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Abstract

In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of
adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by
recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary
dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus
coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses
facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit
immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify
distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a
consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral
protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities
and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally
coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid
emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon
in evolving microbial communities.
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Introduction

All organisms are susceptible to infection by viral pathogens.

The sheer number of viruses found in natural environments is

staggering; it is estimated that 1031 virus particles are circulating at

any time [1,2] containing at least hundreds of thousands of

genotypes [3], most of which infect bacteria and archaea. Bacteria

and archaea resist infection through random mutation resulting in

loss or modification of viral receptors, or through targeted defense

systems such as physical blocking, restriction-modification systems,

and abortive infection systems [4–10]. Both negative frequency-

dependent selection (NFDS) and diversifying selection for micro-

bial resistance have been suggested to result in the diversity

observed in natural systems [11–13]. The trade-off between

resistance and growth rate has become the dominant model for

microbe-virus coevolution [14], with variation in fitness driving

diversification of the host and resulting in the predicted

coexistence of many genotypes of both hosts and viruses [15].

These theoretically predicted trade-offs have also been seen to

promote diversity of both host and viral populations in experi-

mentally evolved populations [16–21].

Recently the CRISPR-Cas system was experimentally shown to

function as an adaptive microbial resistance mechanism, using the

model organism Streptococcus thermophilus [22] (see reviews in [6,23–

32]). The CRISPR-Cas system, components of which are found in

the majority of sequenced microbes [33], is comprised of short

DNA fragments (spacers) flanked by palindromic repeats in repeat-

spacer arrays [32]. These fragments are often identical to

sequences in plasmids, viruses, and other foreign elements [34].

When a microbe containing an active CRISPR system encounters

one of these foreign elements, it can add a new spacer matching a

sequence in the foreign genome (protospacer) [22]. The CRISPR

system can acquire spacers from many locations in a foreign

genome, requiring only a short protospacer-associated motif

(PAM) adjacent to the protospacer [25,35]. Repeat-spacer arrays

are transcribed, processed, and used to guide an effector complex

which inactivates matched foreign genetic material on any

subsequent encounter [36]. Escape mutations in protospacers
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prevent recognition by the CRISPR-Cas system resulting in a

coevolutionary dynamic in which viruses evolve through random

mutation while hosts evolve through ‘‘directed mutation’’ facili-

tated by adaptive immunity [25,37–39].

We propose that crucial elements of the CRISPR system result

in a diversifying coevolutionary mode that is distinct from the

traditional trade-off model described above. Adaptive CRISPR

acquisition of new spacers leads to the potential for competing

CRISPR genotypes to emerge within a host population at the

same (or similar) time – akin to the phenomena of ‘‘clonal

interference’’ [40,41]. The vast reservoir of protospacers in each

virus creates the potential for competing host genotypes with

similar (or identical) resistance phenotypes that are not necessarily

subject to fitness tradeoffs between immune alleles. In contrast,

viral strains are limited in potential escape mutations by fitness

constraints on mutations in their genomes that can modify

regulatory elements and RNA- and protein-encoding genes. In

addition, each viral escape mutant only allows access to a single

host immune allele potentially composing a small subset of the host

population [42,43]. We hypothesized that these differences would

allow for a dramatic restructuring of the coevolutionary mode

wherein many different hosts are immune to the same virus in

different ways. We label this many-to-one, genotype-to-phenotype

phenomenon distributed immunity.

We previously developed an eco-evolutionary model of

CRISPR-mediated host-viral coevolution [44]. In brief, the model

incorporates density-dependent Lotka-Volterra like ecological

dynamics with the evolutionary introduction of new hosts and

viral strains with novel genetic states. Ecological rules of

interaction including host reproduction and death, viral infection

of hosts and viral deactivation outside of hosts determine host and

viral densities. Viral infection of hosts can lead to either host lysis

or viral deactivation, which may occur with or without spacer

integration. During replication, viral strains evolve through

mutation generating a novel protospacer. Host immunity is

determined by the presence of at least one spacer matching a

virus, yet is not full-proof, i.e., there is a small chance that a host

with a matching spacer to an infecting virus will not be immune

[44]. In simulations of our model, host and viral populations

oscillate in abundance over short time scales, whereas host and

viral genotype composition changes over long time scales,

mediated by coevolutionary adaptation. A comparison of this

and other models of CRISPR-mediated coevolutionary dynamics

(e.g., [45–49]), whose exact dynamics depend on the specific

molecular, ecological and evolutionary parameters can be found

elsewhere [44,50].

Within our model, examining the diversity of the host

population at each maximum in total host population abundance

(host peaks), we observed two types of emergent population

dynamics: (i) near selective sweeps by novel or recurring strains

and (ii) simultaneous growth of phenotypically similar but

genotypically diverse groups of strains which we termed coalitions

[44]. Although the diversification of host populations with

CRISPR immunity had been noted previously [44,45,48,49,51],

in this paper, we present a metric, population-wide distributed immunity

(PDI) to quantify distributed immunity in a population, to examine

how distributed immunity varies over time and to determine how

this evolutionary mode affects the coevolutionary dynamic. We

used simulated data from our model to: (i) determine when

coalitions are characterized by distributed immunity; (ii) identify

conditions under which distributed immunity is the dominant

evolutionary mode in a simulation; and (iii) quantify the effects of

distributed immunity on host-viral relationships by examining

diversity and stability of host and viral populations. Finally we

determined that the diversity exhibited in an experimental host-

viral community is associated with distributed immunity.

