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Simple Summary: Dry-cured ham has a characteristic flavor that originates from biochemical reac-
tions during processing and seasoning of hams. In the case of Toscano dry-cured ham, the Protected
Designation of Origin (PDO) states the minimum seasoning length in 12 months, but seasoning can
be extended achieving favorable outcomes on sensory characteristics, and above all on aroma. The
present study focused on subcutaneous fat of ham. Color of seasoned ham and fat composition of
green and seasoned hams were studied. Special attention was paid on the study of volatile compounds,
the main substances perceived by smell, present in fat. These compounds are present in large numbers,
and they can be used as markers of a specific seasoning stage. For this purpose, they were analyzed
by different statistical techniques to select the ones which are the most characteristic of each specific
processing (0, 1, 3, 6 months) and seasoning (12, 14, 16, or 18 months) classes.

Abstract: During ham processing the action of endogenous proteolytic and lipolytic enzymes leads to
the development of volatile compounds (VOCs) responsible of typical aromas. Protected Designation
of Origin (PDO) of Toscano ham requires at least 12 months of ripening but extended seasoning
might improve flavor and economic value. This study aimed at assessing the evolution of color, fatty
acids, and VOCs profile in subcutaneous fat, and, among VOCs, at identifying possible markers
characterizing different seasoning length. For this purpose, a reduced pool of VOCs was selected
by 3 multivariate statistical techniques (stepwise discriminant analysis, canonical discriminant
analysis and discriminant analysis) to classify hams according to ripening (<12 months) or seasoning
(≥12 months) periods and also to seasoning length (S12, S14, S16, or S18 months). The main VOCs
chemical families steadily increased along ripening. Aldehydes and hydrocarbons reached their
peaks at S16, acids and ketones remained constant from R6 to S16, whereas esters started decreasing
after 12 months of seasoning. Stepwise analysis selected 5 compounds able to discriminate between
ripening and seasoning periods, with 1,1-diethoxyhexane and dodecanoic acid being the most
powerful descriptors for ripening and seasoning period, respectively. Instead, 12 compounds were
needed to correctly classify hams within seasoning. Among them, undecanoic acid methyl ester,
formic acid ethyl ester, 2,4,4-trimethylhexane, and 6-methoxy-2-hexanone had a central role in
differentiating the seasoning length.

Keywords: pork; solid-phase microextraction; mass spectrometry; aroma; meat

1. Introduction

Fat content is one of the main factors characterizing the quality of the meat. Its quanti-
tative and qualitative characteristics affect many aspects linked both to the general quality
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of products and to consumer acceptability [1–3]. In the last years consumers have put in-
creasing pressure on the manufacturers to produce healthier products but also with certain
quality characteristics that distinguish the production process. In fact, it is important for
producers to develop new lines of products or to change already existing ones in order to
meet different consumer requests [3]. In the last years, Protected Designation of Origin
(PDO) productions have been affected by changes in the dry-cured process due to market
demands. In addition to the reduction of fat, salt, and preserving agents, there was also a
request to extend the seasoning period, especially for hams. The recipe reformulation is
likely to have impact on the sensory qualities and on the development of the aroma [4].
Aroma is produced by an interaction of factors including the manufacture process [5].
PDO Toscano dry-cured ham production lasts for at least 12 months. During the process
numerous changes linked to water loss, salt intake, lipolysis, and proteolysis take place [6].
Sensory characteristics of the hams are mainly linked to physical and biochemical reactions
caused by endogenous proteolytic and lipolytic enzymes during the drying and ripen-
ing/maturation phases [7]. The standardization of the seasoning process has meant that
the qualitative variations of the products are mainly due to the intrinsic characteristics
of the fresh hams [8]. With the modification of the seasoning time, chemical and sensory
changes strongly depend on the duration of the ripening process [9]. An elongation of
the process is generally considered a sign of high quality due to enzymatic processes
which lead to an improvement of the texture and flavor of this product. Furthermore, this
extension is generally linked to higher end-user prices [10]. The Canonical Discriminant
Analysis (CDA) is a multivariate statistical technique which identifies a set of variables that
maximizes the groups separation, whereas the Discriminant Analysis (DA) was applied
to classify the samples in the different groups [11] Considering the number of variables
involved, the CDA and the DA, were preferred to Principal Component Analysis (PCA) to
analyze data.

The aim of this work was to study the evolution of color, fatty acids, and volatile
compounds (VOCs) profile in subcutaneous fat, and, among VOCs, to identify possible
markers characterizing different seasoning length.

2. Materials and Methods
2.1. Samples

In an industrial plant, thirty hams weighing 15.60 ± 1.06 kg were randomly selected
and underwent the same manufacturing “Toscano” PDO Consortium manufacturing
protocol, consisting of the following stages: salting (15–18 days), pre-resting (15 days),
resting (60–70 days), drying (10 days), and ripening (~240 days). At the end of the ripening,
hams were randomly allotted into 3 groups of 10 hams each. The first group (S14) was
seasoned until 14 months, the second group (S16) until 16 months, and the third group
(S18) up to 18 months. At the end of each established seasoning time, hams were dissected,
and the external fat was trimmed and analyzed. Hams reached the average final weight of
10.73 ± 0.88 kg, in accordance with the PDO protocol.

Moreover, the external fat of hams belonging to group S18 was sampled along the
whole processing and ripening periods to assess VOCs profile. Specifically, samples were
taken at 0, 1, 3, 6, 12, 14, 16, and 18 months as described below, in paragraph 2.3 “Volatile
compounds analysis”.

