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Abstract: Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic
background. Several genetic factors have been suggested, yet numerous genetic contributors remain
to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators
critically involved in biological processes, of which polymorphisms can alter their function, leading
to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444
polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore,
we investigated the potential interacting regulatory network of the miR-499. This case-control
study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed
by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using
bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in
heterozygous (OR = 3.32, 95%CI = 2.00–5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI
= 1.30–6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97–5.25, p < 0.001, CT + CC vs.
TT), overdominant (OR = 2.57, 95%CI = 1.62–4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92,
95%CI = 1.37–2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-
specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated
in regulating immune system functions, including immunorecognition and complement activity. We
demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However,
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predicted regulatory networks revealed that this polymorphism is contributing to the regulation of
immune system pathways.

Keywords: Hashimoto thyroiditis; autoimmune thyroid disease (AITD); mir-499; single nucleotide
polymorphism (SNP); regulatory network

1. Introduction

Hashimoto thyroiditis (HT) is an organ-specific autoimmune disease and the most
prevalent type of autoimmune thyroid disease (AITD), characterized by immunocyte im-
balance, autoantibodies production, and increased expression and activity of inflammatory
mediators [1]. With a prevalence of 4.5% (both clinical and subclinical cases) based on
biochemical assessments, HT is the most common cause of spontaneous hypothyroidism
in areas with sufficient iodine intake; of note, the prevalence of HT determined by cyto-
logical diagnosis is even higher and estimated to reach 13.4% [2]. Annually, 4% of cases
with subclinical hypothyroidism develop overt hypothyroidism, a risk that increases with
age [2]. The course, severity, and response to treatments of AITDs are variable among
individuals [3], which may be related to variations in predisposing factors.

HT is characterized by epithelial cell destruction, diffuse infiltration of lymphocytic
cells, fibrosis, and higher thyroid autoantibodies [2]. Although known as a multifactorial
disease, accumulating evidence emphasizes the role of genetic predisposition in HT [4,5].
Several genes and their variants that may be linked with increased autoimmunity and HT
risk, including genes that are regulating inflammatory and immunity processes, have been
introduced [6,7]; however, given the multifactorial nature of HT and the complex genetic
interactions underlying the disease, defining the exact etiological roles of these factors is
challenging.

Micro RNAs (miRs) are small endogenous non-coding, single-stranded RNAs consist-
ing of 18–23 nucleotides in length [8] that regulate gene expression at the post-transcriptional
level by forming an RNA-induced silencing complex (RISC) and binding to the 3′ untrans-
lated region (UTR) of the target mRNA, ultimately leading to degradation or inhibition
of mRNA translation [9]. It has been estimated that miRs affect over 60% of human gene
expression and are involved in the vast majority of physiological processes, including
metabolism, development, immunity, and overall cell fate [9,10]. However, dysregulation
of a miR can compromise its function and trigger a pathological situation. Several miRs
have been implicated in immune response regulation associated with autoimmunity [11,12].
The MIR499 is located on chromosome 20q11.22, within intron 20 of the beta-myosin heavy
chain 7B (MYH7B), and encodes miR-499, which regulates several immune system functions
through various mechanisms such as inflammatory cytokine signaling and production [13].
A potential contribution of miR-499 to autoimmunity and autoimmune diseases has been
proposed [14].

Genetic variations can dramatically modify the expression and function of encoded
gene products. Single-nucleotide polymorphisms (SNPs) constitute the most common
type of variation in the human genome, and SNPs within miR genes can influence miR
expression, maturation, and function, thereby affecting miR target expression [15]. Poly-
morphisms in pre-miR (a hairpin structure forms after transcription and turns into mature
miR) may influence miR processing and maturation, or even secondary structure, affecting
the function of target genes [16]. Rs3746444 has been identified as the polymorphism
located at pre-miR-499 (position 73). Previous studies have suggested that rs3746444 can
potentially alter the maturation and function of the corresponding miR [16]. Currently,
little information regarding the connection between miR-499 rs3746444 polymorphism and
AITDs is available [17]. Therefore, our study aimed to evaluate the possible associations
between miR499 rs3746444 polymorphism and predisposition to HT in an Iranian study
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population. Additionally, we investigated the potential targets and interactions of miR-499
using online databases, bioinformatics, and computational biology.

2. Results
2.1. Genotypes, Allele Frequencies, and Their Association with HT Risk

This case-control study included 150 HT patients (17 males, 133 females) and 152
healthy subjects (24 males, 128 females). The mean age ± SD in the HT and control groups
was 37.96± 12.06 and 36.22± 12.86, respectively. Sex and age were not statistically different
between groups (p = 0.314 and p = 0.226; Table 1).

Table 1. Demographic status of the study subjects.

Demographic HT, n = 150 Control, n = 152 p-Value

Age, year (mean ± SD) 37.96 ± 12.06 36.22 ± 12.86 0.226

Sex
Male 17 24

0.314
Female 133 128

Abbreviations: HT, Hashimoto thyroiditis; SD, standard deviation.