Results

Quantifying distributed immunity
Distributed immunity denotes the emergent phenomenon in which

multiple immune alleles coexist within and between hosts. When

these alleles are distributed between different hosts that have

CRISPR-Cas resistance, then multiple hosts have similar immune

phenotypes yet have distinct, coexisting associated CRISPR

genotypes. To measure the impact of distributed immunity, on

each population, we developed a metric called population-wide

distributed immunity (PDI) in which CRISPR-Cas immune

relationships of all host-host-viral strain triplets are tested to

determine if the two host strains contain spacers matching

different protospacers on the same viral strain (Figure 1, see

Methods for details of the calculation). The intuition behind our

metric is that all triplets contribute positively to PDI when both

hosts are immune to the virus by means of distinct spacers

matching the virus. In the case where both hosts are immune to

the virus but via the identical spacer, the immunity is not

distributed throughout the population and thus does not

contribute to PDI. Although phenotypically immunity via identical

or distinct spacers is equivalent, the varied genotypes may follow

different evolutionary pathways. For example, when PDI is high,

mutation of a single protospacer does not permit escape in the

majority of the host population. However, when PDI is low, a

single protospacer mutation may lead to viral escape in most of the

host population. The degree of contribution by each triplet

depends on the product of the relative abundance of the host

strains and viral strain and immunity between the host and viral

strains (see Methods for details of the calculation). The maximum

PDI for a population at any time increases with the number of host

strains (with n host strains the maximum is 1-1/n) and is only

obtainable when the following hold: there are at least two alleles

that confer immunity to the viral strains, all host strains are

immune to viral strains, and the abundance of each host CRISPR

allele is equal (Figure S1). Note that the abundance of the viral

strains does not affect the potential for PDI (see SI text for further

discussion).

In the simulated eco-evolutionary dynamics of hosts and viruses

[44], we find that PDI varies through time (Figure 2). PDI is

typically highest just prior to peaks in host population density and

drops to at or near zero in between (Figure 2). Every peak of host

density does not contain high PDI, even if its potential maximum

PDI is high, and in our simulations we find that measured PDI is

well below the potential maximum. Low PDI results from (i)

unevenness of the host population (Figure 2b-1, Figure S1), (ii) a

large fraction of the hosts lacking immunity to the viral population

(Figure 2b-2) or (iii) the majority of hosts having immunity to the

viral population via the same spacer (Figure 2b-4). In contrast,

high PDI occurs when multiple hosts have unique spacers to the

same viral strains. This can occur when a dominant host strain

diversifies via the acquisition of unique spacers to the same viral

strain (Figure 2b-3). Across all simulations, the PDI at host peaks

ranges from 0 to 0.7203 with an overall mean of 0.0710. We find

no direct, predictable relationship between the abundance of host

and viral populations at their peaks in relation to the concurrent

value of PDI within a single simulation. In contrast, we

hypothesize that PDI functions to alter the future host and viral

dynamics within a community. Diversified hosts (with a high PDI)

may affect the composition and total density of virus populations

that recur in the next peak in host density or much later. This is
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due to the complexity and diversity of both host and viral

populations in which a particular diversified host can be targeted

by divergent low abundance viruses that were created much

earlier.

Parameters that increase population-wide distributed
immunity

To determine how biological parameters might influence the

evolutionary mode across a simulation toward or away from

distributed immunity, we altered four parameters that vary

between microbial and viral strains: viral mutation rate, m; spacer

acquisition rate, q; maximum host spacer number, S; and viral

protospacer number, P. To avoid the period of transient dynamics

occurring at the initiation of the simulations from a single viral and

single host strain, we measure median PDI in the last 500 hours of

each simulation, where the host spacer locus is filled and both host

and viral diversity are most regular (see File S1, Figure S2).

Comparing the population dynamics between sets of simulations

with varying parameters, we found that average PDI across the

simulations increases when viral mutation rate decreases and when

the number of relative protospacers increases (Figure 3). There are

also increases in PDI when the spacer acquisition rate increases

and the number of spacers increases, but PDI above 0.1 is rarely

seen (Figure 3). The highest average PDI is seen with high relative

protospacer number (P = 20) and low viral mutation rate

(m= 1027) while lowest average PDI occurs with low relative

protospacer number (P = 5) and low spacer acquisition rate

(q = 1026). Increases in average PDI result from coevolutionary

dynamics that include more host population peaks with higher

PDI, rather than from an increase in PDI when host populations

are not near their peak values.

Population-wide distributed immunity is associated with
individual distributed immunity

In simulations with a higher average PDI, we observed an

additional dynamic where individual host genotypes contain

multiple spacers matching the same viral strain at distinct

protospacers. This represents an analogous form of distributed

immunity, albeit within a single host. Since this will have similar

evolutionary effects as PDI, we quantify the average per host

immunity to viral strains with a new metric denoted as individual

distributed immunity (IDI). IDI is equal to the average number of

distinct matching spacers between each pair of viral and host

strains (see Methods for details of the calculation). When IDI is

greater than one, the host population is on average immune in

multiple ways to the viral population due to targeting multiple

regions of the viral genome. We find that there is strong

correlation between PDI and IDI (Figure S3) and, as with PDI,

there is high IDI with low viral mutation rate and high protospacer

number (Figure S4). Hereafter, we collectively refer to PDI and

IDI as DI.