2.2. Physical and Chemical Parameters

Results on chemical composition of sliced hams, comprehensive of lean and fat, were
reported in a previous research [11]. At the end of each seasoning time (14, 16, or 18 months)
the trimmed fat of each sample was analyzed to assess instrumental color. As regards
moisture, fat, and fatty acids profile, analysis was performed at time 0 and at the end of
the seasoning time. Moisture was determined by lyophilizing to constant weight 40 g of
sample, according to AOAC methods [12]. Instrumental color was assessed immediately
after trimming by a Minolta Chromameter CR200 with illuminant C (Konica Minolta,
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Tokyo, Japan) according to CIELab coordinate system, where L* indicates lightness (or
darkness), a* is the color’s position on the red-green axis and b* on the yellow-blue axis.
Fatty acids were determined using a Varian GC-430 apparatus equipped with a flame
ionization detector (FID) (AgilentManufacturer, Santa Clara, CA, USA) as reported by
Sirtori et al. [13]. The individual methyl esters were identified by their retention time using
an analytical standard (F.A.M.E. Mix, C8-C22 Supelco 18,9201AMP). Response factors based
on the internal standard (C19:0) were used for quantification and results were expressed as
g/100g of sample.

2.3. Volatile Compound Analysis

Analysis on VOCs profile were carried out by repeated sampling on each ham of
group S18 (n = 10). Sampling took place at time 0 (R0, green ham) and after 1 (R1),
3 (R3), 6 (R6) months of ripening and at 12 (S12), 14 (S14), 16 (S16), and 18 (S18) months
of seasoning. Fat was sampled using a 5-mm punch corer positioned approximately in
the same location every sampling time. After each sampling, the hole was filled with a
mixture of lard, salt, and pepper to prevent oxidation reactions and microbial contamina-
tions. Subsequently, 1g of homogenized fat was grounded by liquid nitrogen and then
transferred to 10 mL screw cap headspace vials adding for each sample 1 mL of distilled
water and approximately 1 g of NaCl. The vials were supplemented with 40 µL of inter-
nal standard mix (ethylacetate-d8; toluene-d8; ethyl hexanoate d11; hexanoic acid d11;
3,4-dimethylphenol), either isotopologues, i.e., deuterated analogues of compounds present
in the samples, added to the samples immediately before the analyses [14]. The volatile
compound profile was obtained by Solid Phase Microextraction Gas Chromatography-Mass
Spectrometry (SPME–GC–MS) technique. An Agilent 7890 Chromatograph (Agilent, Santa
Clara, CA, USA) equipped with a 5975A MSD with EI ionisation was used for analysis.
A three-phase DVB/Carboxen/PDMS 75-µm SPME fibre (Supelco, Bellafonte, PA, USA)
was exposed in the head space of the vials at 60 ◦C for 30 min for volatile compound
sampling after a 5-min equilibration time. A Gerstel MPS2 XL autosampler (GERSTEL
GmbH & Co.KG, Mülheim an der Ruhr, Germany) equipped with a magnetic transporta-
tion adapter and a temperature-controlled agitator (250 rpm with on/cycles of 10 s) was
used for ensuring consistent SPME extraction conditions. Chromatographic conditions
were column J&W Innovax (Agilent, Santa Clara, CA, USA) 30 m, 0.25 mm, ID 0.5 µm DF;
injection temperature 250 ◦C, splitless mode, oven program 40◦ for 1 min then 2 ◦C/min to
60 ◦C, then 3 ◦C/min to 150 ◦C, then 10 ◦C/min to 200 ◦C, and then 25 ◦C/min to 260 ◦C
for 6.6 min. Mass spectra were acquired within the 29–350 M/Z interval with an Agilent
5975C MSD spectrometer (Agilent, Santa Clara, CA, USA) at a scan speed in order to obtain
three scans/s. The identification of volatile compounds was obtained by matching the peak
spectra with library spectral database and by matching of the calculated Kovats index (KI)
with the KI retrieved from literature. Data are expressed as normalized area ratios with the
appropriate internal standard (IS) [15].

2.4. Statistical Analysis

Color data were analyzed using SAS Software [16] according to the following linear
model:

yijl = µ + RTi + εijl (1)

where y is the investigated variable; µ the overall mean; RT the fixed effect of processing
stage; ε the random residual error. Tukey’s test with a p-value threshold lower than 0.05
was used to compare means.

Fat, moisture, fatty acids, and VOCs data were analyzed using SAS Software [16]
according to the following linear model:

yijl = µ + RTi + Hj + εijl (2)
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where y is the investigated variable; µ the overall mean; RT the fixed effect of processing
stage (2 levels for fat, moisture, and fatty acids; 8 levels for VOCs); H the random effect
of ham (with repeated measures in time); ε the random residual error. Tukey’s test with a
p-value threshold lower than 0.05 was used to compare means.

VOCs trend during ripening and seasoning was also analyzed by SAS software
(SAS Institute, Inc., Charlotte, NC, USA) applying 3 multivariate statistical techniques:
stepwise discriminant analysis (SDA), CDA, and DA. The aim of multivariate analysis
was to assess if there were groups of VOCs able to characterize the different ripening and
seasoning times studied. Furthermore, multivariate approach was also used to outline
the contribution of the identified VOCs in properly classifying hams according to their
seasoning time only.

Groups separation was tested by Hotelling’s T-square test [17]. However, this test can
be developed only if the pooled (co)variance matrix of data is not singular. In our research,
the number of hams (rows in the matrix of data) is lower than the number of volatile
compounds (columns). In this condition, any multivariate technique becomes meaningless
because the (co)variance matrix does not have a full rank [18]. Therefore, a reduction of the
space-variables was required. For this reason, before CDA and DA, the SDA was applied
to the data to select a restricted subset of linearly independent variables, the VOCs, able to
discriminate groups [19]. The obtained compounds were used in the CDA and the DA.

The CDA derives a set of new variables, called canonical functions (CAN), that are
linear combination of the original compounds. For k-groups involved in the CDA, k-
1 CANs are extracted. The structure of a CAN is:

CAN = c1X1 + c2X2 + . . . . . . . .+cnXn (3)

where cn are the canonical coefficients (CCs) and Xi are the scores of original variables. CCs
indicate the partial contribution of each variable in composing the CAN. The greater the
CC, the more the variable contributes to compose the CAN.