Genotypes and allele frequencies of miR-499 rs3746444 polymorphism are depicted
in Table 2. The findings showed that the miR-499 rs3746444 polymorphism significantly
increased the risk of HT in heterozygous (OR = 3.32, 95%CI = 2.00–5.53, p < 0.001, CT
vs. TT), homozygous (OR = 2.81, 95%CI = 1.30–6.10, p = 0.014, CC vs. TT), dominant
(OR = 3.22, 95%CI = 1.99–5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI
= 1.61–4.07, p < 0.001), and allele (OR = 1.92, 95%CI = 1.37–2.69, p < 0.001, C vs. T) genetic
models (Table 2). Genotype distribution among controls for miR-499 rs3746444 (χ2 = 0.597,
p = 0.440) showed no deviation from the HWE.

Table 2. The genotype and allele frequencies of miR-499 rs3746444 T > C polymorphism in Hashimoto thyroiditis (HT)
patients and control subjects.

Polymorphisms Gentic Model Genotype HT, n (%) Controls, n (%) OR (95% CI) p-Value

rs3746444 (miR-499)

Codominant

TT 37 (24.7) 78 (51.3) 1.00 -

CT 93 (62.0) 59 (38.8) 3.32 (2.00–5.53) <0.001

CC 20 (13.3) 15 (9.9) 2.81 (1.30–6.10) 0.014

Dominant
TT 37 (24.7) 78 (51.3) 1.00 -

CT + CC 113 (75.3) 74 (48.7) 3.22 (1.97–5.25) <0.001

Recessive
TT + CT 130 (86.7) 137 (90.1) 1.00 -

CC 20 (13.3) 15 (9.9) 1.41 (0.69–2.86) 0.447

Overdominant
CC + TT 57 (38) 93 (61.2) 1.0 -

CT 93 (62.0) 59 (38.8) 2.57 (1.62–4.09) <0.001

Allele
T 167 (55.7) 215 (70.7) 1.00 -

C 133 (44.3) 89 (29.3) 1.92 (1.37–2.69) 0.001

Abbreviations: HT, Hashimoto thyroiditis; miR, microRNA; OR, odds ratio; CI, confidence interval.

2.2. Predicted Gene Networks of miR-499

We used TargetScanHuman to predict target genes of miR-499. The top 100 predicted
genes for the miR were then selected for network construction. Mapping predicted genes
of tissue-specific protein–protein interaction-, co-expression-, and miR-TF networks are
presented in Table 3 and Figures 1–3—the complete list of each network’s statistics is
provided in Supplementary File S1. Table 3 represents nodes in each network with the
highest degree and betweenness; a degree number describes connections to a node, and
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betweenness is a topological feature of a network representing a node centrality, defined
by the number of times a node acts as a bridge along the shortest path between two other
nodes and measures the shortest path fraction between node pairs through a certain node.
Higher betweenness for a protein means most control on information flow by that protein
in a given network [18]. Pathway enrichment of functional clusters of these networks by
the Reactome biological pathway database is summarized in Table 4 and fully outlined
in Supplementary File S2. In network enrichment analysis performed in this study, total,
expected, and hits are terms that represent the number of genes involved in analysis, the
number of nodes in the constructed network which are expected to match with genes in
functional gene sets, and the number of analyzed nodes matched with the gene sets used
in functional enrichment analyses, respectively.
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Figure 1. Tissue-specific protein–protein interaction network related to miR-499 functional modules. This network revealed
MEOX2, SDCBP, UBE2D3, MAPK8, and NFKBIA as main hub-driver nodes (green nodes) in thyroid tissue (for statistical
network details, see Supplementary File S1). These genes are mainly implicated in adaptive and innate immune system
antigen processing and pattern recognition, mainly throughout toll-like receptors (TLRs) signaling. miR, microRNA;
MEOX2, mesenchyme homeobox 2; SDCBP, syndecan binding protein; UBE2D3, ubiquitin-conjugating enzyme E2 D3;
MAPK8, mitogen-activated protein kinase 8; NFKBIA, nuclear factor-kappa B inhibitor alpha.
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Figure 2. Co-expression gene regulatory network related to miR-499 functional modules. GPR65 is the seed node (illustrated
in green). Peripheral red nodes indicate co-expressed nodes (the statistical network details are outlined in Supplementary
File S1). miR, microRNA; GPR65, G protein-coupled receptor 65.

Table 3. Top-ranked hub nodes of constructed networks.

Networks Label Degree Betweenness

Tissue specific PPIN

MEOX2 174 105,725.28

SDCBP 83 62,693.4

UBE2D3 71 58,615.64

MAPK8 71 52,068.96

NFKBIA 47 29,486.37

Co-expression gene network

GPR65 37 666

TAGAP 1 0

MYO1F 1 0

MAP4K1 1 0

CD5 1 0



Int. J. Mol. Sci. 2021, 22, 10094 6 of 21

Table 3. Cont.