Elevated distributed immunity is associated with
increases in host diversity, density, and stability

Having identified conditions under which simulations with high

levels of distributed immunity are linked to changes in host-virus

relationships, we investigated possible consequences of these

altered interactions. We found that simulations resulting in high

levels of distributed immunity are correlated with increased host

strain count and population density (Figure 4A–D). We find a

much stronger association between DI and these population level

indicators than when evaluating the statistical relationship between

mutation rate and protospacer number alone. For example, the

Spearman rank correlation coefficient between host population

density and PDI is 0.84 whereas it is 20.31 and 0.49, when

evaluated against mutation rate and P, respectively (all p,0.001).

Similarly, the Spearman rank correlation coefficient between host

strain count and PDI is 0.78 whereas it is 20.26 and 0.27, when

evaluated against mutation rate and P, respectively (all p,0.001).

The data collapse of host population density and host strain count

as a function of PDI from simulations with different governing

parameters is apparent in Figure 4A–D. Investigating simulations

where distributed immunity has a strong effect (high DI), we also

observed extended periods of high density, stable host populations

(see time points between 9700–10000 in Figure 5A–C for a typical

example). Periods of stable host-controlled dynamics occur

exclusively in parameter sets which have higher DI: P = 15,

P = 20, and m= 1027, and the proportion of simulations which

exhibit extended stable periods increases with increasing DI

(Figure 5E, black bars). The finding of extended stability is not

driven solely by the extended high host density; this pattern is

observed whether DI is measured at all time points (as in

Figure 5E), or only at host density peaks.

Figure 1. Population distributed immunity (PDI) depends on immunity relationships between hosts (circles) and viruses
(hexagons). Immune elements are denoted as linear arrays of boxes. PDI is the sum of contributions (dPDI) calculated amongst triplets of two hosts
and one virus, adjusted by their population proportions, as follows: (A) dPDI = 0 when only one (or neither) hosts in a triplet match the virus as
R(N1,V1) = M(N1,V1) = 0, R(N1,V1) = M(N1,V1) = 1,and R(N1,N2,V1) = 0. (B) dPDI = 0 when both hosts match the virus with the same spacer as
R(N1,V1) = M(N1,V1) = 1, R(N1,V1) = M(N1,V1) = 1,and R(N1,N2,V1) = 0. (C) dPDI = N1N2V1{1-[|N1-N2|/max(N1,N2)]} when both hosts match the virus via
different spacers ass R(N1,V1) = M(N1,V1) = 1, R(N1,V1) = M(N1,V1) = 1,and R(N1,N2,V1) = 1. Identical colors, indicated by arrows, represent matching spacer-
protospacer pairs. White protospacers and spacers are unique.
doi:10.1371/journal.pone.0101710.g001
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Elevated PDI is associated with decreased viral diversity
and density

In contrast to the increases in host population density and host

strain count as PDI increases, the trends for viral population

density and viral strain count are non-monotonic (Figure 4E–H

and Figure S5). At lower PDI (PDI,0.2) increases in PDI correlate

with increases in viral population density and weakly correlate

with increases in viral strain count (Figure 4 and Figure S5). The

observed viral population increases are also correlated with

increases in host population size and host immunity (Figure S6).

Although immunity is increasing, it is still relatively low, suggesting

that individual viral strains can continue to grow on subsets of the

total host population. Simultaneously, as PDI increases, the host

population is also increasing, so that each subset of hosts that

viruses can infect is actually larger than at lower PDI. At higher

PDI (PDI.0.2), increases in PDI correlate with decreases in viral

population density and viral strain count (Figure 4). Beyond

PDI = 0.2, increases in host population size and immunity no

Figure 2. Host populations exhibit periods of different coevolutionary dynamics. (A) Population dynamics of the host (top) and virus
(middle) and PDI (bottom) from a representative simulation. Each color represents a host or viral strain with a unique spacer or protospacer set and is
proportional in height to the strain proportion in the population; colors repeat when not touching. (B) Spacer-protospacer matches between major
host and viral strains at four time points as examples of single-strain dominance (1), coalitions with low immunity (2), coalitions with high PDI (3), and
coalitions with high immunity but low PDI (4). The spacer and protospacer composition of each host or viral strain, respectively, is listed horizontally.
The number in the first column indicates the proportion of each strain in the population, while the remaining boxes represent the spacer or
protospacer state. Host strains making up less than 2% and viral strains making up less than 5% of the population, which only have minor impact on
the calculated PDI, are omitted for space. Matching colors in host and viral boxes indicate a spacer-protospacer match. White boxes are spacers or
protospacers without a match. Model parameters are standard parameters in Table S2.
doi:10.1371/journal.pone.0101710.g002
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longer correspond to higher viral densities. This decrease in viral

density is consistent with the fact that the proportion of hosts that

viruses can infect (HVI, see Methods for details of the calculation)

decreases as DI increases, and HVI is significantly lower in

simulations with higher DI (Figure S7). Accompanying decreases

in viral population sizes we find that the proportion of simulations

in which viruses go extinct increases with increasing DI (Table S1

and Figure 6, dark gray bars). Parameter sets with the highest DI,

P = 20 and m= 1027, result in viral extinction in 10% and 12% of

simulations with filled loci, respectively, the highest rates of

extinction of any parameter set (Table S1). Considering simula-

tions in which the CRISPR locus does not fill before the last

500 hours, 90.7% end in viral extinction, including 94.3% and

91.6% of P = 20 and m= 1027 simulations, respectively. Nearly all

simulations with lower DI reach a full spacer locus prior to the

final 500 hours (Table S1).