The distance between groups was evaluated by using the Mahalanobis’ distance,
whereas the effective groups’ separation was tested with the corresponding Hotelling’s
T-square test (De Maesschalck et al., 2000). Finally, the DA was performed to classify ham
samples into seasoning groups.

The above-mentioned statistical approaches were successively applied to volatile
compounds data according to the following two scenarios. In the first scenario, VOCs data
were arranged in two major seasoning classes: the low maturing class (LMC) with samples
belonging to 0, 1, 3, and 6 months; the high maturing class (HMC) with samples belonging
to 12, 14, 16, and 18 months of seasoning. In the second scenario, only samples belonging
to HMC were considered.

The discriminant procedures were applied to detect the most discriminant compounds
able to correctly separate groups involved in the two scenarios. To validate the results,
considering the reduced number of involved hams, the leave-one-out cross-validation
technique was adopted. In practice, in each scenario, SDA, CDA, and DA were applied
10 times (being 10 the hams involved in the study) by using, at each run, one ham as
validation sample. At the end, ten datasets of variables were obtained. Since compounds
selected at each round could be different, the ten groups of variables were joined. The
resulting compounds were used to develop the final run of CDA and DA.

3. Results and Discussion
3.1. Physical and Chemical Parameters

Subcutaneous fat is an important component of the final product, indeed, even when
ham is sold in slices, fat is commonly left on. However, few studies have investigated its
characteristics separately from the other section of the slice. Instrumental color parameters
are shown in Table 1. According to CIELAB color values, L* and a* were affected by
different seasoning times, whereas b* did not change significantly. Since b* variable is
linked to yellowness and the formation of yellow-colored polymers has been associated
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to oxidative deterioration [20], it seems that the oxidative status of subcutaneous fat was
not affected by the tested seasoning lengths. On the contrary, L* reached the greatest
values as seasoning time increased, while a* showed the highest score in S16 hams and
the lowest in S18 hams with S14 samples being similar to both. Analogous L* scores were
reported by Tomažin et al. [21] studying the effect of sex and salting time on dry-cured
ham characteristics. L* has been positively correlated to fat saturation [22], which is in
accordance with the slightly higher content of saturated fatty acids (SFA) of S18 hams, as
shown in Table 2. Compared to our results, higher values of a* and b* and lower of L* were
observed in Iberian and Iberian × Duroc dry-cured hams reared according to two different
systems [22].

Table 1. Instrumental color of subcutaneous fat trimmed from Toscano dry-cured ham.

Seasoning RMSE 1 p

S14 (n = 10) S16 (n = 10) S18 (n = 10)

Instrumental color
L* 76.125 b 77.948 a,b 79.068 a 1.923 0.0178
a* 2.804 a,b 3.763 a 2.238 b 1.086 0.0302
B* 3.964 3.192 4.158 0.912 0.0869

1 Root mean square error. Different letters (a,b) within the same chemical family indicate significant differences
(p < 0.05) among maturing times.

Table 2. Moisture and fatty acids profile of raw and seasoned (S14, S16, S18) subcutaneous fat of
Toscano dry-cured ham.

Seasoning RMSE 1 p
R0 (n = 30) S14 (n = 10) S16 (n = 10) S18 (n = 10)

Moisture (%) 16.955 a 2.941 b 3.161 b 2.744 b 7.288 <0.0001
Total lipids 68.423 b 76.718 a 76.246 a 78.091 a 4.774 <0.0001

C12:0 0.051 0.0386 0.025 0.027 0.029 0.0343
C14:0 0.420 a,b 0.434 a,b 0.409 b 0.459 a 0.040 0.0366

C14:1-n5 0.005 a,b 0.005 a,b 0.004 b 0.005 a 0.001 0.0055
C15:0 0.011 0.011 0.010 0.013 0.002 0.1094
C16:0 5.599 b 6.103 a 5.942 a,b 6.460 a 0.462 <0.0001
C16:1 0.893 0.928 0.902 0.990 0.102 0.0992
C17:0 0.064 0.066 0.068 0.078 0.014 0.1070
C17:1 0.067 0.067 0.067 0.079 0.015 0.1955
C18:0 2.326 b 2.628 a 2.624 a 2.745 a 0.235 <0.0001
C18:1 11.289 b 12.578 a 12.253 a 12.959 a 0.041 <0.0001

C18:2-n6cis 2.962 3.210 3.167 2.966 0.404 0.2549
C18:3-n3 0.203 0.217 0.215 0.206 0.022 0.2212

C20:0 0.047 0.051 0.0471 0.052 0.007 0.1340
C20:1 0.270 0.296 0.276 0.295 0.036 0.2295

C20:2-n6 0.157 b 0.187 a 0.181 a,b 0.164 a,b 0.028 0.0126
C20:3-n6 0.027 0.025 0.023 0.022 0.006 0.0697
C20:4-n6 0.062 a 0.059 a,b 0.058 a,b 0.050 b 0.010273 0.0235
C20:3-n3 0.090 b 0.104 a 0.102 a,b 0.103 a,b 0.014215 0.0111
C22:4-n6 0.087 0.105 0.106 0.103 0.022764 0.0714
C22:5-n3 0.081 0.097 0.097 0.096 0.020967 0.0624
C20:5-n3 0.000 0.009 0.000 0.009 0.015231 0.2337

SFA 8.521 b 9.333 a 9.126 a,b 9.834 a 0.694 <0.0001
MUFA 12.524 b 13.873 a 13.503 a 14.329 a 0.994 <0.0001
PUFA 3.671 4.013 3.945 3.720 0.479 0.1671

PUFA-n6 3.297 3.587 3.531 3.305 0.439 0.2058
PUFA-n3 0.320 0.355 0.340 0.340 0.039 0.0725

1 Root mean square error. Different letters (a,b) within the same chemical family indicate significant differences
(p < 0.05) among maturing times.

