
[13:04 30/7/2011 Bioinformatics-btr395.tex] Page: 2471 2471–2472

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 17 2011, pages 2471–2472
doi:10.1093/bioinformatics/btr395

Databases and ontologies Advance Access publication July 8, 2011

CSO validator: improving manual curation workflow for biological
pathways
Euna Jeong†, Masao Nagasaki†,∗, Emi Ikeda, Yayoi Sekiya, Ayumu Saito
and Satoru Miyano
Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
Associate Editor: Jonathan Wren

ABSTRACT

Summary: Manual curation and validation of large-scale biological
pathways are required to obtain high-quality pathway databases. In
a typical curation process, model validation and model update based
on appropriate feedback are repeated and requires considerable
cooperation of scientists. We have developed a CSO (Cell System
Ontology) validator to reduce the repetition and time during the
curation process. This tool assists in quickly obtaining agreement
among curators and domain experts and in providing a consistent
and accurate pathway database.
Availability: The tool is available on http://csovalidator.csml.org.
Contact: masao@hgc.jp

Received on March 7, 2011; revised on June 23, 2011; accepted on
June 24, 2011

1 INTRODUCTION
Modeling in systems biology is increasingly important for the
system-level understanding of biological processes and predicting
the behavior of the system. To obtain high-quality pathway
databases, many important databases are built by manual curation.
The creation of the pathway models is followed by validation of
the created pathways by domain experts and update of the pathways
based on appropriate feedback by curators. These procedures are
iterative to record the desired specific annotated pathway. Improving
the efficiency of model validation and model update is essential
for reducing the time and effort required to construct high-quality
biological pathways.

We had suggested a new method for validation of ontology,
particularly Cell System Ontology (CSO; Jeong et al., 2007). CSO
is a generic framework to represent dynamic biological pathways
with visualization in OWL (Web Ontology Language). Based on
the proposed method (Jeong et al., 2011), we have developed
an efficient, user-friendly tool that considers biological meaning
beyond checking for correct XML syntax.

Although the curation criteria and rules are given to curators, it
is sometimes difficult correctly to assign a more specific subclass
in the hierarchical structure of the ontology or a suitable term from
controlled vocabularies. The correct annotation of the entity type,
cellular location, the name of biological event and the number of
molecules is important to represent biological meaning. It is helpful

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

to visualize the pathway via visualization tools which can recognize
and differently display the entity type and cellular location in cell
system. Furthermore, it is also useful for simulation tools that can
consider the concentration of the molecules and adjust parameters
based on the type of biological event.

As a related work, Racunas et al., 2006 carried out the verification
of a pathway knowledge base in terms of event relationships. It
is done on the level of the logical combinations of events, such
as the order of events. However, it does not check the biological
meaning of individual events. Another work is BioPaxRules which
contains rules that cannot be formally defined in the BioPAX
format, implemented via API (Paxtools) (http://www.biopax.org).
As a complement to such efforts, we introduce a semi-automatic
validation tool of ontology data in CSO which is generated via
Cell Illustrator Online (CIO) (http://cionline.hgc.jp/) or via data
conversion from other formats and resources.

2 CSO VALIDATOR
CSO validator itself is a stand-alone application with GUI. The tool is
written in Java and needs Java Web Start. We used AllegroGraph (version 3)
for the CSO data storage and query engine (http://www.franz.com/).
AllegroGraph is an RDF graph database with support for SPARQL
(SPARQL Protocol and RDF Query Language) as a query language
(http://www.w3.org/TR/rdf-sparql-query/). The free version ofAllegroGraph
is enough to run CSO validator. The query manipulation and CSO
data manipulation stored in AllegroGraph are carried out using
Protégé OWL API (http://protege.stanford.edu/plugins/owl/api/) and Jena
(http://jena.sourceforge.net/).

CSO validator uses the Systems Biology application XiP (eXtensible
integrative Pipeline) that is a flexible, editable and modular environment
with a user-friendly interface that does not require any programming skills
to run, construct and edit workflows (http://xip.hgc.jp/). The pipeline used
in CSO validator focuses on loading the model in CSO, storing it into
the AllegroGraph database, i.e. to convert RDF to AllegroGraph format,
validating the stored model, and exporting the validated model into CSO.
As a companion tool, we have also developed CSML (Cell System Markup
Language; an XML version of CSO) validator that can load the model in
CSML and convert it to the CSO model for consuming of CSO validator.

In the main window of CSO validator, a user must specify input and output
CSO file names, and database settings including a host name, a database
directory, and a database name for the input file. It assumes that AllegroGraph
is installed on a local PC. Basically, CSO validator does two things: validation
and complementation of the given model.

