been noted to be an early feature in the progression of T2DM.’

Fasting blood glucose, 2 hours postprandial blood glucose, glycosylated hemoglobin, insulin resistance and other clinical
indicators are widely used in the diagnosis and classification of T2DM.® Compared with the general population, people with type 2
diabetes have an increased risk of cardiovascular disease, heart failure and death.” Moreover, studies have shown that the excess
risk associated with diabetes is mainly caused by hyperglycemia.®® The pathogenesis of T2DM includes two major abnormalities:
insulin resistance and insulin secretion dysfunction, which lead to an inability in regulating blood glucose levels.'®!! Previous
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animal experiments have found that IR is related to tyrosine metabolism and affects the development of T2DM. '? Interestingly,
studies have also shown that low-grade inflammation is related to T2DM risk, subclinical inflammation can lead to insulin
resistance, and is related to features of metabolic syndrome, including hyperglycemia.'*'* Increased tumor necrosis factor (TNF)-
o secretion is associated with obesity-related insulin resistance. Obesity is a risk factor for the development of T2DM,'>! and
blood pressure has also been shown to be independently associated with the development of T2DM.'”

Recently, researchers have conducted a comprehensive and systematic study on the changes of gene expression in
T2DM patients using genomics technology, in which its biomarkers and possible metabolic pathways were studied,
providing a theoretical basis for the pathogenesis of T2DM. In order to fully understand the pathological mechanism of
T2DM and provide ideas and references for future research on the pathogenesis of T2DM, the genetic expression of
skeletal muscle samples is analyzed in the present study. Furthermore, this study attempts to provide a theoretical basis
for the disease mechanism and molecular markers related to IR in the skeletal muscle of T2DM patients.

Materials and Methods

Identification of Differentially Expressed Genes (DEGs) from Microarray Data
Transcriptome sequencing data of skeletal muscle samples in the GSE25462, GSE12643, GSE18732 and GSE29221
datasets were collected from the GEO (gene expression omnibus) database.'® GSE25462 included 10 patients with
T2DM and 15 healthy controls; GSE12643 included 10 obese T2DM patients and 10 healthy controls; GSE18732
included 45 patients with T2DM and 47 healthy controls; and GSE29221 included 3 patients with T2DM and 3 healthy
controls. The pre-processing of the original data of each microarray included background correction, normalization and
log 2 conversion. The R language software package, DESeq, was used to determine the DEGs between the T2DM
samples and control samples. P < 0.05 was taken as the cut-off criterion.

Construction of the Protein—Protein Interactions (PPI) Network

Using the online search tool to search the interaction gene (String) website (http://string-db.org), the comprehensive score
was >0.4, and the PPI network'® of DEGs was then constructed. Then, the molecular complexity detection (MCODE)
plug-in®® in Cytoscape was used to filter the modules in the PPI network according to the default settings.

Enrichment Analysis and GSEA of Module Genes

The R-package clusterProfiler*’ was used to enrich and analyze the module genes in the gene ontology (GO) and Kyoto genome
Encyclopedia (KEGG). P < 0.05 was defined as the cut-off for the significant function and pathway analysis. Additionally, the
mgeneSim function of the R package in GOSemSim was used to calculate the functional similarity of GO.

In order to identify significantly dysregulated biological pathways in T2DM, GSEA?* was performed by the
clusterProfiler R package under the functional annotations of the KEGG database. According to the default weighted
enrichment statistical method, each analysis was repeated 1000 times. Activated and suppressed pathways with P < 0.05
in each dataset were then merged, after which those with a higher frequency (found in >3 datasets) were identified as
dramatically changed KEGG pathways in T2DM.

Prediction of Transcription Factors

The transcription factor (TF) with a regulatory effect on the module gene was then predicted. The human transcription
factor target data in TRRUST version 2 was downloaded so as to select the TF related to the module gene. Then, the
rentrez R package was utilized to acquire the interactions in the NCBI database and filter the TF. Finally, the TFs that
regulated more than 20 module genes were screened, which were tested using the hypergeometric method.

Results and Discussion

Identification of Differentially Expressed Genes in the Skeletal Muscle of Diabetic Patients
In order to identify the DEGs related to IR in skeletal muscle of T2DM, the gene expression of GSE25462 samples in the
GEO database was analyzed. Accordingly, 1772 DEGs (Table S1) were identified, of which 1080 were upregulated and
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692 were downregulated (Figure 1A and B). The top 10 upregulated and downregulated DEGs are listed in Table 1. In
order to better understand the action network of these DEGs, PPI network identification was carried out. Using the
MCODE plug-in, 732 genes with high interaction were identified, which were then clustered into 9 modules (Figure 1C).
These nine modules may represent different molecular mechanisms related to IR of T2DM in skeletal muscle.