Total lipids (Table 2) significantly increased moving from raw to seasoned hams, but
not among different seasoning classes. The most abundant fatty acid was the oleic (C18:1),
followed by palmitic (C16:0), linoleic (C18:2), and stearic (C18:0) acids, in agreement with
several studies [14,23,24]. Myristic and myristoleic acids showed the highest content in
S18 hams and lowest in S16 ones, with R0 and S14 hams showing intermediate amounts.
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Palmitic, stearic, and oleic acids showed lower content in R0 hams than in dry-cured ones,
with no differences among seasoning classes. Monounsaturated fatty acids (MUFA) content
was greater in seasoned than in raw hams, in accordance with oleic acid content, which
is the major contributor to MUFA group in pork. This evolution was also observed by
Narvàez-Rivas et al. [25] studying the changes in the fatty acid profile of subcutaneous fat of
Iberian ham during dry-curing process. However, they also reported a decrease in the most
important polyunsaturated fatty acids, which was not observed in the present study except
for arachidonic fatty acid. Significant differences were observed only for eicosadienoic
and eicosatrienoic fatty acids, but their amounts were at the lowest level in R0 samples,
whereas polyunsaturated fatty acids (PUFA) showed similar amounts regardless seasoning
length. Eventually, saturated fatty acids (SFA) were affected by seasoning with the lowest
content in R0 hams and the highest in S12 and S18 hams, while S14 samples were similar to
both. SFA are generally considered stable along processing and seasoning [25] phases, but
an increase in this group was already reported in intramuscular fat of Iberian ham during
the dry-curing process [26]. Probably, the decrease of moisture during processing leads
to changes in sample composition and stable compounds, as SFA are detected in greater
concentration.

3.2. Evolution of Volatile Compounds from Raw to Cured Ham

Volatile compounds develop over the ripening process, leading to the typical aroma
of dry-cured products. Among the several compounds normally generated by the enzy-
matic and oxidative processes taking place in the tissues, aldehydes play a prominent
role in characterizing dry-cured products’ aroma. Aldehydes are considered important
contributors to overall aroma both for being strongly present in finished products and
for their low thresholds making them easily detectable by assessors and consumers [27].
Twenty-nine aldehydes were identified in Toscano ham samples (Table 3), most of them char-
acterized by low concentrations in green hams, whereas their presence in the cured product
was considerable. The most abundant compounds in raw hams were 2-methylundecanal,
2,6-dimethyl-benzaldehyde, 2,4-dimethyl-benzaldehyde; during post-salting also pentanal
and hexanal increased significantly. These two latter compounds were typical of dry-cured
hams. Hexanal was reported to be the most abundant aldehyde in subcutaneous fat of
Iberian ham [19,23,28], arising from linoleic acid oxidation, which is widely available in
this tissue. Hexanal is also considered an important indicator of lipid oxidation; in fact,
even if it contributes to the ham overall aroma with grassy and fresh notes, its excessive
presence easily leads to unpleasant rancid notes and flavors [28]. Besides hexanal, also the
others observed linear aldehydes originated from unsaturated fatty acids: i.e., pentanal,
heptanal, octanal, and nonanal were all oxidation products of one or both oleic and linoleic
acids [29]. Among linear saturated aldehydes displayed in Table 1, hexanal resulted the
most abundant compound between 12 and 16 months, followed by pentanal and nonanal.
These compounds reached the highest values at 16 months and drop dramatically in the last
two months of ripening. This is consistent with the results reported by Andrès et al. [30],
who also observed a minor peak in saturated aldehydes during the drying phase, a slight
decrease at the beginning of the cellar period, probably due to further reactions with other
components, and a huge increase during cellar period, that authors associated to a reduc-
tion in the activity of antioxidative systems or to a development of an intense lipolysis.
Pentanal and nonanal contribute to the overall aroma with slightly fruity, nut-like notes
and fatty, citrus-like notes, respectively [31]. As regard unsaturated aldehydes, 2-heptenal
was the most abundant just as 2,4-heptadienal was for polyunsaturated ones. They were
both characterized by green and fatty notes [31,32]. Additionally, in these groups there
was an increase up to 16 months of seasoning followed by a sharp drop in the S18 hams.
Probably, the cause of this decrease is to be found in the progressive disappearance of the
fatty acid precursors of these aromatic compounds [33]. In fact, unsaturated aldehydes
have their origin in the autoxidation of unsaturated fatty acids, in particular linoleic and
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linolenic acid that, in this study, although not significantly, showed a positive trend up to
14 months and then they slowly decreased.

Table 3. Effect of ripening and seasoning times on volatile compounds of subcutaneous fat Toscano dry-cured ham (n = 10).

Volatile Compound KI 1 ID 2 RMSE 3 Time p
R0 R1 R3 R6 S12 S14 S16 S18

Aldehydes
2-methylbutanal 880 MS/KI 0.05 0.02 c 0.01 c 0.03 c 0.11 b 0.16 a,b 0.13 a,b 0.19 a 0.11 b <0.0001
3-methylbutanal 884 MS/KI 0.05 0.01 e 0.02 e 0.05 d,e 0.12 b,c,d 0.19 a,b 0.14 a,b,c 0.21 a 0.09 c,d,e <0.0001

Pentanal 974 MS/KI 2.28 0.15 c 1.40 b,c 2.12 b,c 1.42 b,c 8.27 a 2.50 b,c 3.78 b 1.07 b,c <0.0001
Hexanal 1081 MS/KI 3.23 0.17 c 1.90 c 3.05 b,c 4.03 b,c 8.59 a 7.42 a,b 11.72 a 2.24 c <0.0001
Heptanal 1183 MS/KI 0.26 0.01 d 0.18 d 0.30 d 0.28 d 1.04 a,b 0.70 b,c 1.22 a 0.31 c,d <0.0001
Octanal 1287 MS/KI 0.73 0.04 b 0.08 b 0.13 b 0.22 b 0.53 b 2.22 a 2.00 a 0.08 b <0.0001

