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Swarm Hunting and Cluster 
Ejections in Chemically 
Communicating Active Mixtures
Jens Grauer1, Hartmut Löwen1, Avraham Be’er2,3 & Benno Liebchen1,4*

A large variety of microorganisms produce molecules to communicate via complex signaling 
mechanisms such as quorum sensing and chemotaxis. The biological diversity is enormous, but 
synthetic inanimate colloidal microswimmers mimic microbiological communication (synthetic 
chemotaxis) and may be used to explore collective behaviour beyond the one-species limit in simpler 
setups. In this work we combine particle based and continuum simulations as well as linear stability 
analyses, and study a physical minimal model of two chemotactic species. We observed a rich phase 
diagram comprising a “hunting swarm phase”, where both species self-segregate and form swarms, 
pursuing, or hunting each other, and a “core-shell-cluster phase”, where one species forms a dense 
cluster, which is surrounded by a (fluctuating) corona of particles from the other species. Once formed, 
these clusters can dynamically eject their core such that the clusters almost turn inside out. These 
results exemplify a physical route to collective behaviours in microorganisms and active colloids, which 
are so-far known to occur only for comparatively large and complex animals like insects or crustaceans.

Chemotaxis - the movement of organisms in response to a chemical stimulus - allows them to navigate in com-
plex environments, find food and avoid repellants. It is involved in many biological processes where microor-
ganisms (or cells) coordinate their motion; these include wound healing, fertilization, pathogenic invasion of a 
host, and bacterial colonization1,2. In such cases, microorganisms are attracted (or repelled) by certain substances 
(chemoattractants/ chemorepellents), but they are also attracted to chemicals produced by other microorganisms 
(or cells), such as cAMP in the case of Dictyostelium cells3 or autoinducers in signaling Escherichia coli4, which 
leads to chemical interactions (communication) among the microorganisms.

While many existing models studying microbiological chemotaxis (or chemical interactions) focus on a single 
species5–12, the typical situation in the microbiological habitat is that various different species simultaneously 
produce certain chemicals to which others respond via chemotaxis or based on quorum sensing mechanisms. 
One simple example involving chemical signaling across species is provided by macrophage-facilitated breast 
cancer cell invasion which has recently been modeled13. There, tumor cells attract macrophages, which are cer-
tain white blood cells normally playing a key role in the human immune system. They then control the physi-
ological function of the macrophages and exploit their abilities. More specifically, the tumor cells produce the 
colony-stimulating factor (CSF-1) leading to the attraction and growth of macrophages which in turn release 
epidermal growth factors (EGF) resulting in the growth and mobility increase of the tumor cells (see Fig. 1).

