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Abstract: Development of novel antiviral molecules from the beginning costs an average of $350 million
to $2 billion per drug, and the journey from the laboratory to the clinic takes about 10–15 years.
Utilization of drug repurposing approaches has generated substantial interest in order to overcome
these drawbacks. A drastic reduction in the failure rate, which otherwise is ~92%, is achieved with
the drug repurposing approach. The recent exploration of the drug repurposing approach to combat
the COVID-19 pandemic has further validated the fact that it is more beneficial to reinvestigate the
in-practice drugs for a new application instead of designing novel drugs. The first successful example
of drug repurposing is zidovudine (AZT), which was developed as an anti-cancer agent in the 1960s
and was later approved by the US FDA as an anti-HIV therapeutic drug in the late 1980s after fast track
clinical trials. Since that time, the drug repurposing approach has been successfully utilized to develop
effective therapeutic strategies against a plethora of diseases. Hence, an extensive application of the
drug repurposing approach will not only help to fight the current pandemics more efficiently but
also predict and prepare for newly emerging viral infections. In this review, we discuss in detail
the drug repurposing approach and its advancements related to viral infections such as Human
Immunodeficiency Virus (HIV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
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1. Introduction

The drug repurposing approach, also referred to as drug reprofiling or drug repositioning, utilizes
mechanistic details of the existing drugs to investigate their novel applications against other disease
conditions. Given the high failure rate of ~90% and the enormous amount of resources associated with
the development of novel drugs and their combinations, the drug repurposing approach has gained
a substantial amount of attention among the scientific community. With this approach, the risk of
failure is drastically reduced since the drugs being investigated have already been deemed to be safe
for translational applications in humans and other diseases; therefore, the toxicity factor associated
with these drugs can be eliminated to a great extent. Second, this approach may also drastically reduce
the time required for preclinical evaluation, clinical trials, as well as the development of various drug
formulations based on structure-activity relationship (SAR) [1,2]. Further, the possible reduction in the
duration of testing may potentially enable us to rapidly provide potent drug formulations to the required
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communities and pandemic areas around the world. Although this approach is far from a newly
developed method, it has obtained considerable momentum, especially during the development of
treatment strategies to combat the morbidity and mortality caused by viruses, such as the Human
Immunodeficiency Virus (HIV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
The approach has been utilized in the development of more efficient therapies and has permitted the
development of several drugs for their new applications (Figure 1).
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Figure 1. Chemical structures of the drugs that are efficacious examples of drug repurposing approach
and are approved by the FDA for their multiple applications. The chemical structures are adapted from
(pubchem.ncbi.nlm.nih.gov/).

Apart from the applications as antiviral molecules, the drug repurposing approach is being
actively investigated for development of drugs for other emerging infectious diseases [3–5]. The clinical
evaluation of the approved drugs for their new application requires fundamental understanding of
pharmacokinetics and pharmacodynamics. The large amount of existing Phase IV and post-marketing
data offers an extensive understanding in terms of drug candidate selection for the new application [6].
Giovannoni et al., reviewed the policy-oriented approaches for drug repurposing and highlighted
the vital importance of post-marketing studies for early and fast track approval of the drugs during
pandemics [7]. The pharmaceutical companies often focus on the post-marketing follow-up studies
as a part of life cycle management (LCM) through which the companies often attempt to extend the
patent life of their drugs. However, these studies become enormously useful for the repurposing of the
existing drugs in the long term. A timeline of the drugs that are approved by US FDA for the novel
indications such as cancer, obesity and autoimmune diseases are highlighted in Table 1.

pubchem.ncbi.nlm.nih.gov/
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Table 1. Overview of selected successful drug reprofiling candidates.