Networks Label Degree Betweenness

miR-TF network

ZIC2 292 220,452.09

NFKBIA 102 71,452.21

RAP2C 76 29,506.18

HOXA5 72 33,168.41

TCF7L2 58 33,137.3
Abbreviations: MEOX2, mesenchyme homeobox 2; SDCBP, syndecan binding protein; UBE2D3, ubiquitin-
conjugating enzyme E2 D3; MAPK8, mitogen-activated protein kinase 8; NFKBIA, nuclear factor-kappa B
inhibitor alpha; GPR65, G protein-coupled receptor 65; TAGAP, T-cell activation RhoGTPase activating protein;
MYO1F, myosin IF; MAP4K1, mitogen-activated protein kinase kinase kinase kinase 1; CD5, CD5 molecule; ZIC2,
zic family member 2; RAP2C, member of RAS oncogene family; HOXA5, homeobox A5; TCF7L2, transcription
factor 7 like 2; miR-TF, microRNA-transcription factors; PPIN, protein–protein interaction network.
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Figure 3. miR-TF regulatory network related to miR-499 functional modules in thyroid tissue. ZIC2, NFKBIA, RAP2C,
HOXA5, and TCF7L2 were identified as the main driver nodes. Red nodes indicate seed nodes used for network recon-
struction (see Supplementary File S1 for the statistical network details), green nodes indicate TFs, and blue nodes indicate
miRs. miR, microRNA; TF, transcription factor; ZIC2, zic family member 2; NFKBIA, nuclear factor-kappa B inhibitor alpha;
RAP2C, member of RAS oncogene family; HOXA5, homeobox A5; TCF7L2, transcription factor 7 like 2.
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Table 4. Top enriched pathways related to tissue-specific functional sub-networks of miR-499. Each section depicts the top
10 pathways for each network. The upper section shows pathways enriched by the tissue-specific PPIN, mostly involved
in antigen recognition and signaling cascade. The middle section displays pathways enriched by the tissue-specific gene
co-expression network, of which the main driver nodes are involved in Rho GTPase signaling, cytokine signaling, and
adaptive immune system regulation. The bottom section lists the pathways enriched by miR-TF in thyroid tissue, indicating
its role in immune system signaling (mainly via toll-like receptors) cascades and inflammation induction.

Pathway Enriched by Tissue-Specific Protein–Protein Interaction Network

Pathway Total Expected Hits p-Value FDR *

Antigen processing: ubiquitination and proteasome degradation 224 10.4 50 9.93 × 10−22 1.39 × 10−18

Immune system 1140 52.7 120 6.66 × 10−21 4.67 × 10−18

Class I MHC mediated antigen processing and presentation 267 12.4 53 1.66 × 10−20 7.77 × 10−18

Adaptive immune system 654 30.3 83 9.72 × 10−19 3.41 × 10−16

TRIF-mediated TLR3/TLR4 signaling 87 4.03 23 3.91 × 10−12 1.02 × 10−09

MyD88-independent cascade 88 4.07 23 5.07 × 10−12 1.02 × 10−9

TLR3 cascade 88 4.07 23 5.07 × 10−12 1.02 × 10−9

Activated TLR4 signalling 100 4.63 24 1.26 × 10−11 2.21 × 10−9

TLR4 cascade 103 4.77 24 2.49 × 10−11 3.87 × 10−9

RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 67 3.1 19 8.12 × 10−11 1.14 × 10−8

Pathway Enriched by Gene Co-Expression Network

Rho GTPase cycle 123 0.368 5 2.43 × 10−5 1.70 × 10−2

Signaling by Rho GTPases 123 0.368 5 2.43 × 10−5 1.70 × 10−2

Immune system 1140 3.41 11 1.26 × 10−4 0.0589

Interleukin−3, 5 and GM-CSF signaling 51 0.153 3 4.37 × 10−4 0.153

Immunoregulatory interactions between a lymphoid and a
non-lymphoid cell 80 0.24 3 1.63 × 10−3 0.457

Adaptive immune system 654 1.96 7 2.08 × 10−3 0.479

Hemostasis 511 1.53 6 2.99 × 10−3 0.479

Cell surface interactions at the vascular wall 99 0.297 3 0.003 0.479

Interleukin receptor SHC signaling 28 0.0839 2 0.00308 0.479

Antigen activates B-cell receptor leading to generation of second
messengers 32 0.0959 2 0.00401 0.506

Pathway Enriched by miR-TF Network

TRIF-mediated TLR3/TLR4 signaling 87 3.15 25 1.65 × 10−16 1.04 × 10−13

MyD88-independent cascade 88 3.19 25 2.23 × 10−16 1.04 × 10−13

TLR3 cascade 88 3.19 25 2.23 × 10−16 1.04 × 10−13

Activated TLR4 signalling 100 3.62 26 5.98 × 10−16 2.09 × 10−13

TLR4 cascade 103 3.73 26 1.31 × 10−15 3.68 × 10−13

TRAF6 mediated induction of proinflammatory cytokines 62 2.25 20 1.66 × 10−14 3.89 × 10−12

TLR10 cascade 74 2.68 21 6.41 × 10−14 9.99 × 10−12

TLR5 cascade 74 2.68 21 6.41 × 10−14 9.99 × 10−12

MyD88 cascade initiated on plasma membrane 74 2.68 21 6.41 × 10−14 9.99 × 10−12

TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8
or 9 activation 76 2.75 21 1.15 × 10−13 1.62 × 10−11