Similarly to microorganisms, synthetic inanimate colloids, coated with a material which catalyzes a certain 
reaction on (a part of) their surface, show chemical interactions as well14–16. There, the colloids act as sources of the 
chemical field, which shows a 1/r-steady-state far-field profile in 3D (if the chemical does not ’decay’ e.g. through 
bulk reactions), leading to long-ranged chemical interactions between the colloids. For active colloids17–21, these 
interactions have been explored in single-species systems22–27, and more recently also in mixtures28–34, where chem-
ical interactions can be non-reciprocal and break action-reaction symmetry28,35,36. This allows for the formation of 
active molecules28–30, where self-propulsion spontaneously emerges when the underlying nonmotile ’colloidal 
atoms’ bind together. Similarly as for their microbiological counterparts, in all these studies on mixtures of syn-
thetic colloids it has been assumed that the different species interact via a single chemical substance.
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In the present work, we propose and explore a physical minimal model for two species of chemically inter-
acting particles, both of which produce an individual chemical substance. Such a situation occurs for example 
in tumor-macrophage systems involving the EGF/CSF-1 paracrine signalling loop between two cell types men-
tioned above13. By comparing numerical simulations of Langevin equations describing the particle dynamics 
(Fig. 2(a–d)) with numerical solutions of deterministic continuum equations describing the dynamics of their 
density fields (Fig. 2(e–h)) and a linear stability analysis, we systematically explore and analyze the phase dia-
gram of this system. As our key result, we discover a “hunting-swarm phase” (see Fig. 2(a,e)), where both species 
segregate and form individual swarms, one of them closely pursuing the other one. This phase resembles a group 
of hunters chasing a group of prey trying to stay together, not allowing the hunters to split up the group. It is 
interesting to note that a phenomenologically similar form of swarm hunting also occurs in much larger systems, 
e.g. in insects and systems of larvae hunting crustaceans (Daphnia)37–39, where collective predation phenomena 
and escape strategies have already been analyzed40, but not for microorganisms or synthetic colloids. Physically 
this phase occurs, if one species (“the hunters”) is attracted by the chemicals produced by the other species (“the 
prey”) and the prey is in turn repelled by the chemicals produced by the hunters. Note that a different form of 
moving clusters has recently been observed also in simulations involving only one chemical species33. Unlike 
the hunting swarms which we present here, the moving clusters in33 do not involve a species segregation into 
two individual swarms, but rather consist of a single aggregate of asymmetrically distributed predator and prey 
particles. By systematically exploring the parameter space underlying our model, we find that hunting swarms 
in fact occur generically if the chemical interactions are strong enough and have opposite sign. However, if the 
response of hunters and prey to the chemicals produced by the respective other species is strongly asymmetric, 
we instead find dense clusters of one species surrounded by a diffusive or rigid corona of particles from the other 
species (see Fig. 2(b,d,f,h)). These core-shell clusters can show a complex dynamics, ejecting their interior once 
they have formed. This behaviour hinges on model-ingredients which have not been considered in previous mod-
els of chemically interacting particle mixtures31,33,41. These are (i) a finite relaxation time of the chemicals leading 
to delay or memory effects in the absence of which the cluster ejections do not occur and (ii) the presence of two 
chemicals, which can lead e.g. to a coexistence of instantaneous and non-instantaneous interactions and in gen-
eral also to coexisting attractions and repulsions with different ranges. The setup considered in the present work 
allows us to exemplify that a phenomenologically similar ejection may in principle originate from a remarkably 
simple mechanism hinging on a systematic invasion of the hunters into a cluster of prey particles, as we will later 
discuss in detail.

Model
We consider an ensemble of two species of overdamped colloids (synthetic or biological), which we call prey and 
hunters, ∈s p h{ , }, each of which contains N  particles which produce a chemical field c tr( , )s  with a rate k0. We 
assume that each particle responds to the chemical fields either via synthetic chemotaxis, which leads to a cou-
pling ∝∇cs in far-field22,27, similar as for apolar colloids, or via biological chemotaxis which is sometimes mod-
eled using an analogous form of the coupling6. To model the particle dynamics we use Langevin equations 
( = …i N1, , , ∈s p h{ , }): 
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Figure 1.  Schematic: (a) Interaction between tumor cells and macrophages (b) physical minimal model used in 
the simulation: two species realized as different particles (brown and red) with radius R and distance rij. The 
movement of the particles depends both on their self-produced chemicals (blue and purple) and on the 
concentration produced by the other species. Arrows represent effective chemical interactions among the 
particles, which in general are non-reciprocal.
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where D is the translational diffusion coefficient of the particles, γ is the Stokes drag coefficient (assumed to be the 
same for both species) and η t( )i

s  represents unit-variance Gaussian white noise with zero mean. The chemotactic 
coupling coefficient of species s to the chemical of species ′s  is denoted as α ′ss  where α >′ 0ss  leads to chemoattrac-
tion and α <′ 0ss  results in chemorepulsion (negative chemotaxis). In addition, V  accounts for excluded volume 
interactions among the particles which all have the same radius R and which we model using the 
Weeks-Chandler-Anderson potential = ∑ ≠V Vi j i ij

1
2 ,  where the sums run over all particles and where 
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1/6  and zero else. Here  determines the strength of the potential, rij denotes 

the distance between particles i and j, σ=r 2c
1/6  indicates a cutoff radius beyond which the potential energy is 

zero and σ = R2  is the particle diameter.
The chemical fields c t c tr r( , ), ( , )h p  are produced by particles of hunters and prey, respectively. The dynamics 

of these fields, follows a diffusion equation (diffusion coefficient Dc), with additional (point) sources. We also use 
a sink term whose coefficient may be zero or nonzero if chemical reactions or other processes degrading the 
chemical occur in bulk. For simplicity we focus on the case where D k k, ,c d0  are identical for both species.
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Material (SI) for details) and Eqs. (1), (2) reduce to (omitting tildes) 