Drug Name Original Indication New Indication Year of Approval

Zidovudine Cancer AIDS 1987 [8]

Minoxidil Hypertension Hair loss 1988 [9]

Sildenafil Angina Erectile dysfunction 1998 [10]

Thalidomide Morning sickness
Erythema nodosum

leprosum and multiple
myeloma

1998 [11] and 2006 [12]

Celecoxib Pain and inflammation Familial adenomatous
polyps 2000 [13]

Atomoxetine Parkinson disease ADHD 2002 [14]

Duloxetine Depression SUI 2004 [15]

Rituximab Various cancers Rheumatoid arthritis 2006 [16]

Raloxifene Osteoporosis Breast cancer 2007 [17]

Fingolimod Transplant rejection MS 2010 [18]

Dapoxetine Analgesia and
depression Premature ejaculation 2012 [19]

Topiramate Epilepsy Obesity 2012 [20]

Ketoconazole Fungal infections Cushing syndrome 2014 [21]

Aspirin Analgesia Colorectal cancer 2015 [22]

AIDS = Acquired Immunodeficiency Syndrome. ADHD = Attention deficit hyperactivity disorder. SUI = Stress
urinary incontinence. MS = Multiple Sclerosis.

Despite enormous advances in pharmaceutical technologies and our understanding of disease
transmission and pathogenesis, the failure rates of drugs have amplified in the past few decades [23,24].
The primary factors in the decline of success rate are time, cost, and resources associated with the journey
of a drug from the laboratory to the clinic. Multiple statistical studies on global research and development
(R&D) expenditure has estimated an approximate cost of $350 million to $2 billion per drug for
development and its clinical trials; a grueling process that takes approximately 15–17 years [25]
[Figure 2]. Although the total global R&D expenditure has increased almost tenfold from $4 billion
in 1975 to $41 billion in 2010, the approval rate of new drugs by the FDA has remained more or less
stagnant [26–28]. In total, 26 new drugs were approved by the FDA in 1975, whereas, 27 new drugs
were approved in 2013, which further dropped to 22 new approvals in 2016. The decline in the approval
rates was largely due to the increased failure of drugs at various stages of their clinical trials [29]. Hence,
repurposing or reprofiling of drugs has gained attention in recent times for both commonly occurring
as well as rare infectious diseases.

Several commercially available chemical libraries contain established drugs, that are of enormous
advantage in disease biology and computational biology. These chemical libraries have accelerated the
progressive applications of the drug repositioning approach. The activity-based approach, which primarily
involves screening of large-scale libraries, is laborious, though it is more advantageous and reliable
compared to in silico computational analysis due to fewer false positives. It might also provide information
about the effects associated with possible primary or secondary drug metabolites, which is not possible
to predict with the computational approach (Table 2). On the other hand, the in silico computational
approach helps us to quickly obtain potential targets for further investigations.
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Table 2. Pros and cons associated with activity-based and in silico drug repositioning approaches.

Approach Advantages Disadvantages

Activity-based
approach

No limitation for in vitro
cell-based as well as cell-free
target-based screening assays

Time and labor-consuming and required highly
skilled individuals

Easy to validate screening hits Requires a large collection of existing drugs

Reduced chances of false-positive
hits during the screening

Requires the development and optimization
of efficient

screening assays

Molecules with activities due to
primary and secondary

metabolites are also obtained

In silico
approach

Not time and labor efficient Requires detailed structural insight of target proteins
both in normal as well as diseased conditions

No need for an entire collection of
existing drugs

Increased rates of false-positive hits during
the screening

No need to develop a
screening assay

Activity-based retasking of drugs provide several advantages over designing novel molecules
including lower risk of failure, rapid availability of drugs to the community, as well as a drastic
reduction in overall cost associated with drug development.