Elevated distributed immunity identified in an
experimental viral-host community

We examined whether the dynamic of distributed immunity

observed in simulations is consistent with patterns observed in

experimental microbial communities in which both virus and host

sequence is known. To do so, we estimated DI within an

experimental set of host and viral populations. A quantitative

assessment of the contribution of the relative DI to the

maintenance of diversity in natural microbial populations is not

possible in most studies, as the contemporary virus population is

not typically sequenced. Despite technical challenges to date in

testing distributed immunity in natural populations, studies in

laboratory populations offer an opportunity to measure distributed

immunity. Numerous studies in laboratory populations have

shown that upon challenge by a single phage, multiple S.

thermophilus genotypes emerge with different spacers providing

immunity [22,25,26,37,38,52]. For our analysis, we used data

from Sun et al. [38], the only study with both sequences and

abundances from the entire coevolving host and viral populations

as required to measure DI. In this study, a laboratory-coevolved

population of Streptococcus thermophilus and its phage 2972 was found

to exhibit rapid spacer addition as well as phage CRISPR escape

mutations. After 1 week of co-culture, the host had added 43 new

spacers to one CRISPR locus, and three viral mutations in

targeted protospacers or PAMs were detected [38]. Given the

diversity of new spacers matching a small pool of viral types, we

estimated a high value of PDI for these populations. Using

populations reconstructed from spacer-containing reads and viral

SNP distributions (Figure 6, see Methods), the value of PDI after 1

week of coevolution was 0.4331, out of a maximum possible PDI

of 0.5933. This estimate of elevated PDI complements Sun et al.’s

[38] observation of multiple acquisitions of distinct CRISPR

escape mutants, and suggests a population-level effect that may act

synergistically with individual host-viral interactions. Note that this

PDI value is larger than the median PDI in 99.8% and the highest

observed PDI in 75.9% of all simulations we conducted. The value

of IDI, 1.2264, was higher than the median IDI in 97.7% and the

highest observed IDI in 58.7% of simulations.

Figure 3. PDI is elevated at high protospacer number and low viral mutation rate. Measured PDI in numerical simulations is shown with
varying (A) protospacer number; (B) host acquisition rate; (C) viral mutation rate; (D) spacer number. Bars (and lines) represent mean (and SEM) of PDI
of replicate simulations, with each replicate represented by the median value across the final 500 hours of that single simulation. Unless varied,
parameters are S = 10, P = 10, q = 1025, m= 561027. Using analysis of variation for unbalanced data all pairwise comparisons of mean PDI are
significant at p,0.001 except comparisons between: m= 561027 and m= 7.561027 (p,0.01) in (C); m= 7.561027 and m= 1026 (not significant) in (C);
and q = 561025 and q = 1024 (not significant) in (D).
doi:10.1371/journal.pone.0101710.g003
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Discussion

We have explored the immune dynamics resulting from a

computational eco-evolutionary model driven by CRISPR-medi-

ated immunity. The model demonstrates how a host-viral

community can evolve a complex structure where different hosts

are immune to the same virus as a result of immunity conferred by

Figure 4. PDI and population measures when varying mutation rate and protospacer number. High PDI is associated with (A–B)
increases in host population density, (C–D) increases in host strain count, non-monotonic changes (E–F) in viral population density, and non-
monotonic changes (G–H) in viral strain count. Left column is varying mutation rate, m, and right column is varying protospacer number, P. Unless
varied, parameters are S = 10, P = 10, q = 1025, m= 561027. Each point is the median from the last 500 hours of a single simulation. Note that both
viral population density and viral strain count are unimodally related to PDI, with the lowest levels of both viral population density and strain count
occurring at high PDI. The Spearman rank correlation coefficients of all comparisons, noted in the upper right corner of Figure panels, are significant
at p,0.001. These relationships, including those that are non-monotonic, are discussed further in the main text.
doi:10.1371/journal.pone.0101710.g004
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different immune alleles, which we have quantified as distributed

immunity. Immunity relationships between hosts and viruses with

distributed immunity may appear similar from the phenotype level

to relationships lacking distributed immunity; however, the

underlying genetic diversity present in distributed immunity

changes the dynamics of coevolution. In particular, during periods

of elevated distributed immunity, the host population is diverse

and stable while the viral population is restricted in the number

and extent of possible beneficial mutations and is prone to

extinction. The stable maintenance of multiple non-dominant

genotypes that accompanies distributed immunity is likely

facilitated by NFDS. The generation of distributed immunity

and the selective mechanisms of NFDS may work together to

promote diversity.