Transcriptional Regulators of Regulatory Module Genes

Transcriptional regulation plays an important role in gene function. Therefore, the transcription factors that regulate the
module genes were predicted. Among the 333 transcription factors predicted and screened through the interactions search
in the NCBI gene database, 16 transcription factors that interacted with more than 20 target genes were identified.
Hypergeometric analysis of the 16 TFs showed a high correlation between transcription factors, especially HDAC, which
was itself coupled with transcription factors in order to play a regulatory role (Figure 2A). Numerous types of target
regulatory relationships exist between key regulatory factors and target genes (Figure 2B). Therefore, it is believed that
HDAC is the core gene in the regulatory network.

Biological Function and Signal Pathway of Modular Genes

In order to study the biological function of the identified module genes, the data was analyzed by an enrichment analysis and
GSEA. The enrichment analysis showed that the module genes participated in the 4577 BP, 448 CC, 779 MF and 229 KEGG
signaling pathways (Table S2). GO functions mainly included the regulation of leukocyte activation, positive regulation of
neurogenesis, regulation of cytoskeleton organization and other biological functions (Figure 3A). Among them, module 1 was
mainly found to be related to the regulation of the muscle system process. Module 2 was shown to be mainly related to cell
morphogenesis involved in neuron differentiation. Meanwhile, module 3 was mainly related to the regulation of leukocyte
activation; module 4 was mainly related to the regulation of body fluid levels; module 5 was mainly related to the small molecule
catabolic process; module 6 was mainly related to cell amino acid metallic process; module 7 was mainly related to muscle organ
development; module 8 was mainly related to hormone secretion; and module 9 was mainly related to the steroid metabolic
process.

However, the KEGG pathways involved in the module genes were observed to be mainly neuroactive live receiver
interaction, MAPK signaling pathway and chemokine signaling pathway (Figure 3B). GSEA showed that 15 pathways
(Figure 3C) had the same signal pathway as that of KEGG enrichment, including the IL-17 signaling pathway, osteoclast
differentiation, and estrogen signaling pathway. These results indicated that the differentially expressed genes in skeletal
muscle of diabetic patients are mainly related to immune and neural responses.

Identification of the Key Dysregulation Gene

In order to identify the key genes that play an important role in skeletal muscle IR in diabetic patients, the area under
receiver operating characteristic curve (AUC) of the module gene was calculated, and genes with the top 15 AUC values
were then screened (Figure 4A). Importantly, the AUC values of 15 genes were verified by GSE12643, GSE18732 and
GSE29221, of which 10 genes were verified (Figure 4B), which were upregulated or downregulated in GSE25462
(Figure 4C). Therefore, these 10 genes were believed to be potential key genes for insulin resistance in the skeletal
muscle of diabetic patients. It was found that the functional similarity of SRF, JUND and NR4A1 was high (Figure 4D).
Among them, the expression of the ALDH6A1 gene and AUC was verified by three sets of data (Figure 4E). Moreover,
the enrichment analysis showed that ALDH6A1 was significantly related to metabolism-related functions and signaling
pathways (Figure 4F). In addition, the correlation between ALDH6A1 and immune cells was calculated (Figure 4G).
ALDHO6A1 was found to have a negative correlation with most immune cells in the diabetic samples. In particular, the
negative correlation with follicular helper T (TFH) cells was strongest (Figure 4H). Therefore, ALDH6AI1 can serve as a
key candidate gene for insulin resistance in diabetic skeletal muscle.

It is both clinically and scientifically important to study the main molecular defects present in the pathophysiology of
human T2DM. This study showed that 1772 DEGs were present in the skeletal muscle of T2DM patients compared with
those of healthy controls. Gene expression analysis can be used to identify markers or early defects related to disease
phenotypes. Previous studies have shown that the expression of mitochondrial oxidative phosphorylation related nuclear
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Table 1 Top 10 Upregulated and Downregulated Differentially Expressed Genes