* adjusted p-value for multiple testing by Benjamini–Hochberg method. Abbreviations: FCGR, Fc gamma receptor; FDR, false discovery
counts; MyD88, myeloid differentiation primary response 88; TLR, toll-like receptor; TRAF6, TNF receptor-associated factor 6.
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2.2.1. Thyroid-Specific PPIN

The tissue-specific PPIN for thyroid demonstrated enrichment for pathways critically
involved in immune system functions (Figure 1 and Table 4). This network showed a strong
implication in the adaptive and innate immune system, antigen processing, and pattern
recognition, mainly throughout toll-like receptors (TLRs) signaling transduction (Table 4).
These results are consistent with previous findings suggesting that self-tolerance and
antigen recognition are compromised in HT pathophysiology [19], in which the immune
system reacts against self-antigens. Based on the network reconstruction results for thyroid-
specific PPIN, we identified mesenchyme homeobox 2 (MEOX2), syndecan binding protein
(SDCBP), ubiquitin-conjugating enzyme E2 D3 (UBE2D3), mitogen-activated protein kinase
8 (MAPK8), and nuclear factor kappa B inhibitor alpha (NFKBIA) as hub-driver nodes
(Figure 1).

MEOX2 is a transcription factor protein-coding gene of cell cycle inhibitors in en-
dothelial cells, preventing vascular cell proliferation [20]. Notably, Meox2 is suggested to
significantly serve as a negative regulator of gene expression, particularly in response to an
inflammatory condition, and exerts its effects via IκBβ, which is a major isoform of IκB,
and NF-κB inhibitor [21]. Therefore, Meox2, by interacting with crucial elements of the
NF-κB pathway, can be considered a pivotal down regulator of NF-κB [22].

SDCBP encodes syntenin-1 (also known as melanoma differentiation-associated gene-
9 (MDA-9)), an intracellular PDZ (Psd-95 (post synaptic density protein), DlgA (drosophila
disc large tumor suppressor), and ZO1 (zonula occludens-1 protein)) containing protein,
which is primarily involved in membrane-associated adherence junction and adhesion [23].
Notably, syntenin-1 interacts with numerous proteins, is implicated in trafficking and
organization of proteins in the plasma membrane, and also in several immune system
elements functions, including B-cell development [24], T-cell chemotaxis [25], interacting
with pro-transforming growth factor-α [26] and interleukin (IL)-5 receptor α [27], and
IL-5 signaling [28]. Moreover, syntenin physiologically suppresses TRAF6 and inhibits
IL-1R/TLR4-mediated NF-κB activation pathways [29]. Eventually, syntenin-1 may play a
role in the dynamic regulation of TLR7, which is involved in self-RNA recognition, and
therefore autoimmunity [30].

UBE2D3 is a protein-coding gene that encodes UbcH5c, a member of the E2 ubiquitin-
conjugating enzyme family, participating in ubiquitination of multiple vital signaling
pathways such as p53 tumor-suppressor [31] and NF-κB [32], an essential transcription
factor for immune-related genes, and importantly, inflammation [33]. Therefore, UbcH5c
via NF-κB and related pathways, regulating immune functions [32].

MAPK8 (also known as c-Jun N-terminal kinase 1 (JNK1)) belongs to the MAP kinase
family and serves as an integration point for signaling pathways of numerous biological
processes, mainly T-cell functions [34].

Finally, NFKBIA encodes IκBα (nuclear factor of kappa light polypeptide gene en-
hancer in B-cells inhibitor, alpha), a member of the NF-κB inhibitor family [35]. IκBα
regulates NF-κB activity, which is crucial for many pro-inflammatory and immune re-
sponses [36–38]. Several polymorphisms in NF-κB inhibitors have been suggested in the
pathophysiology of Graves’ disease [39].

To test our hypothesis and verify our results on enriched pathways regarding the
predicted genes, we performed the post-analysis on genes with the highest degree (see
Table 5 for network properties). The results of the STRING database illustrated a PPIN
with at least six major clusters implicated pivotally in processes such as ubiquitination,
protein catabolism, Wnt and NF-κB, and MAPK signaling cascade. Moreover, this network
is implicated in immune system processes, including antigen processing, inflammation,
and TLR signaling (Figure 4; further details are provided in Supplementary Table S1
and Supplementary File S3). Significantly, this network contributes to canonical Wnt
and NF-κB regulation, critical for immune system activity [40–43]. Further, the local
network cluster showed the canonical NF-kB pathway as the significance of the network
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(FDR = 0.0449). Thus, based on bioinformatics analyses, we argued that miR-499 is engaged
in HT pathogenesis, mainly via Wnt and NF-κB pathways.

Table 5. Network properties and statistics are presented.