Several CRISPR models have previously observed diversity in

host spacer content both at an individual and population level

[44,45,48,49], but understanding that diversity has been a recent

exploration. Although Iranzo et al. [49] established several

population-level findings, such as CRISPR immunity promoting

the coexistence of viruses and hosts at intermediate viral mutation

rate and the lack of increased viral diversity with CRISPR

immunity, they did not attempt to expound upon these findings,

which they labeled counterintuitive. Our model, even with its

reduced complexity as we ignore populations lacking CRISPRs, is

able to reproduce these results and offer an explanation for them

via distributed immunity. Here, we have demonstrated that the

consequences of viral protospacer number and mutation rate as

well as host spacer acquisition rate and spacer number on the

Figure 5. Host stability in a high DI population. (A) Plot of host dynamics for a representative model simulation containing an extended period
of host population stability. Each color represents a host strain with a unique spacer set and color height is equal to population proportion of the
strain; colors repeat when not touching. (B) Total population density in log-scale of host (blue) and virus (red) strains. (C) PDI (magenta, left y-axis) and
IDI (green, right y-axis) metrics. (D) Spacer-protospacer matches at 9800 hours. The spacer and protospacer composition of each host or viral strain,
respectively, is listed horizontally. The number in the first column indicates the proportion of each strain in the population, while the remaining boxes
represent the spacer or protospacer state. Strains making up less than 5% of the population are omitted for clarity. (E) Numbers at the top of each bar
designate the total number of simulations in each bin. A simulation is denoted as ‘‘stable’’ when the host population remains above 3e5 (close to
carrying capacity) for at least 100 consecutive hours, and as ‘‘viral extinction’’ if the simulation ends prior to the designated endpoint due to reaching
a viral population size below our density cutoff of 0.1/mL. Comparisons of subsampled data for stable and viral extinction show significant differences
between means of all PDI bins (except between 0–0.1 and 0.1–0.2 stable simulations) and all IDI bins (except between1.8–2.4 and 2.4–3.0 stable
simulations).
doi:10.1371/journal.pone.0101710.g005
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population dynamics can be explained as acting through

distributed immunity thereby linking the molecular and evolu-

tionary mechanisms to the eco-evolutionary dynamics that have

been observed. Since distributed immunity only requires some of

the spacers to be distinct, it is consistent with a previously posed

model where random deletion lead to selective sweeps of trailer-

end spacers [48].

CRISPR-Cas diversity varies greatly among systems. At one

end of the spectrum are the slowly-evolving CRISPR-Cas systems

of Escherichia and Salmonella, where estimates indicate that strains

that have diverged in the last thousand years have identical

CRISPR loci [53]. At the other end are natural populations

exhibiting high CRISPR-Cas diversity, including the human gut

microbiome [54], Yersinia pestis plague foci [55], and hot spring

populations of Sulfolobus islandicus [56,57]. Notably, in the case of S.

islandicus, these archaeal populations do not contain a dominant

genotype or display evidence of selective sweeps over a ten-year

interval [57] but maintain diversity at both the leader and trailer

ends of the CRISPR loci over time. Some natural populations

demonstrate evidence of past selective sweeps in the form of

conserved trailer-end spacers, particularly populations of acido-

philic microbes found in acid mine drainage [48,58,59]. The

difference between the immune structures of different microbial

populations may be driven by differences in the extent of

distributed immunity within populations, differences in the levels

of reassortment of CRISPR alleles between strains in different

populations [57], or the action of other host defense systems

operating along with CRISPR-Cas immunity.

Indeed, our model suggests that the biology of CRISPR-Cas

system might define the resulting level of diversity observed in

natural populations. We show that the number of protospacers,

viral mutation rate, and host acquisition rate all significantly

influence the level of distributed immunity in a way that would

result in different immune structures in natural populations. These

factors have been shown to vary in natural microbial populations.

For example, in microbes with active CRISPR-Cas defense, the

number of protospacers is determined by both the length of the

viral genome and the length and sequence of the PAM sequences,

which direct acquisition and interference. We infer that proto-

spacer number is positively correlated with distributed immunity

because at higher protospacer numbers it is easier for hosts to

acquire multiple spacers to the same virus (higher IDI) and for

different hosts to acquire different spacers (higher PDI). We

hypothesize that microbial hosts utilizing shorter PAMs or that are

infected by viruses with larger genomes are more likely to display a

diversified immune structure that is consistent with distributed

immunity. Variation in viral mutations rates has also been

observed in natural populations. For example, it has been

suggested that thermophiles and their viruses have lower mutation

rates than their mesophilic counterparts [60,61]. Our model

suggests that this is consistent with data showing that the

thermophilic archaeon S. islandicus appears to maintain a stable

diversified population over time [56,57]; however, this hypothesis

must be explicitly tested. Finally, in this study we did not explore

variation in the probability that CRISPR immunity fails such that

a host cell does not recognize and clear a virus for which it has a

matching spacer. Such failure may result in the proliferation of a

virus to which there exists some immunity in the population.

Given our previous analysis showing the relatively minor effects of

such failure on resulting dynamics [44], we do not expect

significant effects of the stochastic failure of host spacers on

distributed immunity, at least in the range of failure values

observed experimentally [22]. However, in the case of exposure to

plasmids rather than viruses, such failure may permit the exchange

of genetic material between hosts [62]. Under conditions when

genetic exchange is advantageous (e.g., in the presence of many

beneficial plasmids [63]) then the occurrence of distributed

immunity may result, even if seemingly unfavorable, to protect

against virulent viruses.