2. The Origin of Drug Repurposing Approach: Zidovudine as an Example

The first FDA approved anti-HIV medication, zidovudine, was initially developed as an anti-cancer
medicine in the late 1960s before being developed as an anti-HIV formulation as a result of a large-scale
library screening approach to fast-track preclinical trials [8]. Tamin and Baltimore revolutionized the
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field of virology and molecular biology by their discovery of reverse transcription (RT) and DNA
provirus in the 1960s and strengthened the theory of that time that most cancers are caused by
environmental viruses. Extending to these groundbreaking discoveries, several scientists demonstrated
that the molecules that were blocking the nucleotide synthesis were not only proven to be used
as anti-cancer drugs but also potent antibacterial as well as antiviral drugs. These discoveries
eventually led to the development of zidovudine (AZT) [Figure 1] by Horwitz in 1964 as a potent
anticancer agent [30]. A decade later, Ostertag et al., demonstrated that zidovudine specifically
inhibited the murine leukemia virus (MLV) by blocking the virus life cycle at a very early stage [31].
This discovery gained scientific attention immediately as MLV is a retrovirus; a few years down the
line, the identification of HIV, another retrovirus as a causative agent of AIDS was demanding the
immediate therapeutic development to control the pandemic created by HIV. In late 1985, AZT was
reported to block HIV replication in vitro [32], and soon after this study was published AZT received
the approval from FDA for large scale clinical trials. Oral administration of AZT in 282 patients showed
a reduction in viral load and stability in the CD4+ T-cell count [8]. This was not only the first successful
example of drug repurposing, but also the shortest duration of drug approval from its first report,
which was completed in 25 months. These studies indicated that the drug repurposing approach
may be extremely vital to save time as well as resources associated with developing new drugs.
Recent documents on the development of multidrug-resistant HIV strains, even in anti-retroviral
naïve patients, have raised alarming signals in the scientific community and promoted the rapid
need to update the current antiretroviral therapeutic strategies [33]. Application of drug repurposing
approaches to develop anti-HIV molecules would inspire not only the development of more efficient
anti-HIV formulations, but also make them rapidly available to vulnerable populations, especially those
in remote areas of the developing world.

In the case of HIV and other retroviruses, extremely fast rate of replication coupled with the lack
of 3′–5′ exonuclease proofreading activity allow them to develop drug resistant mutations at a very
rapid rate. Hence, targeting the viral enzymes allowed the virus to overcome the inhibitory potential
of drugs and develop resistance due to the hypermutations generated during reverse transcription.
Additionally, with limited resources of its own, HIV as well as other viruses are inefficient at replicating
within the host system. Therefore, viruses hijack the host machinery not only to successfully propagate
in host cells but also evade the host immune system. Various studies have demonstrated the vital role
of these host factors in the virus life cycle and have highlighted them as potential therapeutic targets.
Hence, targeting cellular HIV dependency factors (HDFs) along with the viral enzymes to attenuate
HIV replication may help overcome this drawback of the emergence of drug resistance and strengthen
our efforts to eliminate the virus [34,35].

During the past two decades, a sizeable number of host factors have emerged as potential cellular
targets for anti-HIV therapeutics [29,35–46] and, of particular interest, for drug repurposing approaches.
Drug repurposing incorporates various approaches including large-scale screening of chemical libraries
as well as in silico computational approaches. Development of primary active scaffolds will lead to
structural formulations that are more specific and less toxic. Drug repurposing approaches to identify
and characterize the HDF(s) as potential therapeutic targets would be more advantageous compared to
targeting the viral proteins to overcome the drawback of current therapeutics including drug resistance
and toxicity to the host.

3. Anti-HIV Therapeutics as Drug Repurposing Candidates

The bottleneck steps in the virus life cycle such as reverse transcription, integration, and maturation
are conserved across the Retroviridae family to a substantial extent. Hence, molecules that inhibit HIV-1
replication would likely inhibit other retroviruses and vice versa. Since the approval of the first anti-HIV
medicine, the development of novel anti-HIV therapeutics has erupted including novel chemical
entities and structures with significant anti-HIV activities. Not only are these novel formulations used
for their anti-HIV activity, but also studied for their different therapeutic implications including various
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types of cancers. In the late 1990s, the HIV-1 reverse transcriptase inhibitors (RTIs) were highlighted
in several reports and demonstrated very efficient anti-HIV activity. Along with the drastic decline
in the free circulating viral load, patients treated with RTIs were also observed to have a gradual
increase in their CD4+ T-cell counts and, more importantly, the treatment also helped control Kaposi’s
Sarcoma (KS) [47]. These observations gave the first indications of possible anti-cancer activity of RTIs.
RTIs are nucleotide analogs, which hamper cellular DNA synthesis thus inducing cell death even
in uninfected cells at high concentrations. For example, cidofovir and ganciclovir have been widely
investigated for their ability to induce cell death in rapidly dividing cancer cells [48–50]. Efavirenz
has been demonstrated to have profound antiproliferative activity against pancreatic cancer as well
as anaplastic thyroid cancer [51]. Rilpivirine was recently shown to block Zika virus infection in the
brain along with etravirine and efavirenz [52]. However, other FDA approved drugs and investigational
RT inhibitors have not been well studied for their anti-cancer activity. Hence, we believe that several
of these HIV-1 RT inhibitors should be investigated further for their anti-cancer activities, which may
aid in the development of more efficient therapeutic strategies against various incurable cancers.