2-Heptenal 1318 MS/KI 2.92 0.07 c 0.33 c 1.37 c 3.94 b,c 7.32 a,b 8.06 a,b 10.80a 3.70 b,c <0.0001
Nonanal 1392 MS/KI 0.54 0.05 c 0.18 c 0.34 c 0.72 b,c 1.29 b 1.38 a,b 2.11 a 0.41 c <0.0001

2,4 hexadienal 1402 MS/KI 0.69 0.04c 0.01 c 0.18 c 0.69 b,c 1.26 a,b 1.61 a,b 2.11 a 0.59 b,c <0.0001
2-octenal 1442 MS/KI 0.70 0.02 c 0.05 c 0.27 c 1.53 a,b 1.39 b 1.46 a,b 2.45 a 0.59 b,c <0.0001

2,4 heptadienal 1493 MS/KI 2.38 0.16 d 0.24 d 0.28 c,d 1.29 c,d 3.41 b,c 5.82 a,b 8.22 a 1.82 c,d <0.0001
Decanal 1498 MS/KI 0.13 0.01 b 0.02 b 0.02 b 0.09 a,b 0.04 b 0.03 b 0.23 a 0.03 b 0.008

2,4-Heptadienal (E,E)- 1501 MS/KI 2.80 0.15 c 0.11 c 0.58 c 2.19 b,c 5.54 b 6.25 b 10.70 a 2.43 b,c <0.0001
Benzaldehyde 1515 MS/KI 0.68 0.01 d 0.14 c,d 0.28 c,d 0.85 b,c,d 1.03 b,c 1.56 d 2.82 a 0.66 b,c,d <0.0001

2-nonenal 1532 MS/KI 0.97 0.00 c 0.06 c 0.30 b,c 1.36 b,c 1.38 b,c 1.62 b 3.43 a 0.70 b,c <0.0001
2-methylundecanal 1644 MS/KI 18.86 11.68 b 15.30 b 13.64 b 23.42 b 29.19a,b 32.14 a,b 51.96a 9.25 b <0.0001

2-Dodecenal 1844 MS/KI 0.93 0.03 d 0.00 c,d 0.22 c,d 0.90 b,c,d 1.72 b 1.39 b,c 3.51 a 0.62 b,c,d <0.0001
Benzeneacetaldehyde 1646 MS/KI 1.72 0.01 d 0.07 d 0.20 d 1.95 b,c,d 1.44 c,d 4.02 a,b 6.07 a 3.85 a,b,c <0.0001

trans, trans-nona-2,4-dienal 1704 MS/KI 2.52 0.12 c 0.04 c 0.51 c 2.74 b,c 4.05 b 4.80 b 9.13 a 1.36 b,c <0.0001
2-undecenal 1717 MS/KI 1.00 0.04 c 0.04 c 0.18 c 0.74 b,c 1.72 b 1.40 a 3.73 b,c 0.51 b,c <0.0001

2,4 decadienal 1797 MS/KI 3.49 0.17 b 0.23 b 0.24 b 1.48 b 2.21 b 4.67 b 10.50 a 0.93 b <0.0001
2,6-dimethylbenzaldehyde 1640 MS/KI 4.20 2.98 d 5.55 b,c,d 4.46 c,d 10.29 a,b,c 11.81 a,b 8.13 a,b,c,d 13.59 a 2.39 d <0.0001

1 Kovat’s index (KI), 2 Identification (ID) was carried out by comparing each mass spectrum in NIST 05 or Wiley 7 databases (MS); matching
with reported Kovat’s indices (KI), 3 Root mean square error, Different letters (a,b,c,d,e) within the same chemical family indicate significant
differences (p < 0.05) among maturing times.

Three branched aldehydes were observed. Two-methylbutanal and 3-methylbutanal
were observed in low concentrations, but they are both considered important contributors
to dry-cured ham’s aroma. Two-methyl butanal is associated with nutty, cheesy, and salty
notes, while 3-methyl butanal is characterized by fruity, acorn-like, cheesy notes [31,32].
They displayed the same trend commonly described for dry-cured ham. Indeed, they
showed a moderate increase in post-salting period and a deep increase during drying
and cellar periods [33]. Branched aldehydes of ham were originated mainly by amino
acids degradation, but there is not accordance about the pathway. Some authors postu-
lated a microbial formation, since microorganisms are able to metabolize L-isoleucine to
2-methylbutanal and L-leucine to 3-methybutanal [33,34]; on the contrary other authors
rejected this hypothesis due to the ham low microbial count, especially in the inner parts
such as muscles, and postulated a non-enzymatic process via Strecker reaction [35,36],
adducing the long dry-curing period as a possible alternative to high temperature in pro-
mote this kind of reaction [37]. In fat tissue, amino acids are low represented, and likely,
they were quickly decomposed leading to a low concentration of branched aldehydes if
compared to those usually found in muscle tissues [38,39]. Among the identified branched
aldehydes, the 2-methylundecanal resulted also the most abundant volatile compound
found in all samples. This compound has not been reported in dry-cured ham. It is found
naturally in kumquat peel oil [31], and it is commonly used as odorant for soaps, deter-
gents, and perfumes [40] thanks to its herbaceous, orange, fatty, and ambergris-like smell.
It has also been reported in rabbit meat, but it was not classified among key odorants [41].
A recent study on interactions between protozoa and foodborne pathogenic bacteria has
listed 2-methylundecanal among the VOCs originated from Listeria spp. [42], whereas
European Food Safety Authority (EFSA) has defined 2-methylundecanal, among the fla-
voring compounds approved for addition in animal feed [43]. However, in the present
study, the presence of 2-methylundecanal cannot be certainly attributed to feed rather
than to microbiological metabolism or contaminant. Eventually, four aromatic aldehy-
des were found: benzaldehyde, benzeneacetaldehyde, 2,6-dimethylbenzaldehyde, and
2,4-dimethylbenzaldehyde. They are generally linked to amino acid degradation [44].
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During the drying and the cellar periods they quickly increased until the 16th month, when
together represented the 14% of the total aldehydes, then, as for the other compounds,
their quantity dramatically drops. Benzaldehyde and benzeneacetaldehyde were largely
reported in dry-cured ham and described as unpleasant bitter almond flower, solvent-like,
fruity notes [45].