DEG logFC AveExpr P value
CALML6 1.331931 7.067413 0.003534
PDK4 1.327601 8.387643 0.012429
ABRA 1.277571 9.459666 2.95E-06
PVALB 1.217981 5.047922 0.006289
1L32 0.936305 8.338253 0.015874
MYHI 0.852828 12.69676 0.041078
OTUDI 0.741183 6.076541 0.004083
APOD 0.70477 9.926132 0.004646
LMODI 0.663079 7.294198 0.002226
CYR6I 0.629836 5.686033 0.000434
ALDH6AI —0.6227 6.718785 0.000105
CIART —0.63551 8.051595 0.003097
PTGR2 —0.65085 6.332798 0.005591
LRPIB —0.71353 5.595935 0.0357
LOCI100134445 —0.71682 6.749796 0.041365
GCLM —0.72606 7.03357 0.001565
ENPP5 —0.79438 6.245947 0.003334
TECRL —0.80555 8.394449 0.004057
RCAN2 —0.86372 9.346666 0.000415
LDHB —0.87802 10.1337 0.00303

coding genes in T2DM patients was reduced.”® In addition, in T2DM patients, insulin signaling and glucose uptake
related genes and signaling pathways were also shown to be changed significantly.”* These DEGs can be identified by a
PPI network with significant interaction. Accordingly, 9 subnetworks of gene interaction were obtained in this study, each
of which may represent a mechanism of action.”

The conducted enrichment analysis demonstrated that the module genes were mainly involved in the regulation of immune
and metabolic processes. First, genes related to immune inflammation were shown to play an important role in the progression of
T2DM."° Due to the low degree of inflammation in T2DM, these genes can affect insulin sensitivity and insulin secretion.”®
Various studies have shown that low-level inflammatory markers may be helpful in distinguishing classic adult type 1 diabetes and
T2DM.?” The present data showed that most modular genes were involved in the MAPK and IL-17 signaling pathways. P38
mitogen activated protein kinase (MAPK) signaling pathway was also found to be involved in the apoptosis of a variety of
inflammatory cells, which may serve as a potential therapeutic target of T2DM characterized by low-grade inflammation.*® In
addition, p38 y MAPK activation has been shown to inhibit insulin signal transduction at the level of the insulin receptor
substrate.”” However, IL-17 has been shown to play an important role in inflammation, insulin resistance and type 2 diabetes.*
Compared with the healthy controls, the expression of IL-17 in Foxp3-CD4 T cells and Foxp3 + Treg cells in T2DM patients was
demonstrated to be significantly higher.*' Moreover, the current analysis also found that metabolic function was found to be

significantly enriched in the T2DM skeletal muscle samples. Past studies have analyzed the metabolites of 1940 patients with
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T2DM, in which a rise in isoleucine, leucine and proline led to an increase in the relative risk of T2DM.*? In addition, glycine was
observed to be positively correlated with insulin sensitivity, and f - hydroxypyruvate, an intermediate metabolite of glycine, was
also considered to be a predictor of diabetes.**~** The metabolism of bile acids, short chain fatty acids and metabolites cooperate in
the metabolic regulation system, leading to IR.>> Therefore, it is believed that the imbalance of skeletal muscle gene expression in
T2DM patients may serve as a potential factor leading to IR.

Importantly, ALDH6A1 was shown to play a vital role in the diagnosis and treatment of IR in the skeletal muscle of
T2DM patients. ALDH6A 1 has been identified as a new adipose tissue marker related to T2DM obese people.>® In the IR
atherosclerotic mouse model, ALDH6A1 is the highest ranked genes for the oxidative phosphorylation pathway.®’
ALDH6A1 encoding methylmalonate-semialdehyde dehydrogenase, consistent with impaired branched-chain amino
acids (BCAAs) metabolism.*® BCAAs functional attenuation has previously been shown to be involved in T2DM or
IR associated mitochondrial dysfunction and impairment of oxidative metabolism.*® In this study, the mRNA level of
ALDH6AL1 in T2DM skeletal muscle was found to be relatively downregulated. However, whether the decrease in
ALDHG6AL1 transcription activity in skeletal muscle is the cause or result of IR remains unanswered.

Histone deacetylase (HDAC) was found to be the most interactive gene among transcription factors by predicting the
transcription regulators of the modular genes. Histone modifying functions of HDACs can regulate gene expression and
affect pancreatic development.*® HDAC is the therapeutic target of T2DM, and its inhibitor has been demonstrated to be
a new therapeutic drug of T2DM.*"**> HDAC inhibitors, which constitute a new class of drugs to treat diabetes and its
complications, play an important role in preventing B - cell resistance to insulin, destroying B - cells and preventing
cytokine mediated attacks on pancreatic cells.*?

Conclusions

This study’s findings demonstrate that abnormal immunoinflammation and metabolic response may play a role in the pathogenesis
of skeletal muscle insulin resistance in patients with T2DM. In addition, ALDH6A1 may serve as a potential marker, and HDAC
is a transcriptional regulator of T2DM maladjusted genes rather than only a class of enzyme.
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