Further, the introduction of HIV-1 protease (PR) inhibitor, saquinavir, in December 1995,
opened a horizon of opportunities for studying its application not only as an anti-HIV agent, but also
anti-cancer and anti- inflammatory agent. Apart from their anti-cancer activity, HIV-1 protease
inhibitors such as ritonavir and lopinavir are documented to have anti-protozoal activity at micromolar
to nanomolar concentrations [53]. Further, these inhibitors have been reported to have anti-malarial
activity [54] and also shown to cure Chagas’ diseases [55]. However, these protease inhibitors
demonstrated off-target effects, which have consequently limited their use as medications at various
phases of clinical trials for several other diseases.

Most recently, the use of anti-HIV PR inhibitors has shown new hope in the development
of effective treatment against the novel SARS-CoV-2 infection (COVID-19). Previously, ribavirin,
lopinavir in combination with ritonavir demonstrated significant anti-viral potential against SARS
as well as MERS associated coronaviruses [56]. As an extension of these observations, remdesivir
was recently tested for its antiviral activity against SARS-CoV-2 in vitro and was found to block
virus replication at nanomolar concentration [57]. Additionally, remdesivir also demonstrated strong
inhibitory potential against a range of viruses including Filoviruses such as Ebola [58–60]. These studies
collectively suggest that the FDA approved anti-HIV therapeutic candidates should be considered
more actively for additional applications not only for other viruses but also non-infectious diseases
such as cancer.

4. Drug Repurposing Approach at Present: Against COVID-19

Most recently, lopinavir, remdesivir and hydroxychloroquine (HCQ) were suggested to have
significant in vitro inhibitory potential against SARS-CoV-2, the causative agent of COVID-19 that has
caused major devastation across the globe [57,61–63]. Repurposing of anti-hepatitis C virus (HCV)
molecules as anti-SARS-CoV-2 is also being actively considered to control disease progression [64].
Additionally, the protease inhibitors [65], anti-inflammatory drugs [66], and anti-aging drugs [67]
are actively being considered for the development of potential therapeutic strategies against COVID-19
to overcome the pandemic. A summary of the drugs that are at various stages of their clinical trials for
COVID-19 is summarized in Table 3.
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Table 3. Summary of drugs being repurposed in clinical trials against COVID-19.

Therapeutic Intervention Class of the Drug/s Clinical Condition/s of the
Participants of the Trial Trial Identification Number * Phase

Hydroxychloroquine Antimalarial and amebicide 30 patients suffering from
pneumonia due to COVID-19 NCT04261517 3

Chloroquine Antimalarial and amebicide 10,000 patients in a prophylaxis
study for COVID-19 NCT04303507 N/A

Human immunoglobulin Antibody 80 patients suffering from
pneumonia due to COVID-19 NCT04261426 2 and 3

Remdesivir Nucleotide reverse
transcriptase inhibitor

452 patients suffering from
a severe respiratory infection

due to COVID-19
NCT04257656 3

Remdesivir Nucleotide reverse
transcriptase inhibitor

308 patients with mild or
moderate respiratory tract

infection caused by COVID-19
NCT04252664 3

Arbidol (umifenovir) Virus entry (Fusion) inhibitor
380 patients suffering from

Pneumonia caused
by COVID-19

NCT04260594 4

Arbidol or lopinavir-ritonavir
or oseltamivir

Combination of virus entry
(Fusion) inhibitor and protease

inhibitor

400 patients infected
with COVID-19 NCT04255017 4

Arbidol or lopinavir + ritonavir
Combination of virus entry

(Fusion) inhibitor and protease
inhibitor

125 patients infected
with COVID-19 NCT04252885 4

Darunavir + cobicistat
Protease inhibitor (Darunavir)
in combination with Booster

(cobicistat, a CYP3A inhibitor)

30 patients suffering from
Pneumonia caused

by COVID-19
NCT04252274 3

TCM combination with
lopinavir + ritonavir,

α-interferon via aerosol

Cytokine in combination with
protease inhibitor

150 patients infected
with COVID-19 NCT04251871 N/A

Recombinant human
interferon α2β Cytokine 328 patients infected

with COVID-19 NCT04293887 1

Carrimycin or lopinavir +
ritonavir or arbidol or

chloroquine phosphate

Antibiotic in combination with
booster (arbidol) or

antimalarial/ amebicide

520 patients infected
with COVID-19 NCT04286503 4
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Table 3. Cont.