∑ ηα∂ = ∇ − ∇ +
′∈

′
′t c V Dr ( ) 2

(3)
t i

s

s p h
ss

s
i
s

r
{ , }

i

∑µ δ∂ = ∆ − + −
=

c t D cr r r( , ) ( ) ( )
(4)

t
s

c
s

i

N

i
s

1

Figure 2.  Hunting swarms and core-shell clusters: Simulation snapshots of Eqs. (3), (4) for =N2 2000 
chemically interacting particles (white dots represent hunter-particles; black dots show prey-particles) coupled 
to self-produced chemical fields at time =t 1500 (a), 5000 (b-d). Panels (a–d) show particle based simulations, 
where colours show the chemical field produced by the prey c p, panels (e–h) show simulations of the associated 
continuum equations at time =t 5000 (e), 10000 (f-h), where colours show the density of hunters ρh and prey 
ρ p. (a,e) show hunting swarm patterns, (c,g) show mixed clusters, (b,f) show core-shell clusters with diffusive and 
(d,h) with rigid corona. Dimensionless parameters (tildes omitted): α = 1pp , α = 0hh , µ = .0 001, =D 1c , 

= .D 0 001 (a-d), = .D 0 01 (e-h) for reasons of stability, = 1  and box length =L 250box  (a–d), =L 100box   
(e-h). See supplementary material for simulation details and the stabilization method used for the field 
equations underlying panels (e–h).
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Hunting Swarms and Core-Shell Clusters
To explore the collective behaviour of many chemotactic agents, we now solve Eqs. (3) and (4) using Brownian 
dynamics simulations for the particle dynamics coupled to a finite difference scheme to calculate the dynamics 
of the self-produced chemical fields. We solve the diffusion equation in 2D for numerical efficiency and do not 
expect that our results would change qualitatively when solving the 3D diffusion equation (see the exemplaric 
simulation snapshot Fig. 2  in the SI and notice that the linear stability analysis which does not depend on the 
dimensionality of the diffusion equation is also in very good agreement with the particle based simulations). We 
use a quadratic simulation box with periodic boundary conditions (see SI for details) and observe the following 
patterns or nonequilibrium phases: 

	 (i)	 A hunting swarm phase (see Fig. 2(a,e) and movies 1, 5), where both species segregate and form mov-
ing swarms which hunt each other.

	 (ii)	 A clustering phase (see Fig. 2(c,g) and movies 3, 7), where both species form a cluster and the different 
species are mixed.

	 (iii,iv)	 Two phases showing core-shell clustering, where one species forms the inner core and the other one 
forms a corona which may be diffusive (b,f) or rigid and which is strongly localized around the core 
(d,h).

Let us now characterize these phases and the dynamics leading to their emergence in detail.
To see in which parameter regimes each of these patterns prevails, in Fig. 3 we show a slice through the state 

diagram in the plane of the chemotactic cross-species coupling coefficients α < 0ph  and α > 0hp . Here we fix 
α = 1pp  and α = 0hh  so that prey-particles chemo-attract each other whereas the hunter-particles do not, but note 
that the specific values choosen here do not have much impact on the emerging patterns.

Hunting swarms.  The green area in Fig. 3(a,b,c) (movies 1, 5) represents the hunting-swarm phase which 
generically occurs if α αhp ph  is large enough, as we will later show using a linear stability analysis. Here the chem-
icals produced by the black-coloured particles in Fig. 2(a) (“prey”) attract the white coloured particles (“hunters”), 
whereas the hunter-produced chemicals repel the prey. This results in a swarm of “prey” pursued by a swarm of 
“hunters”. When two or more prey-swarms collide, the pursuing hunters produce a “cage” of high chemical den-
sity repelling the prey and trapping it temporarily in a small spatial domain. The prey then ’evades’ sidewards to 
escape from the hunter-fronts, forming new swarms moving perpendicular to the original ones (see movies 1, 5).