Another important chemical family in dry-cured products is the esters. These com-
pounds were generally associated to the microorganism esterase activity, but, due to the
low bacterial count in ham, an alternative pathway was hypothesized. Flores et al. [46]
proposed that esters could also be formed from the interaction of free fatty acids and
alcohols generated by lipid oxidation in intramuscular tissues. In our study twenty esters
were observed, which is a quite high number if compared with results reported by several
authors [38,47]. It is worth noting that most of the studies on ham employed samples of
Biceps femoris or Semimembranosus muscles, in which the fat content was very low compared
to our samples. So, being the esters produced by the interaction of two lipid oxidation
products, the free fatty acids and the alcohols, the greatest number of esters identified in
the present work could be well explained by the matrix used. Additionally, a microbial
contribution cannot be excluded being the sampling carried out on subcutaneous fat not
covered by skin, where moulds and yeasts develop during the ripening and tissues are
easily accessible for microbial esterase enzymes. Eventually, subcutaneous fat is also in
close contact with salt used for the manufacturing, in which a considerable number of
microbial communities belonging to Micrococcaceae was found [48]. These microorganisms
were previously found in ham and associated with a significant lipolytic activity [35]. Esters
developed during the ripening process, resulting thus significantly higher in finished prod-
ucts respect to green hams [47]. Accordingly, in the present study, the highest concentration
of these compounds was observed at the end of ripening, in S12 samples (Figure 1).
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Figure 1. Total amounts of aldehydes, ketones, esters and hydrocarbons from R0 to S18 Toscano dry-cured hams. AU = Abun-
dance units. Different letters (a,b,c,d) within the same chemical family indicate significant differences (p < 0.05) among
maturing times.

Thirteen hydrocarbons were identified from R0 to S18. Hydrocarbons generally
followed the trend showed by aldehydes, with an overall gradual increase until S16 and
a final drop at S18. Four n-alkanes (hexane, decane, tridecane and pentadecane) were
detected; they are likely products derived from lipid oxidation, as reported by several
authors [49,50]. The other hydrocarbons detected are mainly branched alkanes, but two
branched alkene and one branched alkyne were also identified. This chemical family is
widely known in dry-cured ham, both in fat and lean matrix [39,45], but to the best of our
knowledge, except for n-alkanes, none of the other compounds detected in the present
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study has been previously reported in literature. The identification of these compounds
is likely challenging without a specific SPME fiber [51]. Despite their strong presence
in dry-cured ham, most of them usually have high odor thresholds and are considered
not important contributors to the aroma of dry-cured products [49]. In this study, only
one aromatic hydrocarbon was found. Styrene was already reported in ham fat [39,50],
its origin was alternatively reported as contaminant of plastic bags [39] or as product of
degradation of phenylalanine [52], moreover styrene was associated with a penetrating
odor and sweet smell [53].

Twelve ketones were found in subcutaneous fat. Three of them were aliphatic ke-
tones (2-decanone, 2-undecanone, 2-pentadecanone). Aliphatic ketones are characteris-
tics of dry-cured ham, being already reported by several authors both in lean and fat
tissues [14,33,44,54]. 2-decanone and 2-undecanone reached their peak at S6, whereas
2-pentadecanone was related to the early ripening stages and then significantly decreased.
Their aromatic notes have been described as fruity, spicy, and sometimes cheesy notes [55].
Three unsaturated ketones (1-octen-3-one, 4-hexen-2-one, 3-octen-2-one), five among
polyunsaturated and methyl branched ketones (4-methyl-2-hexanone, 2,3-octanedione,
6-methyl-5-hepten-2-one, 6-methoxy 2-hexanone, 3,5-octadien-2-one), and one aromatic
ketone (acetophenone) were also identified. Four-hexen-2-one is the most abundant com-
pound for this family, it reached its maximum at 6 months of ripening then considerably
declined until S18. However, at the best of our knowledge, it is the first time that this
compound is reported in ham, while it was already found in pork loin and belly [56], but
odor description was not reported. Concerning unsaturated and polyunsaturated ketones,
1-octen-3-one, 3-octen-2-one, 2,3-octanedione, 6-methyl-5-hepten-2-one and 3,5-octadien-
2-one were already observed in fat of dry-cured ham [23,33,39]. Moreover, 1-octen-3-one
was also identified as odor-active compound in ham, and described as spicy, mushroom,
dirty [32]. Among the other compounds, 3-octen-2-one and 6-methyl-5-hepten-2-one have
been reported as aroma active compounds in fermented meat. They were reported to have
mushroom, metal and resin, pine, herbal, synthetic notes [5]. Different pathways are related
to the formation of unsaturated and polyunsaturated ketones, with lipid autoxidation and
microbial metabolism (β-oxidation) being the main ones [46]. Even though the microbial
pathway has often been discarded for dry-cured ham due to its small internal microbial
population [28], in the case of subcutaneous fat, this pathway is likely concurrent to autoox-
idation considering the greater exposure of sampled fat to the external environment during
processing, ripening and seasoning. For instance, Andrade et al. [57], working on Iberian
dry-cured ham, assumed that 2-butanone was produced by yeasts population. Accordingly,
ketones resulted in being the most abundant family in early ripening phases, declining
from S12 when aldehydes became the most represented group of VOCs (Figure 1).