Therapeutic Intervention Class of the Drug/s Clinical Condition/s of the
Participants of the Trial Trial Identification Number * Phase

Danoprevir + ritonavir +
interferon inhalation or

lopinavir + ritonavir or TCM
plus interferon inhalation

Protease inhibitors with
cytokine as aerosol

50 patients suffering from
pneumonia caused

by COVID-19
NCT04291729 4

Xiyanping or
lopinavir-ritonavir-

interferon inhalation

Anti-inflammatory (Xiyanping)
or Protease inhibitors

with cytokine

384 patients with pneumonia
caused by COVID-19 NCT04275388 N/A

Xiyanping combined with
lopinavir + ritonavir

Anti-inflammatory (Xiyanping)
in combination with
Protease inhibitors

80 patients infected
with COVID-19 NCT04295551 N/A

Combinations of oseltamivir,
favipiravir, and chloroquine

Neuraminidase (Oseltamivir)
in combination with

antimalarial/amebicide

80 patients infected
with COVID-19 NCT04303299 3

Thalidomide Angiogenesis inhibitor
and immunomodulator

40 patients infected
with COVID-19 NCT04273581 2

Thalidomide Angiogenesis inhibitor
and immunomodulator

100 patients suffering from
pneumonia caused

by COVID-19
NCT04273529 2

Vitamin C Vitamin (Ascorbic acis)
140 patients with severe

pneumonia caused
by COVID-19

NCT04264533 2

Methylprednisolone Corticosteroid 80 patients infected
with COVID-19 NCT04244591 2

Pirfenidone Pyridone
294 patients with severe

pneumonia caused
by COVID-19

NCT04282902 3

Bromhexine hydrochloride Mucolytics
60 patients with suspected and

mild pneumonia caused
by COVID-19

NCT04273763 N/A

Bevacizumab Monoclonal antibody
20 patients with COVID-19

associated with
severe pneumonia

NCT04275414 2 and 3

Fingolimod Sphingosine 1-phosphate
receptor modulator

30 patients infected
with COVID-19 NCT04280588 N/A

* Information source: clinicaltrial.gov. N/A = Not available.

clinicaltrial.gov
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Previously, chloroquine (CQ) derivatives had been tested on coronaviruses and demonstrated
a potential antiviral effect in-vitro [68], which were further supported by the recent findings where
HCQ was demonstrated to inhibit COVID-19 replication in vitro [61,62]. Initially, HCQ demonstrated
promising antiviral effects in patients suffering from severe acute pneumonia infected with
SARS-CoV-2 [69–71], which led to the fast-track approval of HCQ for COVID-19 patients by the
USFDA. However, subsequent reports of moderate or no effect of HCQ questioned its use in COVID-19
patients and eventually its retraction after two pioneering studies demonstrated reduced antiviral
but more adverse effects of HCQ in patients raising alarming signals over the effectiveness of HCQ
against COVID-19. Further, the use of intravenous immunoglobulins for their ability to produce
anti-inflammatory and immunomodulatory effects is being evaluated in the patients suffering from
pneumonia caused by COIVD-19 (NCT04303507). Subsequently, HIV-1 protease (PR) inhibitors have
gained a popularity in the scientific community for their inhibitory potential against COVID-19. Several
of the HIV-1 reverse transcriptase (RT) inhibitors including remdesivir (NCT04257656, NCT04252664),
umifenovir (NCT04260594) are being evaluated either individually or in different combinations in the
patients suffering from COVID-19. Additionally, other gold-standard medications such as Thalidomide
(NCT04273581, NCT04273529) as well as vitamin-C (NCT04264533) are being investigated actively
in patients suffering from severe COVID-19 disease. Furthermore, other pharmacologically active
molecules such as methylprednisolone (NCT04244591), pirfenidone (NCT04282902), bromhexine
hydrochloride (NCT04273763), bevacizumab (NCT04275414), fingolimod (NCT04280588) have
occupied a prominent place as potential therapeutic candidates in patients suffering from critical illness
due to the COVID-19 associated complications (Table 3). These studies collectively validated the fact
that the utilization of the drug repurposing approach will not only monumentally reduce the recourse
consumption, but also help to drastically reduce the failure rate.