Although natural population data is not yet available to employ

our novel metrics PDI and IDI for quantifying distributed

immunity, we have quantified this evolutionary mode in an

experimental population. Qualitatively, Sun et al. [38] observed

rapid transition from clonal to diversified in both host and viral

populations as a result of CRISPR-Cas immunity. We demon-

strated that this diversification also exhibited rapid emergence of

DI and hypothesize that our finding of highly elevated PDI in Sun

et al. [38] may be due, in part, to the relatively large number of

protospacers in the genomes of phage (associated with replete

PAMs), as compared to the use of low number of protospacers

(P = 5–20) in our models due to computational constraints. This

hypothesis is further supported by our simulation results where DI

increases as we increase protospacer number (see Figure 3A). We

predict that in this system when the S. thermophilus hosts exhibit

distributed immunity, viral populations will be smaller, less diverse

and more prone to extinction. We consider it an important future

goal to extend the DI analysis of S. thermophilus and phage to

systems in which host and viral metagenomes are available to

further quantify the variation of DI in natural populations.

A better understanding of CRISPR-mediated coevolutionary

dynamics will have important implications for medical applica-

tions for example those seeking to target microbial pathogens with

phage therapy. In addition, our model suggests possible optimal

strategies for engineering stable microbial communities immune to

phage attack such as those used in biofuels production or other

industrial applications. Finally, CRISPR immunity serves as an

interesting model system in which to study the broader effects of

Figure 6. PDI and IDI estimated in a population of Streptococcus
thermophilus and its phage 2972. Data from [38] (accession number
SRA049615). Virus protospacer and host spacer states are shown after
one week of experimental coevolution. Matching colors in host and
viral boxes indicate a spacer-protospacer match. White boxes are
spacers or protospacers without a match. All viruses are shown; host
strains that make up less than 3% of the population are not shown for
clarity. Protospacer positions for which there is no match between any
virus and the hosts shown are omitted.
doi:10.1371/journal.pone.0101710.g006
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diversified immunity on pathogen evolution. Such diversity

impacts the trajectory of host-virus coevolution in microbes

mediated by CRISPR-Cas immunity. Further understanding

how distributed immunity affects the evolutionary path of

populations may yield insight into the effects of host immune

diversity in microbial communities and other systems.

Methods

Model information and statistical analyses
We use the model introduced in Childs et al. [44] to generate

our simulation data. Briefly, in the model, ecological host-viral

dynamics are combined with the introduction of new host and

viral strains through changes in the CRISPR space and

protospacer states. Hosts may acquire new spacers during viral

infection, and viruses may mutate to novel protospacers during

replication. Host immunity towards an infecting virus requires the

presence of at least one spacer matching a viral protospacer, but is

not full proof. The population dynamics of host and viral strains

are deterministic but the incorporation of hosts’ spacers and

mutation of viral protospacers occurs stochastically. Further details

of the model are reviewed in the supplemental information with

the parameters used in Table S2. Although this paper focuses on

four parameters (protospacer number, spacer number, viral

mutation rate, spacer acquisition rate), Childs et al. [44] more

thoroughly tests dependencies of model dynamics on other

parameters. Due to the stochastic nature of our model, the

parameter regions surveyed were limited by computational cost.

All results presented are averages of 200 replicate simulations,

unless otherwise noted (Table S1), with each replicate represented

by the median value across the final 500 hours of that simulation.

One hour is equivalent to the inverse of the growth rate – what we

denote here as a typical host generation time. Simulations were

excluded from population averages whenever the spacer states did

not contain the maximum number of spacers (full locus)

throughout the final 500 hours of simulation or whenever the

viral population fell below our density cutoff before the locus was

filled (Table S1).

For each of the four parameters varied (protospacer number,

spacer number, viral mutation rate, spacer acquisition rate),

measurements from replicates at each parameter value tested were

grouped. The means of replicate PDI and IDI measurements were

compared using analysis of variation for unbalanced data (data

from Figure 3 and Figure S4).

The Spearman rank correlation coefficients were determined

for variations in each parameter between PDI, host population

density, viral population density, host strain count, viral strain

count, and IDI (data from Figure 3, Figure S3 and Figure S5). The

Spearman rank correlation coefficients were also determined for

variations in PDI, host population density and immunity

combining all parameter sets (data from Figure S6). R2 values

were determined for correlations between HVI and PDI, and

between HVI and IDI (data from Figure S7).

The data collapse of host and viral output variables, as a

function of PDI, from simulations with different governing

parameters is apparent in Figures 4 and Figure S5. To test for

correlations, linear R2 values were determined for variations in

each parameter between PDI, host population density, viral

population density, host strain count, viral strain count and IDI for

variations in each parameter (data from Figure 4, Figure S5).

Despite significant linear correlation in almost all cases, except

between PDI, host strain count and viral strain count when

varying S, it was evident upon inspection that the relationships

between PDI and viral population density and viral strain count

were better described by non-linear functions, particularly

quadratic functions. To quantify this, we fit a quadratic model

for viral output parameters and compared the quality of fit to a

linear model using AIC; the relationship of all PDI and viral

output statistics were better fits as demonstrated by lower AIC

values except for PDI and viral strain count when varying S where

both linear and quadratic fits were not significant (See Table S3).