Description Nodes Edges
Expected

Number of
Edges

Avg. Node
Degree

Avg. local
Clustering
Coefficient

Inflation
Parameter

(MCL)

Enrichment
p-Value

Network 1 (based on
initial PPIN) 31 96 46 6.19 0.627 4 1.24 × 10−10

Network 2 (based on
initial miR-TF) 20 45 23 4.5 0.612 4 3.16 × 10−5

Network 3 (based on
initial co-expression) 19 68 8 7.16 0.718 4 <1.0 × 10−16
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2.2.2. Thyroid-Specific Co-Expression Genes Network

We also predicted the thyroid-specific sub-regulatory network for co-expression genes
using the TCSBN database. Evaluation of the co-expression gene network related to
regulatory modules of miR-499 revealed G protein-coupled receptor 65 (GPR65), T-cell
activation RhoGTPase activating protein (TAGAP), myosin IF (MYO1F), mitogen-activated
protein kinase kinase kinase kinase 1 (MAP4K1), and CD5 as main driver nodes (Figure 2).
This network is implicated in RhoGTPase signaling, immunoregulation between lymphoid
and non-lymphoid cells, adaptive immune system function, IL receptor signaling, and B-
cell receptor signaling (Table 4). Indeed, pathway enrichment of the network’s components
showed a strong association with innate and adaptive immune system functions.

The protein encoded by GPR65 (also known as T-cell death-associated gene 8 protein
[TDAG8]) is a protein-sensing GPCR mainly expressed in lymphoid organs [44]. The
GPR65 upregulates during programmed cell death of T lymphocytes [45] during thymocyte
development, essential for self-tolerance [46], though, the GPR65 is not limited to T-cells
and expresses in leukocytes and macrophages [47].

TAGAP encodes a protein (also known as ARHGAP47), expressed in immune cells,
mainly in activated T-cells, and may have a role in T-cell activation and, therefore, immune
regulation [48]. The altered expression in several human autoimmune disorders has been
shown [49,50].

MYO1F is a protein-coding gene that encodes an unconventional type 1 myosin [51],
expressed primarily in immune cells of mammals [52], and mainly involved in immune
cell motility and adhesion, and also innate immunity [53].

MAP4K1 encodes a Serine/threonine-protein kinase, known as hematopoietic progeni-
tor kinase 1 (HPK1), involved in various signaling pathways, including B and C lymphocyte
receptors and TGF-β [54–57]. The HPK1 links the T-cell receptor (TCR) stimulation and NF-
κB activation [58] and also negatively regulates activator protein 1 (AP-1) [55]. Moreover,
HPK1 may be a key regulator of T-cell survival [59].

Finally, CD5 encodes a type-I transmembrane glycoprotein in all mature T-cells, thy-
mocytes, and a small B-cell subpopulation [60] and negatively regulates TCR signaling
and T-cell activation [61,62]. Thus, CD5 dysregulation may be associated with autoimmu-
nity [63].

We performed post-analysis based on selected predicted genes from the co-expression
network. The retrieved network constructed by the STRING database demonstrated
that the PPIN from predicted genes contributed significantly to several immune system
processes, mainly immune response, catalytic, and GTPase activity regulation (Figure 5.
Further details are provided in Supplementary Table S2 and Supplementary File S4; see
Table 5 for network properties). The local network cluster indicated its implication on
BCR and TCR-related activity (FDR = 1.17 × 10−5 and 0.0091, respectively). These results
suggest the role of predicted co-expression genes on immune response, notably mediated
by lymphocytes, which involve cellular and humoral immunity.

2.2.3. Thyroid-Specific miR-TF Network

We identified Zic family member 2 (ZIC2), NFKBIA, member of RAS oncogene family
(RAP2C), homeobox A5 (HOXA5), and transcription factor 7 like 2 (TCF7L2) as prominent
driver nodes of the miR-TF network (Figure 3). Functional regulatory cluster enrichment
revealed that these nodes are mainly involved in immune system pathways, including TLR
signaling and pro-inflammatory cytokine induction.

ZIC2 encodes zinc, a member of the zinc finger protein family, with transcriptional
activity. ZIC2 overexpression may be associated with apoptosis inhibition [64] and lym-
phocyte infiltration [65]. For details of NFKBIA, see the Section 2.2.1.

RAP2C encodes a protein that belongs to the Ras GTPase superfamily involved in
cellular proliferation, differentiation, and apoptosis regulation. This protein is implicated
in innate immunity and Akt signaling pathway [66]. Rap2 can enhance MAP4K-related
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JNK activation [67]. Additionally, Rap2c, via the MAPK pathway, promotes proliferation
and inhibits apoptosis [68].
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HOXA5 encodes a member of homeobox transcription factors. Hox5a is involved in
the expression of genes that regulate proliferation [69] and seems to be an essential element
in myeloid differentiation [70].

Finally, TCF7L2 encodes a T-cell specific high mobility group (HMG)-box transcrip-
tional factor, known as T-cell factor 4 (TCF4). Dysregulated expression of TCF4 has been
demonstrated in several human cancers [71,72] and implies autoimmune diabetes [73,74].