Core-shell clusters.  When decreasing αhp (blue domain in Fig. 3(a,b) and movies 2, 6), so that the prey 
chemo-attracts the hunters only weakly, we observe that the prey aggregates and forms dense clusters, surrounded 
by a diffusive corona of hunters. Surprisingly, when staying with a large αhp but decreasing αph instead (red 
domain in Fig. 3(a–c)), so that the hunters are strongly chemo-attracted by the prey, but the prey has only a weak 
tendency to avoid the hunter-produced chemicals, we see the opposite case: Although not attracting each other, 
the hunter-particles form a dense core, surrounded by the prey-particles (red domain in Fig. 3(c) and right panel 
of Fig. 3(d) and movies 4, 8). To see how these remarkable clusters emerge, let us explore the dynamics underlying 

Figure 3.  (a) State diagram in the plane spanned by the chemotactic cross coupling coefficients αph and αhp for 
fixed α = 1pp ; α = 0hh . The green domain represents hunting swarms, which are characterized by their ballistic 
motion and their emergence from an oscillatory instability (the black line shows the analytical prediction of the 
transition line), whereas colours for the remaining cluster phases are defined via the value of the mixing 
parameter shown in panel (b) (see text). The state diagram was created with more than 200 evaluated state 
points. (b) Mixing parameter P, counting the average number of black next neighbors per white particle and 
mean particle velocity v at late times discriminating between the individual states: Each point corresponds to a 
parameter set on the dashed line in the parameter plane of panel a. The labels A B C D, , ,  correspond to those 
shown on the dashed line in panel (a). (c,d) Extracts from the simulations underlying Fig. 2 (see movies 1–8).
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their formation. Initially, the prey-particles, which chemo-attract each other aggregate and form very small clus-
ters. While these clusters are forming, the aggregation of prey-particles locally increases the concentration of c p 
resulting in an attraction of hunter-particles, which directly invade the cluster, because α α>hp pp . 
Consequently, as more and more hunters enter the cluster, the density of ch increases in the cluster center, repel-
ling the prey. Since the prey-particles, in turn, couple stronger to their self-produced chemicals than to those 
produced by the hunters α α>pp ph , they do not flee from the cluster but try to stay together. While in the 
simulations underlying Fig. 2, the hunters invade even small prey-clusters, for appropriate initial conditions, we 
can see a proper inside out reversal of comparatively large clusters (movie 9) (species reversal). In each case, the 
result is a counterintuitive pattern consisting of a dense cluster containing mostly hunters surrounded by ring of 
prey-particles.

Dynamical ejections of particle clusters.  We have investigated the dynamics of these core-shell clusters 
more precisely. Assuming the diffusion of c p is considerably lower than that of ch and ch is produced very slowly, 
this results in a certain delay effect. A typical course of this process is shown in Fig. 4 (see also movie 10). The 
prey-particles that attract each other initially accumulate and form clusters (Fig. 4(a)). Due to a resulting higher 
concentration of c p, the hunters are also attracted. These hunter-particles then form a surrounding shell, but can-
not immediately invade the prey-cluster as α α>pp hp (Fig. 4(b)). Although slowly, the concentration of ch 
increases with time as more hunter-particles join. At some point a significant concentration of ch is exceeded and 
since α α>ph pp , the prey-particles are ejected outwards from the center of the cluster (Fig. 4(c)). Since the 
chemicals c p produced by the prey diffuses on a much smaller timescale, the hunter-particles still move towards 
each other, form a dense cluster which persists for a while (Fig. 4(d)), before the hunter-cluster dissolves slowly 
and the whole process starts all over again.

Irregular aggregation.  Finally, when αph, αhp are both small, with α α<ph hp  (orange regime in Fig. 3(a,b) 
and movies 3, 7), prey and hunter particles form clusters containing a seemingly irregular mixture of hunter and 
prey particles (Fig. 3(c), orange). These clusters emerge because we have a chemically mediated prey-prey attrac-
tion and a hunter-by-prey attraction which exceeds the prey-by-hunter-repulsion, so that effectively prey particles 
similarly strongly attract all other particles, leading to a rather irregular aggregation.