• Validation: to check each biological process as to whether it is
correctly embedding biological semantics by annotating event-specific

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



[13:04 30/7/2011 Bioinformatics-btr395.tex] Page: 2472 2471–2472

E.Jeong et al.

Fig. 1. (a) an example model to validate; (b) the validation window to guide correction; (c) the validated model, visualized on CIO. The table in (b) shows
four warnings in the model. The highlighted part in (a) is a DNA binding process which is listed because there is no DNA as its input entity. Therefore,
the validation window suggests that one entity from two should be changed into DNA. In the setting value pane, the recommended value is DNA and two
candidate entities are listed below because the corresponding process has two input entities. In (c), the validated model shows the main changes: (i) one entity
type is changed into DNA, (ii) the product of DNA binding is a complex, not a protein, and (iii) the connector is changed to represent the input entity, not an
enzyme.

participants with cardinality, participant types, cellular location and
others properties.

• Complementation: to add any missing processes, which allows a model
to capture generic behaviors that govern system dynamics, such as
protein-turnover.
◦ To add a binding process for a starting complex which is not an

output of any process.
◦ To add a unknown production process for a starting entity except

for complex, which is not an output of any process.
◦ To add a degradation process for protein, complex, mRNA if they

have no degradation process.

For this, a user can select which job will be done in the main window. If
the validation option is checked and the given model needs to be modified,
a validation window will be popped up for guiding correction. On the other
hand, the complementation will be done with no prompt if selected. As an
advanced option, our tool also supports the validation of multiple files stored
in the same directory with JavaScript.

Figure 1 illustrates the validation procedure by using CSO validator. For
the given model, CSO validator checks whether each process satisfies the
given conditions (for details, refer to Jeong et al., 2011). If there is any
process not to satisfy conditions for validation, warning list is generated as
shown in Figure 1b. The validation window consists of four panes: a table to
list warnings, a warning description, setting the correct value and buttons on
the bottom. Each row in the table lists the problematic process and involved
entities with information such as any property against the conditions, any
current value and recommended values. The detailed explanation for the
warning is shown in the warning description. The setting value pane provides
an interface for easy correction of the incorrect value. Combo boxes are
used to display recommended values and selectable values. If there is no
appropriate value in the recommended list, all possible values for the current
property are listed in the selectable value combo box or a user can specify a
customized value. For convenience, it is possible to browse the given model
by clicking the display model button (Figure 1a) and the selected row is
shown in the display model window by highlighting related elements. It is
useful because during validation, a user may decide a wrong part without
launching a visualization tool such as CIO. Figure 1c shows the validated
result visualized via CIO. By using CIO, the validated model can be easily
edited, visualized and simulated for further investigation.

3 SUMMARY
CSO validator is designed for validation of CSO models after
curation and after every modification of a model by curators. It

has been tested from last November by on average five curators
and being applied to construct macrophage pathways (MACPAC,
http://macpak.csml.org/) and osteoblast differentiation pathways.
Curators take on average 3 or 4 h to learn and use CSO validator.

CSO validator reduces time spent on checking annotation
mistakes and correcting problematic parts. To use our tool,
knowledge of the CSO format is not necessary and most errors can
be modified via an interactive GUI. How our tool finds obvious
modeling errors by checking annotation mistakes was described
in the paper (Jeong et al., 2011). In this case, the modeling tool,
CIO is needed for model modification. During construction of large
pathway databases, it has an advantage to maintain consistency in
terms of interpretation of experimental evidence and modeling style
by suggesting minimum conditions based on 40 rules. Furthermore,
when the curation criteria and rules are changed, the changes will
be reflected to CSO validator and any modification for already
constructed models will be done with no much burden.

Although CSO validator is for the models in the CSO format, the
usage of CSO validator can be extended to other formats such as
CSML, SBML (http://sbml.org/), CellML(http://www.cellml.org/),
and BioPAX because CIO can read those formats and export them
to CSO.

We believe that our approach can serve as a preprocessing step
for model integration and the rule-based validation methodology
can be applied to other ontology formats.

Conflict of Interest: none declared.

REFERENCES
Jeong,E. et al. (2007) Cell system ontology: representation for modeling, visualizing,

and simulating biological pathways. In Silico Biol., 7, 623–638.
Jeong,E. et al. (2011) Ontology-based instance data validation for high-quality curated

biological pathways. BMC Bioinformatics, 12 (Suppl. 1), S8.
Racunas,S.A. et al. (2006) A case study in pathway knowledgebase verification. BMC

Bioinformatics, 7, 196 .

2472