Post-analysis of genes from the predicted miR-TF network revealed a PPIN with
three clusters, mainly involved in cellular biosynthesis, IL-1 signaling pathway, IFN-I
production, cell-death regulation through apoptosis, pattern recognition, TLR signaling
pathway, immune cell response, and importantly, Wnt and NF-κB signaling regulation
(Figure 6. Further details are provided in Supplementary Table S3 and Supplementary File
S5; see Table 5 for network properties). Local network clusters demonstrated the network
implication in the canonical NF-κB pathway (FDR = 4.45× 10−8). Thus, this PPIN retrieved
from predicted elements of the miR-TF network illuminated their significance in immune
cell receptors and inflammatory processes, mainly via the NF-κB pathway.
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3. Discussion

Significant roles for miRs have been demonstrated in several human diseases, in-
cluding autoimmune disorders [75]. MiRs are tremendously important in regulating
immune system activity, and their dysfunction is closely associated with autoimmune
diseases [76–78]. Generally, miRs regulate gene expression by forming RISC and subse-
quent binding to the target mRNA through specific sequences, which defines the binding
affinity [79]. Although miR nucleotide sequences are highly conserved in mammals, poly-
morphisms in binding sites, or other sites related to miR structure and stability, often
dramatically influence its function [79]. Thus, certain miR polymorphisms can be used as
biomarkers for specific pathological conditions, including AITDs [17].

In the present study, we explored the association between miR-499 rs3746444 and HT
risk in a selected study population from the southeast of Iran. Our results indicated that
the rs3746444 polymorphism significantly increases HT risk in heterozygous, homozygous,
dominant, overdominant, and allelic models. We also computed the potential targets
and interactions of miR-499 using online databases. The results revealed that miR-499
critically participates in regulatory networks engaged in different facets of immune function,
notably antigen recognition and processing, complement activity, cytokine production,
inflammation, and immune receptor signaling.

MiR-499 can modulate inflammatory processes by regulating inflammatory cytokines
and their receptors (e.g., IL-2, IL-6, IL-23a, IL-2RB, IL-8R, and IL-17RB), probably through
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NF-κB and TLR pathways [80,81]. This is consistent with our results from the predicted net-
work that miR-499 may be essential for NF-κB and TLR signaling cascade regulation, thus
regulating inflammatory conditions in HT. In addition, miR-499 regulates class II human
leukocytic antigen (HLA-II), including HLA-DRB1, which is significantly associated with
rheumatoid arthritis (RA), an autoimmune disease characterized by substantial chronic
inflammatory condition [82]. Moreover, miR-499 exhibits anti-apoptotic activity by sup-
pressing the pro-apoptotic proteins calcineurin A (CnA) α and CnAβ [83]. In harmony, our
predicted regulatory miR-TF networks indicated that miR-499 is significantly associated
with apoptosis and cell death regulation (Figures 4 and 6).

The rs3746444 A/G polymorphism is located at the pre-miR area of miR-499 [84]
and changes the A-U to G-U pairs; the latter is unstable in the pre-miR-499 stem, which
can subsequently affect miR-499 maturation, leading to a lower level of miR-499-5p (a
dominant miR-499 mature form) compared to the A allele [16]. An A-to-G substitution can
potentially reduce the interacting ability of miRs with the 3’UTR of target genes, influencing
their regulatory activity on gene expression or even changing their target [16,85]. Ding et al.
showed that rs3746444, by affecting miR-499 maturation and decreasing miR-499-5p levels,
reduces target (CnAα and CnAβ) suppression by miR-499, thereby decreasing its anti-
apoptotic activity [16]. However, the definite effects observed by Ding and their colleagues
can be changed in a different population due to other polymorphisms in upstream and
downstream pathways or even target genes.

The correlation between miR-499 rs3746444 and predisposition to several autoimmune
diseases has been investigated in numerous studies [78,86–90]. Hashemi et al. reported that
rs3746444 was associated with an increased RA risk in an Iranian study population and that
allele C was present more frequently in RA patients than in control subjects [78]. Conversely,
this association was not observed in studies on the Chinese population [86,91,92]. Cai
et al. reported that rs3746444 was positively associated with susceptibility to AITDs [17].
Their stratified analysis disclosed that the rs3746444 variant significantly increased the risk
of GD but not HT. In a Mexican subpopulation, this polymorphism was associated with
systemic lupus erythematosus (SLE) risk but not with GD or RA [84]. Other work showed
that the C allele and CC and TC genotypes of rs3746444 significantly increased RA risk in a
Mediterranean cohort [87], whereas Bin Yang and colleagues could not find any association
between rs3746444 and RA risk [86]. Herein, we found that this polymorphism of miR-499
is associated with an increased risk of HT, and the C allele was markedly more prevalent in
patients than controls.

To find potential contributors regarding the observed effect of miR-499 polymorphism,
we predicted miR-499 target genes to construct PPIN, co-expression genes, and miR-TF
networks. Intact protein modifications and PPINs are responsible for physiologically inte-
grated and organized cellular functions, and perturbations could easily lead to pathological
conditions and diseases. We predicted the PPIN specifically in thyroid tissue to narrow
down the possible interactions between proteins and miR-proteins. The PPIN map is
dynamic and depends on cell type and the time-point of expressing proteins [93]. Further,
we predicted co-expression genes in thyroid tissue and transcription factors potentially
interacting with miR-499 to regulate immune responses in thyroid and HT. The hub-driver
nodes in these networks were identified as an integral component of immune system
regulation. They control critical pathways in immunorecognition, immune tolerance, and
the immune response to a stimulus. These results provide helpful information for fu-
ture studies on identifying disease markers and developing novel therapeutic strategies
for AITDs.