Classification.  In contrast to the static clusters, structures in the green region of Fig. 3(a) move ballistically 
and hence show a non-vanishing velocity. Figure 3(b) depicts the mean particle velocity v t( ) (see SI for details) at 
late times for parameters chosen along the dashed line in Fig. 3(a), where one can easily see how the velocity in 
regions of hunting swarms exceeds that in other regimes. While the hunting swarm phase, which emerges from 
an oscillatory instability, as discussed further below, can be clearly distinguished from the stationary cluster 
phases, let us define an “order parameter” P to distinguish the remaining cluster phases. We define P as the aver-
age number of black next neighbors (prey) per white particle (hunter), where we denote a neighbor as a particle 
within a distance < + .r 2 0 1ij . Figure 3(b) shows P for parameters chosen along the dashed line in Fig. 3(a). This 
parameter would have a value of 3 for completely irregular and infinitely large dense clusters. For the orange 
domain, where particles aggregate almost irregularly, it has a value > .P 2 5, whereas red means ( . < < .P1 5 2 3) 
and blue means < .P 0 5. Crossover regions between the individual patterns are marked by white domains in 
Fig. 3(a).

Figure 4.  Sequence of simulation snapshots showing a cluster ejection which occurs due to chemical delay 
effects. Dimensionless parameters: α = 100pp , α = 0hh , α = −1000ph , α = 10hp , µ = .0 1p , µ = .0 01h , 

= .D 0 5c
p , =D 10c

h , = .D 0 001, = 10  with 500 prey-particles and 2000 hunter-particles.
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Linear Stability Analysis – Emergence and Dynamics of Patterns at Early Times
To understand the structure of the state diagram we now introduce a continuum description for the particle 
dynamics and perform a linear stability analysis.

Continuum model.  The Smoluchowski equation, describing the dynamics of the (non-normalized) proba-
bility ρ tr( , )s  to find a particle of species s at position r at time t reads as follows ( ∈s p h{ , }): 

∑ρ ρ α ρ∂ = ∆ − ∇ ⋅ ∇ .
′∈

′
′D c( )

(5)
t

s s

s p h
ss

s s

{ , }

These deterministic equations are equivalent to the Langevin Equation (1) for point particles ( =V 0). We can 
now also rewrite the evolution equation for the chemical fields as follows: 

µ ρ∂ = ∆ − + .c D c( ) (6)t
s

c
s s

Before carrying out a linear stability analysis, let us solve these equations numerically to test them: Integrating 
Eqs. (5), (6) for a uniform initial state (plus small fluctuations) on a square box of size =L 100box , we indeed find 
the same patterns as in our particle based simulations (Figs. 2(e–h) and 3) (see SI for details regarding these sim-
ulations and the used method to stabilize them).

Linear stability analysis.  We now linearize these four coupled equations around the stationary solution 
ρ ρ ρ µ=c( , ) ( , / )0 0 , which represents the uniform disordered phase, and solve them in Fourier Space, to understand 

the dynamics of a small plane wave perturbation with wavenumber q around the uniform phase. We denote the 
dispersion relation of these fluctuations as λ q( ). If λ has a positive real part for some q value, the uniform phase is 
unstable. Calculating λ (see Supplementary Material for details), we find that the uniform phase looses stability if 

µ ρ α α α α< 


+ + 


D Re2 4 , (7)pp ph hp pp0
2

where we have choosen α = 0hh  as in our simulations. While Fig. 3 shows only parameter regimes where the 
uniform phase is unstable, we have performed additional simulations (see SI) which are in close quantitative 
agreement with the prediction of the onset of the instability due to Eq. (7). This holds true both in the regime 
where the instability is stationary and where it is oscillatory. The instability criterion shows that chemo-attractions 
among the prey particles support the emergence of a pattern in competition with diffusion and the potential 
decay of the chemical, whereas cross interactions only support the emergence of a pattern if they, αph and αhp, 
have the same sign.