Along with these clinical trials, several other studies documented the critical host factors and
their modulation by small molecules as a potential therapeutic approach. For instance, Clausen et al.,
demonstrated that the entry of SARS-CoV-2 into the host cells was dependent on heparan sulfate present
on the cell surface [72]. Further, Zhang et al., performed drug repurposing screening targeting heparan
sulfate mediated endocytosis and identified several candidate drugs including, mitoxantrone, sunitinib
and BNTX that inhibited SARS-CoV-2 replication in vitro at concentrations as low as 10 nM [73].
Lactoferrin was shown to inhibit SARS-CoV expression both in vitro as well as in vivo and is being
further investigated for its antiviral efficacy against SARS-CoV-2 [74]. Quercetin, an established
flavonoid, demonstrated significant synergistic antiviral activity in association with vitamin C (ascorbic
acid) supporting further therapeutic use of this combination as a potential therapeutic against
SARS-CoV-2 [75].

5. Drawbacks of Drug Repurposing

Since the new applications are found based on the previously known data such as pharmacokinetics
and mechanism of action, the time for clinical evaluations for a new application of a drug is reduced.
However, certain drawbacks need to be considered during the utilization of this approach. The primary
concerns associated with repurposing existing drugs is the intellectual property rights and additional
national, as well as international legislations associated with the drug patents. These are the major
obstacles of investigating the novel applications of previously known drugs. Further, if the drugs
or their previous applications are patented, then that provides the original developers the market
exclusivity. This not only makes the data unavailable, but also makes the molecule or chemical scaffolds
unavailable for further investigation. An extension of this, deviating from the chemical structure
based on structure-activity relationship violates the principle of drug repurposing and makes the new
chemical entity subject to the dogma of pre-clinical and clinical evaluation. These drawbacks associated
with the drug repurposing should be addressed scientifically as well as legally to utilize the approach to
its maximum potential and make the drugs rapidly available during global pandemics and worldwide
emergencies. Furthermore, the previous application of drug/s are reported at a particular dose range,
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which may not necessarily be effective for its new application. Hence, it is critical to determine the
effective dose range of a drug/s for its new application/s along with the determination of toxicity and
off-target effects at the effective dose. Despite the associated advantages and promising results over the
period, global financial support for the drug repurposing approach has been lacking. Finally, the low
market price of the drugs, shorter duration of the patent with new applications, and low returns on the
investments are the primary reasons why pharmaceutical companies are not extensively interested
in the drug repurposing approach.

6. Conclusions

With the current arsenal of antiviral therapeutic regimens, we have successfully controlled the
major pandemics including AIDS. However, the deaths associated with viral infections such as HIV
and COVID-19 remain major concerns. Repurposing of the drugs has always been of major interest
due to the advantages associated with the approach including reduced failure rates and decreased
time as well as resource consumptions. The first successful approval of drug repurposing was also
the first approved anti-HIV medicine, which was initially developed as an anti-cancer drug in the
1960s. The recent exploitation of the drug repurposing approach to find efficient therapeutics against
COVID-19 has highlighted the fact that designing novel molecules during global pandemics is less
advantageous over retasking of drugs.

Designing novel antiviral molecules aimed to target host or viral factors is expensive and
takes nearly a decade from design to therapeutic application. Therefore, drug repurposing has
gained popularity not only in the scientific community, but also in the pharmaceutical industries.
Activity-based drug repurposing is more beneficial compared to the in-silico approach as it has
a lower chance of obtaining the targets as false hits. Hence, the drug repurposing approach should
be reconsidered for fast-track development of better antiviral therapeutic strategies to combat viral
pandemics such as AIDS, as well as COVID-19 and other diseases. Additionally, while exploring the
drug repurposing approach, other challenges associated with intellectual property rights should also
be considered before beginning future studies.
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