Aiming to verify the rationale of our predicted networks, we performed post-analyses
based on existing evidence. The results revealed that the predicted elements are essential
effectors of pathways pivotally engaged in immune system activities, potentially inducing
chronic inflammation and autoimmune condition. Specifically, the core of enriched path-
ways is NF-κB and their regulators, including IκB, homeobox proteins such as Meox2 and
Hox5a, and UBE2D3. Although its functions are ubiquitous and broad, the NF-κB is the
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major transcription factor for inflammatory processes and innate and adaptive immune
response [94]. Any alteration in the homeostasis of NF-κB regulators can promote its
activity, and therefore initiate an aberrant immune response [94]. The role of NF-κB in
regulating apoptosis, remarkably immune system activity, and its association has been
proposed for investigating the underlying pathogenesis of AITD [43]. Based on previous
evidence and our findings, we suggest the miR-499 as an essential regulator of NF-κB in
unbalanced immune response and chronic inflammation, seen in HT. Though not simple,
one can assume that there could be an increased expression or function of NF-κB in pa-
tients carrying miR-499 rs3746444. However, this should be considered a potential starting
point for future investigations in these patients, and may open a window for creating
personalized treatment strategies.

On the other hand, there is a tendency to regulate immune receptor signalings, such
as B and T cell receptors, TLR, and TRAF-mediated signaling pathways in our predicted
networks. Several predicted network elements participate in antigene processing, mainly
via ubiquitination and proteasome degradation, cell surface and membrane activity, in-
terleukin signaling, and TRAF-mediated TLR cascades. These activities are crucial for
immunorecognition and immune tolerance, and their dysregulation is potentially associ-
ated with an autoimmune reaction. Thus, we can assume that there could be a connection
between miR-499 and immunorecognition mediated by TLR, BCR, and TCR signaling
cascade and, importantly, NF-κB as a key player. These suggestions should be investigated
with molecular assays of in vitro and in vivo studies.

Our sample size provides good statistical power (minimum statistical power of 0.8);
however, further studies in different populations and ethnicities are needed to understand
better the role of rs3746444 polymorphism in susceptibility to HT. Moreover, we could not
rule out AITDs, including HT, in first-degree relatives of the control group by laboratory
data since this study was not done prospectively. Furthermore, we did not assess the
correlation between genotypes, allele frequency, and thyroid function, considering all
cases were previously established and on medication with different individual treatment
plans. Another limitation of the present work is choosing only one variant of the miR-499
for investigations, knowing that other possible functional polymorphisms in the loci can
change the susceptibility to HT. Moreover, many miRs contribute to biological interaction
that may lead to HT pathogenesis.

We could not assess the pathways and responsible genes experimentally, which were
predicted by bioinformatics; these findings must be confirmed with in vitro and in vivo
studies. The network analysis results could be confirmed using proteomics analysis,
Western blot of the proteins, and cytokine assays on patient samples to confirm the NF-KB
pathway. Nevertheless, our results showed factors that are critically involved in immune
system regulation, pathways potentially associated with inflammation, and suggest, such
as TRAF6-mediated signaling pathways and autoimmune conditions, NF-κB as a critical
element interacting with miR-499. These findings provide helpful insight into possible
underlying pathways and elements in HT etiopathogenesis. Although computational
prediction may have limited value, it may help the study of targeted, focusing on a specific
tissue and/or disease.

In summary, the present study suggests a significant correlation between the miR-499
rs3746444 polymorphism and HT susceptibility in an Iranian study population. Therefore,
we propose that miR-499 rs3746444could be considered a prognostic biomarker to identify
individuals susceptible to HT. Finally, we predicted interacting proteins and gene networks
related to the miR; these findings will facilitate the design of tissue and target-specific
studies to develop therapeutic strategies to treat AITDs.
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4. Materials and Methods
4.1. Study Population
4.1.1. Sample Size Calculation

The prevalence of HT was previously estimated in our population (1.5–3%) in the
adult population [95]. Considering minor allele frequency (MAF) of 0.2, we calculated
the sample size by the Cochran formula to have standard and reliable statistical power
(minimum of 0.8) for this case-control study. Accordingly, the calculated sample size was
60 for the case group and 60 for the control group (ratio 1:1). However, we recruited all
eligible HT patients (150 cases and 152 control) with medical records since our center is
one of the referral endocrinology centers in southeast Iran.