To compare the proportion of simulations that are stable,

fluctuating, or end in viral extinction, 10,000 random subsamples

of 230 simulations (10% of the total simulations with filled loci)

were taken. The mean proportions of simulations in each bin that

fell into the stable or viral extinction category were compared

using analysis of variation (data from Figure 6). We define a

population to be stable when the host population exceeds 3e5 for

more than 100 hours (approximately 95% of the carrying

capacity).

Population-wide distributed immunity (PDI)
To quantify the population-level distribution of immune alleles

between hosts with similar immune phenotypes but distinct

CRISPR genotypes, we compare all triplets of two host strains

and a viral strain. We determine which triplets contain distinct

spacers matching protospacers in the virus to quantify PDI as

follows:

PDI~
X

i

X
j

X
k

1{
D Ni { Nj D
max (N)

� �
sijk Ni Nj Vk

sijk ~
1, if R ( Gi , Hk ) R ( Gj , Hk )w R

2
( Gi , Gj , Hk )

0, otherwise

8<
:

where Ni is the population proportion of the ith host strain, Vk is the

population proportion of the kth viral strain, Gi is the set of spacers

belonging to the ith host strain, Hk is the set of protospacers

belonging to the kth viral strain, R(Gi,Hk) determines the number of

matching spacers and protospacers between the states Gi and Hk,

and R(Gi,Gj,Hk) determines the number of matching spacers and

protospacers between all the states Gi, Gj and Hk. Further, max(N)

denotes the maximum proportion of any given host strain in the

population.

Triplets with matching spacers and protospacers contribute to

PDI via the function s. The relative of abundance of the strains

from a triplet determines the level of contribution of that triplet to

PDI. The total value of PDI is weighted by host strains at or

similar to the size of the dominant host strain in order to minimize

the summed contribution of numerous strains found at low

proportion.

Individual distributed immunity (IDI)
We introduce individual distribution immunity to quantify the

distribution of immunity within hosts, in contrast to PDI, which

quantifies the distribution of immunity between hosts. IDI is the

average number of spacers per host matching the viral population:

IDI~
X

i

X
k

Ni Vk R ( Gi , Hk)

where the host proportion (Ni), the viral proportion (Vk), the host

spacer state (Gi), the viral spacer state (Hk), and the number of
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matches between spacer and protospacer states R(Gi,Hk) are

defined as in PDI.

Hosts that Viruses can Infect (HVI)
The average proportion of hosts that viruses can infect is

quantified by HVI:

HVI~
X

i

X
k

Ni Vk 1{ M ( Gi , Hk )

� �

where M(Gi,Hk) determines the presence or absence of matching

spacers and protospacers between the states Gi and Hk. The host

proportion (Ni), the viral proportion (Vk), the host spacer state (Gi),

the viral spacer state (Hk) are defined as in PDI.

Experimental population DI calculations
Sequencing reads from the Sun et al. study [38] (accession

number SRA049615) containing at least two novel spacers, or at

least one novel spacer plus ancestral spacers or leader sequence

were considered. Reads were grouped by spacer content; where

trailer-end sequence information was not available, the locus was

assumed to have the same trailer-end spacers as other reads with

similar leader-end spacer content (Figure S8). If trailer end spacers

could not be inferred in this way, the trailer end was assumed to

contain only spacers fixed in the population (Figure S8). Each

unique set of spacers was considered a host strain; the proportion

of reads matching each strain was used for the proportion of each

strain in the population (Ni and Nj) for calculation of PDI and IDI.

Assuming similar CRISPR loci whenever possible maximizes the

number of reads grouped into each CRISPR-type and prevents

overestimation of PDI.

Frequencies of three phage mutations in protospacers or PAMs

identified by Sun et al. [38] were confirmed using breseq

[64](available online at http://barricklab.org/breseq). Each pos-

sible combination of SNPs was considered a different viral strain.

To determine the proportion of phages with each combination of

SNPs (SNP-i only, SNP-i and SNP-ii, SNP-i and SNP-iii, or all

three SNPs), each mutation was considered an independent event

and the probability of each combination was calculated. These

proportions were used for Vk in the PDI and IDI equations.

Otherwise, PDI and IDI were calculated as in simulated

populations.

Supporting Information

Figure S1 Maximum possible PDI changes with the
number of host strains. The maximum attainable PDI is

determined by the number of host strains, the evenness of the host

abundances and requires all host strains are immune to all viral

strains. Maximum PDI increases towards one when all hosts have

equal abundance (blue). When one host dominates, for example

50% of the population (green) or 90% of the population (red), and

all other hosts have equal abundance, the maximum PDI is

significantly reduced.

(EPS)

Figure S2 Early time course of a representative simu-
lation with standard parameters listed in Table S2.
Despite seeding with a single host and viral strain, many strains

rapidly appear as result of the ever-changing immunity structure.

Thick lines at the top of panels A and B are total population

density; thin lines are population density of individual host strains

(blue lines, A) and viral strains (red lines, B). During the initial

hours there is more defined population strain structure when the

average spacers per host is low (C).

(EPS)

Figure S3 PDI is positively correlated with IDI. Each

point is the median from last 500 hours of a single simulation

varying (A) protospacer number, P; (B) spacer number, S; (C) viral

mutation rate, m; (D) host spacer acquisition rate, q. Unless varied,

S = 10, P = 10, q = 1025, m= 561027. R2 correlation coefficients,

noted in the upper-right corner of figure panels, of all comparisons

are significant at p,0.001. Correlations are depicted with solid

black lines.