To understand the transition between static clusters and hunting swarms, we also derive a criterion discrimi-
nating between stationary instability (static clusters, λ is real) and oscillatory instabilities (moving structures, 
complex λ) which reads as follows (see SI): 

α α α− > .2 (8)ph hp pp

This criterion defines the solid black line in Fig. 3(a), which quantitatively agrees with our simulations. It shows 
that an oscillatory instability and hence moving patterns can appear only if αph,αhp have opposite sign, i.e. if one 
species effectively hunts the other one, whereas the other one tries to escape. In this parameter regime where it is 
oscillatory, we have numerically tested the instability criterion (Eq. (7)) to see if it is shifted due to “perturbation 
convection”, see42. We did not find any shift, suggesting that the advective and absolute instability are very close to 
each other in the present case.

In Fig. 5 we show the complete dispersion relation λ q( ) (real and imaginary part) of small plane wave fluctua-
tions around the uniform phase. Here the location of the maxima in λ >qRe[ ( )] 0 define the fastest growing 
mode, typically determining the length scale of the pattern at early times.

Having understood the transition line between the cluster phases and the hunting swarms, let us also explore 
if we can understand how fast the swarms move. To do this, in Fig. 6, we compare the imaginary part of λ (the 
expected speed of the hunting swarm is = → ≈λ λ

v q v( )
q

q

q
Im( ) Im ( )max

max
) with the velocity of the hunting swarms 

in our particle based simulations at early times and find close agreement.

Structure and Growth at Late Times
Having explored how the patterns emerge and behave at early times, we now want to explore their structure and 
dynamics also at late times. To do this, we introduce the instantaneous pair-correlation function g r( ) defined as 

∑ρ
δ= −

≠
⟨ ⟩g r r r( ) 1 ( ) ,

(9)i i
id

0

 for an average number density ρ = N
Lid
2

box
2

 with box length =L 250box , total number of particles N2  and ⋅  
denoting the ensemble average. The radially averaged and time averaged pair-correlation function g r( ), where 

=r r , shown in Fig. 7 describes how the density varies as a function of distance from a reference particle at 
which we averaged over all particles of hunters and prey.
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As one can see in the inset of Fig. 7, there is a large peak around =r 2, which is the typical distance between 
two particles ( =R 1 in dimensionless units). We can also find peaks around =r 2 3  and =r 4 caused by the 
next two neighbors. This reflects the fact that the static clusters (blue, orange, red) show a hexagonal packing.

Late-stage dynamics.  Once the patterns have emerged, they reach a state where their morphology changes 
only slowly. However, even at late stages the size of the individual structures still increases in time. The swarms 
move ballistically and frequently collide with each other often leading to their break up. They still grow on average, 
ultimately leading to a single swarm at late times. This is because after each collision a new swarm forms rapidly, 
i.e. on timescales before the individual particles which were part of the ‘old’ swarm significantly diffuse away. The 
newly forming swarm rapidly reaches a size exceeding that of its “ancestors”, because it involves particles from 
both swarms which were involved in the collision. To quantify this growth, we consider the time evolution of the 
radial distribution function g r t( , ) and define the length scale L t( )1  of clusters as the smallest value where 

≤g r t( , ) 1, for all >r L1. Thus, the g r( ) shown in Fig. 7 corresponds to a length scale of ≈L 201  (dimensionless 
units). At late-times, we find that ∝ βL t t( )1  follows a power law with an exponent of β ≈ .0 35 (Fig. 8) for the 
(nonmoving) cluster phases, which is close to the value of β = 1

3
 as expected for diffusive growth (in the absence 

of hydrodynamic interactions)43–47. We find a much larger exponent, of β ≈ .0 56 (Fig. 8), for the patterns in the 
green region, which is close to β = .0 5 as expected for ballistic aggregation. This is a consequence of the fact that 
the individual structures move ballistically, collide and merge with each other much faster (but also break up).