4.1.2. Patients and Controls

For this case-control study, we recruited a total of 302 subjects: 150 non-related HT
patients and 152 non-related, ethnically matched healthy control subjects. This sample size
was more than twice the calculated sample size. All HT cases were enrolled from patients
referred to the endocrinology clinic, Ali-ebne Abitaleb Hospital, Zahedan University of
Medical Sciences, Zahedan, Iran. Clinical manifestations and laboratory tests confirmed
HT diagnosis. Confirmed HT patients had a different duration of the disease with various
clinical characteristics and treatment regimens. All other overlapping thyroid diseases that
may overlap with HT had been ruled out, and patients with other thyroiditis were excluded.
Patients with other autoimmune diseases were excluded from the study. Matched healthy
controls exhibiting normal thyroid function without any sign of goiter were recruited
from participants in the check-up program of the Health Check-Up Center of the hospital.
Control subjects suffering from or with a family history of autoimmune diseases (including
AITD) were excluded. First- and second-degree relatives of all subjects were excluded from
the study to maintain sample heterogeneity. The Ethics Committee of the National Institute
for Medical Research Development (NIMAD) approved the present study (No. 958382);
informed consent was obtained from all participants.

4.2. DNA Extraction and Genotyping

A 2 mL peripheral venous blood sample was drawn from all subjects by venipuncture,
collected in an EDTA tube, and stored at −20 ◦C. Genomic DNA was extracted using the
salting-out method. Genotyping of miR-499 rs3746444 polymorphism was performed by
the PCR-RFLP method [96]; the primer sequences are shown in Table 5. PCR was carried
out using commercially available Prime Taq premix (Genetbio, Nonsan, South Korea). Into
every 0.20 mL PCR tube, 1 µL of genomic DNA (~100 ng/mL), 1 µL of each primer (10 µM),
and 10 µL of 2× Prime Taq Premix and 7 µL ddH2O were added. For both polymorphisms,
the PCR thermocycler (Bio-Rad Laboratories Inc., Hercules, CA, USA) settings were as
follows: 95 ◦C for 5 min, 30 cycles of 95 ◦C for 30 s, 64 ◦C for 30 s, 72 ◦C for 30 s, and a
final extension of 72 ◦C for 10 min. Ten microliters of PCR product were digested by the
appropriate restriction enzymes (Table 6) and separated by electrophoresis on an agarose
gel; representative photographs are shown in Figure 7. Approximately 20% of random
samples were re-genotyped; the results confirmed previous genotyping outcomes.

Table 6. Primer sequences were used for the detection of miR-499 rs3746444 T > C by the PCR-RFLP method.

Polymorphisms Primer Sequence (5′→3′) Restriction Enzyme Fragment (bp)

rs3746444 T > C (miR-499) F: CAAAGTCTTCACTTCCCTGCCA
R: GATGTTTAACTCCTCTCCACGTGATC BclI

CC: 146
CT: 146 + 122 + 24

TT: 122 + 24

Abbreviations: miR, microRNA, bp, base pair.
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4.3. Prediction of Tissue-Specific, Co-Expression, and miR-TF Gene Networks

Prediction of the target genomic sites of miR-499 rs3746444 (T > C) was made by
TargetScanHuman (v.7.2) using its default setting [10]. To find the sub-regulatory networks
related to these genomic variations, network data for (1) affected tissue-specific protein–
protein interaction networks (PPIN) were retrieved from the DifferentialNet database
(Available at http://netbio.bgu.ac.il/diffnet; accessed on 28 July 2021) [97], (2) the tissue-
specific co-expression genes were retrieved from the TCSBN database [98], and (3) miR-
TF-miR co-regulatory interactions were retrieved from RegNetwork (Available at http:
//regnetworkweb.org; accessed on 29 July 2021) [99]. All networks were constructed by
the top 100 predicted target genes of miR-499 with the lowest context score (CS). The CS
was calculated for each specific site of the miR target as the sum of the contribution of 14
features introduced in Agarwal et al. (2015) [100]; the regulatory modules were constructed
by Networkanalyst (v. 3.0) [101]. Functional regulatory clusters of affected networks were
enriched by the Reactome biological pathway database [102].

4.4. Post-Analysis of Predicted Networks

We performed post-analysis using the STRING database (v.11.5) [103] to verify our
predicted networks based on existing evidence. Hence, we selected the top predicted
genes based on their degree and betweenness (Supplementary Table S4) to verify that
predicted networks and their core elements significantly contribute to enriched pathways.
The networks properties are provided in Table 5 (also see Supplementary File S6 for cluster
detail). This was done to compensate for the lack of verifying molecular and biological
assays in this study, providing a high level of evidence for our results.

4.5. Statistical Analysis

Statistical analysis was performed using SPSS software (version 22). The χ2 test and
independent-sample t-test were applied for categorical and continuous data, respectively.
Allele and genotype frequency distributions of the variants in patients and control subjects
were expressed as percentages of the total number of alleles and genotypes. Odds ratios
(ORs) and 95% confidence intervals (95% CIs) were calculated by unconditional logistic
regression analysis. Differences with a p < 0.05 were considered statistically significant.
For both polymorphisms, deviation from the Hardy–Weinberg equilibrium (HWE) was
assessed using the χ2 test.

http://netbio.bgu.ac.il/diffnet
http://regnetworkweb.org
http://regnetworkweb.org
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