Alcohols detected in subcutaneous fat consisted of 12 compounds. Most of them
were also observed in fat [47], whole slice [30], and lean tissue [58] of Iberian ham [45] and
Toscano ham [11,59]. Alcohols showed a very regular trend constantly increasing from R0 to
S16 when the greatest amount for almost every compound was observed. The great increase
of this family from green to seasoned fat of dry-cured ham is in accordance with results
reported by Narváez-Rivas et al. [47]. After the 16th month of seasoning, they dropped
at lower values. Linear and branched alcohols are known as products of lipid oxidation,
whereas methyl branched ones were also linked to Strecker degradation [38]. Previous
studies reported that 1-hexanol originates from palmitoleic and oleic fatty acids oxidation,
while 1-octanol seems to be formed from oleic acid oxidation [60]. The most abundant
alcohol observed resulted 2-octen-1-ol, followed by 1-octen-3-ol. As for many straight-
chain unsaturated alcohols, they have low odor thresholds. 2-octen-1-ol is described as
oily, slightly nutty and fatty waxy [31]; 1-octen-3-ol is often associated to mushroom-like,
earth, fatty, and sometimes rancid notes in dry-cured products [54,61].

Carboxylic acids showed an increasing trend from green to seasoned hams. Most of
the identified compounds reached the highest concentration between 12 and 16 months
of seasoning and they generally decreased at S18. This is in accordance with their origin
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being products from hydrolysis of triglycerides and phospholipids, or from the oxidation
of unsaturated fatty acids [62]. Twelve acids were identified in seasoned fat of Cinta
Senese [14], however, concerning only the subcutaneous fat, few studies reported the
presence of carboxylic acids. Specifically, butanoic and hexanoic acids were observed in
French and Spanish dry-cured ham [19,28,39], but not in the present study. Most of the
literature references about carboxylic acids in dry-cured ham refer to volatile profile of
lean tissue. Nevertheless, even in this matrix, a great variability in type and number of
identified compounds was observed [30,44,63,64].

Three last compounds were identified, one nitrogenous compound, one furanone,
and one furan. Both furan and furanone reached their peak during the early stage of
seasoning. Two-pentylfurane was detected in subcutaneous fat of Teruel white hams,
Iberian hams, Spanish white hams, and French white hams [19,39]. Its trend was consistent
with its origin connected to lipid oxidation [30] and in accordance with results reported
for Toscano ham [11,65] and Iberian ham [58], even if these studies refer to lean matrix.
Due to its quite low odor threshold, it might contribute to overall aroma by vegetable
aromatic note [37]. 2(3H)dihydro-5-penthylfuranone is a lactone, it was observed only
by Ruiz et al. [66] in dry-cured ham. Nevertheless, lactones have been widely reported
in ham and dry-cured products with γ-butyrolactone, γ-octalactone, and γ-nonalactone
being the most frequently detected in Iberian ham [45]. Similarly to 2-pentylfuran, also
2(3H)dihydro-5-penthylfuranone was likely a product of lipid oxidation of fatty acids or
unsaturated aldehydes. Indeed this is considered the main origin of lactones, even if also
Maillard reaction was also proposed as a possible pathway [37].

3.3. Prediction of the Maturing Time by a Multivariate Approach

Several authors proposed a multivariate approach to classify dry-cured ham relying
on VOCs profile. The main approach used was PCA [28,33], but also other approaches
were tested, including Linear Discriminant Analysis (LDA) [33], Partial Least Square-
Discriminant Analysis regression [67], and stepwise linear discriminant analysis [19,28].
In the present study three multivariate approaches were applied together to tentatively dis-
criminate between ripening and seasoning (first scenario) and, within seasoning, to classify
hams according to seasoning length (second scenario). In the first scenario, 5 compounds
were selected by SDA (Table 4), Then, using the selected variables, the CDA was able to
significantly (p < 0.001) split hams belonging to LMC (R0, R1, R3, R6) from hams belonging
to HMC (S12, S14, S16, S18) (Figure 2). In details, the presence of 1,1-diethoxy-hexane
was characteristics of LMC hams, whereas the other 4 compounds were related to HMC
samples. Especially dodecanoic acid, with a canonical coefficient (CC) of 2.42, resulted the
most characterizing compound of Toscano ham’s fat during late seasoning. Lastly, the DA
correctly assigned all samples to their group of origin. Dodecanoic acid contribution in
describing high maturing classes of Toscano dry-cured ham was previously observed also
in Semimembranosus muscle (CC = 4.20) [11]. In subcutaneous fat it displayed a very clear
ascending trend during ripening and reached consistent amounts in seasoning. However,
it has a very high perception threshold [31], so despite being an important descriptor from
the chemical point of view, it is likely not perceivable by sensorial assessment. On the
contrary, to the best of our knowledge, 1,1-diethoxyhexane was not previously reported in
subcutaneous fat of dry-cured products.
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Table 4. Volatile compounds of subcutaneous fat of Toscano dry-cured ham selected by stepwise
discriminant analysis. Canonical discriminant analysis scores (Can1) were used to separate low
maturing classes (LMC) and high maturing classes (HMC).

Subcutaneous Fat Samples

Chemical Family Can1 Sensory Descriptors a

1,1-diethoxyhexane Hydrocarbon −0.82 Cognac, pear, floral, hyacinth, apple, fruity 1

3-methyl-ethyl ester butanoic acid Ester 0.03 Strong, fruity, vinous, apple-like
2,4-dimethylbenzaldehyde Aldehyde 0.13 Mild, sweet, bitter-almond

Butanoic acid, ethyl ester Ester 0.45 Fruity odor with pineapple undertone and sweet
Dodecanoic acid Acid 2.42 Fatty, creamy, cheese-like, waxy

a As reported in Burdock, G.A, 2010 [31], except for: 1 Based on online databases www.thegoodscentscompany.com.