As a second measure for the growth of the clusters, we measure the distance between them. To do this, we 
consider the structure factor of the system: 

∫ρ= + −− ⋅S e gk r r( ) 1 d [ ( ) 1] (10)id V

ik r

 and calculate the distance between clusters as the inverse of the first moment of the structure factor48, i.e. as: 
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where we choose the cutoff wavelength kcut as the first local minimum of S k( )48. Figure 9 shows the structure factor 
for a cluster in the red region of Fig. 3(a) at time =t 250 for small values of k. The peaks that can be seen in the 
inset of Fig. 9 correspond to the distance of two possible lattice planes of the hexagonal structure. The peak at 

= .k 3 3 results from the minimum distance between two particles ≈π
.( )22

3 3
. One finds a huge peak around 

= .k 0 11 with which we can estimate a typical length, ≈ = .πl 57 1
k

2 ; the enormous size of the peak hinges on the 
fact that each of the contributing clusters contains a large number of particles. The k-value where this peak occurs 

Figure 5.  Real and imaginary part of the dispersion relation λ, for hunting swarms (green) and static clusters 
(red). Parameters as in Fig. 2(a,d).

Figure 6.  Mean particle velocity in the hunting swarm phase, extracted from the simulations underlying 
Fig. 3(a) at early times (red) and reduced imaginary part of λ at the wavenumber corresponding to the fastest 
growing mode, i.e. λ qIm( ( ))max /qmax (blue) as a function of − =a aph hp.
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corresponds to the mean cluster distance, which corresponds to the value of r where g r( ) approaches 1 from 
below (see Fig. 7). This distance grows basically with the same power law as the cluster sizes, as shown in Fig. 8, 
i.e. calculating cluster sizes via L t( )1  and calculating cluster-distances L t( )2  basically leads to the same growth law 
(Fig. 8)49. Thus, there is only one independent macroscopic length scale in the system.

Conclusions
Inspired by the generic presence of multi-species chemotaxis in microbiological communities, e.g. in 
macrophage-tumor cell systems, we have proposed and explored a physical minimal model to study the collective 
behaviour beyond the commonly considered one-species limit. We have found that the novel key ingredient of 
our model - the species selective chemical production - leads to interesting behavior: patterns that comprise a 
"hunting swarm” phase consisting of a crowd of particles of one species pursuing the other species, and a phase 
where the two-species self-aggregate in a core-shell structure, which then dissolves abruptly in a dynamic process 
by ejecting the inner particles.

All these patterns could be observed both on the level of a particle-based description (Eqs. (3), (4)) and in a 
continuum model (Eqs. (5), (6)), allowing to analytically understand the transition line between cluster phases, 
which originate from a stationary instability of the uniform phase, and hunting swarms, emerging from an oscil-
latory instability. As a further characteristic difference between these phases, we find that clusters (and the 

Figure 7.  Pair-correlation function g r( ) (radial average of g r( )) of a system of =N2 2000 particles at time 
=t 250. The data are averaged over 100 independent ensembles. The dashed line shows a threshold to extract a 

characteristic length scale. Parameters as in Fig. 2(d).

Figure 8.  Time-dependent characteristic length scale (a) obtained from the pair-correlation function and (b) 
from the structure factor for structures in the red region (red dotted line) and in the green region (green dotted 
line of Fig. 3(a)). The dashed lines indicate the fitted exponents. Parameters as in Fig. 2(a,d). Panel (c) shows a 
sequence of snapshots from a representative simulation of the hunting swarms which continuously collide, split 
up and grow to a larger size.
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distance between them) grow diffusively ( ∝ .L t t( ) 0 35)43–47,49, whereas hunting swarms grow significantly faster 
( ∝ .L t t( ) 0 56)50.

While the key aim of the present work was to explore a minimal framework illustrating how chem-
ical cross-interactions may lead to complex behavior, it should in principle be possible to realize the present 
model also with (autophoretic) colloidal mixtures, e.g. based on a combination of nonreciprocal repulsive 
thermo-phoretic and attractive chemo-phoretic interactions, which have been confirmed to be non-reciprocal 
in recent experiments29.

Future work might include more specific biological details and could address the effect of confining bounda-
ries or obstacles51–54. Other topics concern additional aligning interactions and their impact on the cluster struc-
ture55–57 and ternary systems describing species of a longer biological food chain.

Data availability
All relevant data are available from the authors upon reasonable request.
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