(EPS)

Figure S4 IDI varies with: (A) protospacer number; (B)
spacer number; (C) viral mutation rate; (D) spacer
acquisition rate. Unless varied, S = 10, P = 10, q = 1025,

m= 561027. Bars (and lines) are mean (and SEM) of IDI of

replicate simulations, with each replicate represented by the

median value across the last 500 hours. Using analysis of variation

for unbalanced data all pairwise comparisons of mean PDI are

significant at p,0.001 except in (D) where all pairwise comparison

with q.1e-6 (not significant).

(EPS)

Figure S5 PDI and population measures when spacer
acquisition rate and spacer number are varied. PDI is

only weakly correlated, if at all, with host population density (A–

B), host strain count (C–D), viral population density (E–F) and

viral strain count (G–H) across variation in spacer acquisition rate,

q (left column), and spacer number, S (right column). Unless

varied, S = 10, P = 10, q = 1025, m= 561027. Each point repre-

sents the median of the last 500 hours in a single simulation.

Linear R2 correlation coefficients (A–D) and quadratic R2

correlation coefficients (E–H), noted in the figure panels, of all

comparisons are significant at p,0.001 except PDI with host

strain count (in D) and PDI with viral strain count (in G) when

spacer acquisition rate is varied. Correlations are depicted with

solid black lines (A–D) and curves (E–H).

(EPS)

Figure S6 Low PDI (,0.2) is correlated with increases
in immunity (A) and host population density (B). At high

PDI (.0.2) immunity (A) and host population density (B) are

uniformly high. Each point represents the median of the last

500 hours of a single simulation; all parameter sets from Table S1

are included. R2 correlation coefficients (A) 0.59 and (B) 0.78 are

significant at p,0.001.

(EPS)

Figure S7 HVI decreases with increasing PDI (A–C) and
IDI (D–F). PDI values binned by 0.1; IDI values binned by 0.6.

Bars (and lines) are mean (and SEM) of median HVI across the last

500 hours of each replicate simulation from a pool of 100

simulations per parameter set. Parameters for each panel are (A,D)

S = 10, P = 10, q = 1025, m= 561027; (B,E) S = 10, P = 20,

q = 1025, m= 561027; (C,F) S = 10, P = 10, q = 1025, m= 1027.

All other parameters as listed in Table S2. R2 values (data not

binned) are noted in each panel with *, p,0.01,;**, p,,0.001;

NS, not significant.

(EPS)

Figure S8 Example of methodology of CRISPR locus
reconstruction from sequencing reads. Each color repre-

sents a unique spacer. Each horizontal row on the left shows the

spacer content of a single read; its corresponding row on the right

shows the inferred complete spacer content. The spacer marked
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with an asterisk is not present in the ancestral host but has become

fixed in the current population. L, leader sequence; T, spacers

present in ancestral host.

(EPS)

Table S1 Summary of simulated population outcomes.
Summary of the population outcomes (complete, viral extinction,

unfilled locus) of simulations for each parameter set.

(DOCX)

Table S2 Model parameters. Description of parameters

including symbol and value used for simulation of the model.

(DOCX)

Table S3 Linear-quadratic model comparisons. Summa-

ry of the R2 computation for Figure 4E–H and Figure S5E–H and

choice of model fit using AIC.

(DOCX)

File S1 Supplemental Information. Includes a detailed

description of the model used for simulation; a discussion of how

host and viral strain size and immunity affect PDI; and a

description of transient dynamics of hosts with limited immune

history.

(DOC)
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48. Weinberger AD, Sun CL, Pluciński MM, Denef VJ, Thomas BC, et al. (2012)
Persisting viral sequences shape microbial CRISPR-based immunity. PLoS

Comput Biol 8: e1002475. doi:10.1371/journal.pcbi.1002475.
49. Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV (2013) Evolutionary dynamics of

archaeal and bacterial adaptive immunity systems, CRISPR-Cas, in an explicit
ecological context. J Bacteriol. doi:10.1128/JB.00412-13.

50. Held NL, Childs LM, Davison M, Weitz JS, Whitaker RJ, et al. (2013) CRISPR-

Cas Systems to Probe Ecological Diversity and Host–Viral Interactions. In:
Barrangou R, Oost J van der, editors. CRISPR-Cas Systems. Springer Berlin

Heidelberg. pp. 221–250.
51. Makarova KS, Aravind L, Wolf YI, Koonin EV (2011) Unification of Cas

protein families and a simple scenario for the origin and evolution of CRISPR-

Cas systems. Biol Direct 6: 38. doi:10.1186/1745-6150-6-38.
52. Paez-Espino D, Morovic W, Sun CL, Thomas BC, Ueda K, et al. (2013) Strong

bias in the bacterial CRISPR elements that confer immunity to phage. Nat
Commun 4: 1430. doi:10.1038/ncomms2440.

53. Touchon M, Rocha EPC (2010) The Small, Slow and Specialized CRISPR and

Anti-CRISPR of Escherichia and Salmonella. PLoS ONE 5: e11126. doi:10.1371/

journal.pone.0011126.

54. Rho M, Wu Y-W, Tang H, Doak TG, Ye Y (2012) Diverse CRISPRs evolving

in human microbiomes. PLoS Genet 8: e1002441. doi:10.1371/journal.p-

gen.1002441.
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