In the second scenario, 12 VOCs were identified by SDA to discriminate samples into
seasoning classes (Table 5) and then used to correctly assign samples to each group. The
first and second canonical functions accounted for the 87% of the total variance and they
were able to highlight differences among groups (Figure 3a). Can1 separated S12, S14,
and S18 groups from S16. Among the compounds that weighed the most in Can1 there
were 3 ketones (2,3-octanedione, 4-methyl-2-hexanone, and 6-methoxy-2-hexanone) and 1
aldehyde (decanal) (Figure 3b). Can2 separated samples belonging to S12 from the other
groups. In this case, the most important compounds were 2 esters (formic acid ethyl ester
and undecanoic acid, methyl ester), 1 hydrocarbon (2,4,4-trimethylhexane), and 1 ketone
(6-methoxy-2-hexanone). 2,3-octanedione, 4-methyl-2-hexanone and decanal resulted in
the highest CCs of Can1. Among them, special importance in overall aroma of dry-cured
ham is attributed to 2,3-octanedione, which has a “warmed-over” flavor [31]. Moreover,
decanal, which originates from autoxidation of oleic fatty acid, was already identified
among the main descriptors to characterize samples from different dry-curing periods by
LDA [33]. According to Figure 3a,b, this compound, together with 4-methyl-2-hexanone,
were mainly involved in the discrimination of S16 from S12, S14, and S18. Focusing on
Can2, 4 compounds had CCs higher than 1. These compounds were: undecanoic acid
methyl ester (−1.22), formic acid ethyl ester (+1.18), 2,4,4-trimethylhexane (−1.13) and
6-methoxy-2-hexanone (+1.03). According to Figure 3a, formic acid ethyl ester and 6-
methoxy-2-hexanone were linked to S12 hams, whereas undecanoic acid methyl ester
and 2,4,4-trimethylhexane resulted to be good descriptors of hams seasoned for more
than 12 months. In comparison with the previous study on VOCs of Semimembranosus
muscle [11], a lower number of VOCs were needed to correctly classify samples according
to their actual ripening and seasoning stage. This suggests that, in subcutaneous fat, there
are compounds that could be powerful markers for assessing processing stages of hams.

Table 5. Volatile compounds of subcutaneous fat of Toscano dry-cured ham selected by stepwise discriminant analysis.
Canonical discriminant analysis scores (Can1, Can2, and Can3) were used to separate hams belonging to different seasoning
lengths (S12, S14, S16, S18).

Subcutaneous Fat Samples
Chemical

Family Can1 Can2 Can3 Sensory Descriptors a

1,1-diethoxyhexane Hydrocarbon −0.75 −0.44 −0.03 Cognac, pear, floral, hyacinth, apple, fruity 1

Pentanoic acid, ethyl ester Ester 0.48 0.12 0.74 Fruity, apple-like
4-methyl-2-hexanone Ketone 2.17 0.93 0.64 Fruity 2

2,4,4-trimethylhexane Hydrocarbon 0.37 −1.13 0.69 -

2,3-octanedione Ketone −3.26 0.20 0.55 Green, spicy, cilantro, fatty, leafy, cortex, herbal,
warmerd-over

Formic Acid, ethyl ester Ester −0.10 1.18 −0.88 Pungent, rum-like, pineapple
6-methoxy-2-hexanone Ketone −0.76 1.03 0.63 Fruity e spicy 3

Decanal Aldehyde 1.07 −0.06 −0.30 Sweet, waxy, floral, citrus, fatty
Acetic acid, ethenyl ester Ester 0.88 0.04 −0.50 Wine, fruity 4

dihydro-5-penthyl-2(3H) furanone Furanone 0.00 0.85 0.57 Coconut and fatty
Hexadecanoic acid, ethyl ester Ester 0.81 0.45 0.02 Mild, waxy sweet
Undecanoic acid, methyl ester Ester −0.07 −1.22 0.02 Fatty, waxy fruity 1

Proportion of explained variation 0.56 0.31 0.13
a As reported in Burdock, G.A, 2010 [31], except for: 1 Based on online databases www.thegoodscentscompany.com; 2 Reale et el., 2019 [68];
3 Luna et al., 2006 [19]; 4 Lin et al., 2014 [69].
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Figure 3. Scores (a) of canonical discriminant analysis within high maturing class (HMC) samples: S12, S14, S16, and S18
months of seasoning. (b) Loadings of canonical discriminant analysis within HMC.

4. Conclusions

In conclusion, instrumental color of subcutaneous fat was affected by time, especially
L* score was higher for longer seasoning time, partially in agreement with the greater de-
gree of saturation observed in the higher maturing classes. Oleic acid, the main contributor
to MUFA amount, showed no difference among seasoning groups. According to VOCs
profile, almost every identified compound was affected by ripening and seasoning times.
Regardless of single compounds, the main chemical families steadily increased until R6,
then different trends were observed. Aldehydes and hydrocarbons reached their peaks at
S16, ketones and acids instead showed the highest total content at R6 and R12, respectively.
Lastly, esters started to decrease after 12 months of seasoning. Moreover, at S18 most of the
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main compounds involved in dry-cured ham overall aroma already declined to value simi-
lar to ripening phases. In the future, it would be interesting to thoroughly investigated also
the enzymatic activity taking place during the different processing stages. The multivariate
approach adopted highlighted the importance of 5 compounds present in subcutaneous
fat to discriminate between ripening and seasoning stages (1,1-diethoxyhexane, 3-methyl-
ethyl ester butanoic acid, 2,4-dimethyl-benzaldehyde, butanoic acid ethyl ester, dodecanoic
acid). Instead, 12 compounds were selected to classify hams according to seasoning length.
Among them, 4 VOCs with CCs > 1 (undecanoic acid methyl ester, formic acid ethyl ester,
2,4,4-trimethylhexane, and 6-methoxy-2-hexanone) had a central role in differentiating the
clusters.
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