
INTRODUCTION

Extracellular stimuli, including growth factors (e.g. EGF), cy-
tokines, and environmental stresses (e.g. ultraviolet), activate 
the receptor tyrosine kinase at the cytoplasmic membrane by 
dimerization-mediated autophosphorylation at the cytoplas-
mic domain [1]. The phosphorylated tyrosine residues of EGF 
receptor act as an initiation signal to recruit the Shc- Growth 
factor receptor-bound protein 2 (Grb2)-Ras complex and 
phospholipase Cγ in the cytoplasm, resulting in Son of seven-
less-mediated Ras activation and intracellular Ca2+-mediated 
protein kinase C activation [2]. Activated Ras induced activa-
tion of the signaling axis of Rafs, mitogen-activated protein 
kinase kinases (MEKs), extracellular signal-regulated kinases 
(ERKs), and p90 ribosomal S6 kinase (RSKs), including 
RSK2 which regulates cell proliferation, carcinogenesis, ad-

aptation, apoptosis [3], and protein stability regulation [4]. 
 ERK1 and ERK2 are downstream kinases of MEKs and 
approximately share an 85% amino acid similarity. ERKs ac-
tivated by MEKs-mediated direct phosphorylation at Thr and 
Tyr residues in the activation loop phosphorylate or interact 
with a large number of cytosolic and nuclear substrates spe-
cifically involved in cellular signaling of transcription factors  
responsible for particular cellular processes [5]. Thus, dys-
regulation of the aforementioned cascade frequently leads 
to the development of diverse diseases, including > 90% of 
all cancers [6]. Due to the importance of ERK as an inter-
mediary signaling molecules, its activity must be precisely 
regulated. Our previous study demonstrated that ERK 1 or 
2 take part in forming the SCFbTrCP1 complex that plays a key 
role in regulating ubiquitination-mediated protein stability, with 
Kruppel-like factor 4 (Klf4) [4]. While ERK 1- and 2-mediated 
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F-box proteins, consisting of 69 members which are organized into the three subclasses FBXW, FBXL, and FBXO, are the sub-
strate specific recognition subunits of the SKP1-Cullin 1-F-box protein E3 ligase complex. Although bTrCP 1 and 2, members of 
the FBXW subfamily, are known to regulate some protein stability, molecular mechanisms by which these proteins can recognize 
proper substrates are unknown. In this study, it was found that bTrCP1 showed strong interaction with members of mitogen-acti-
vated protein kinases. Although extracellular signal-regulated kinase (ERK) 3, p38b, and p38δ showed weak interactions, ERK2  
specifically interacted with bTrCP1 as assessed by immunoprecipitation. In interaction domain determination experiments, we 
found that ERK2 interacted with two independent ERK docking sites located in the F-box domain and linker domain, but not the 
WD40 domain, of bTrCP1. Notably, mutations of bTrCP1 at the ERK docking sites abolished the interaction with ERK2. bTrCP1 un-
derwent phosphorylation by EGF stimulation, while the presence of the mitogen-activated protein kinase kinases inhibitor U0126, 
genetic silencing by sh-ERK2, and mutation of the ERK docking site of bTrCP1 inhibited phosphorylation. This inhibition of bTrCP1 
phosphorylation resulted in a shortened half-life and low protein levels. These results suggest that ERK2-mediated bTrCP1 phos-
phorylation may induce the destabilization of bTrCP1.
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cellular signaling pathways have been studied mainly with fo-
cus on phosphorylation-mediated transient activity regulation, 
the ERK 1 and 2 protein stability regulation has been poorly 
understood.
 bTrCP 1 and 2 are members of F-box proteins, which con-
fer substrate selectivity for ubiquitination. F-box proteins are 
currently classified according to their potential roles, such 
as tumor suppressors (FBXW7, FBXO11, FBXW8, FBXL3, 
FBXO1, FBXO4, and FBXO18), oncogenes (SKP2, FBXO5, 
and FBXO9), and context-dependent different functions 
(bTrCP1 and bTrCP2) [7,8]. Accumulating data suggest that 
the roles of bTrCP 1 and 2 in cellular phenotypes are context 
dependent [7]. Ectopic expression of bTrCP1 controlled un-
der the mouse mammary tumor virus promoter developed 
tumors such as mammary, ovarian, and uterine carcinoma 
in about 38% transgenic mice [9]. Moreover, high bTrCP1 
mRNA and protein levels were detected in about 56% of 
colorectal cancer tissues with poor clinical prognosis [10]. In 
addition, somatic mutations of bTrCP1 and bTrCP2 identi-
fied in human gastric cancer correlated with stabilization of 
b-catenin which could explain the tumor development [11,12]. 
This highlights the tumor-suppressive role of bTRCP 1 and 2 
in the gastric cancer setting [7]. Moreover, various bTRCPs 
substrates are known to have oncogenic properties. These 
include b-catenin, CDC25A, FBXO5, VEGF receptor 2, inhib-
itor of nuclear factor-κB (IκB), programmed cell death protein 
4, and DEP domain-containing mTOR-interacting protein [7]. 
Since bTRCP 1 and 2 might be involved in diverse cellular 
processes in accordance with substrate diversity, existence 
of other substrates of the bTRCP 1 and 2 may be possible.
 In our present study, ERK2 was found to be a binding 
partner of bTRCP1. It was discovered that the binding is me-
diated through the D, F-box, and linker domains of bTRCP1, 
not the WD40 domain. It was further found that two putative 
ERK docking sites (PEDSs) were identified at the F-box and 
linker regions. Notably, the binding of bTRCP1 to ERK2 was 
reduced by the mutations at these sites. Taken together, 
these results suggested that interaction between ERK2 and 
bTRCP1, not ERK ubiquitination, may regulate the activity of 
bTRCP1.

MATERIALS AND METHODS

Reagents and antibodies
Chemicals for molecular and cell biology purposes were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s 
modified Eagle’s medium (DMEM) was obtained from Corn-
ing (Cat. #: 10-013-CVR, New York, NY, USA). The supple-
ments for cell culture, including penicillin/streptomycin (Cat. 
#: 15140-122) and sodium pyruvate (100×, Cat. #: 11360-
070), were purchased from Life Science Technologies (Rock-
ville, MD, USA). FBS (Cat. #: 26140-079) was purchased 
from Corning. Antibodies (Abs) against phospho-MEK1/2 
(S217/221) (p-MEKs, Cat. #: 9154), phospho-ERK1/2 (T202, 

Y204) (p-ERKs, Cat. #: 9106), total-MEK1/2 (t-MEKs, Cat. 
#: 4694), and total-ERK1/2 (t-ERKs, Cat. #: 9102) were pur-
chased from Cell Signaling Technology (Beverly, MA, USA). 
The b-actin antibody (Cat. #: SC-69879) was purchased 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Di-
methylsulfoxide (DMSO, Cat. #: D8418) was purchased from 
Sigma-Aldrich. U0126, an MEK inhibitor (Cat. #: 9903, Cell 
Signaling Biotechnology), was dissolved in DMSO to obtain 
stock solutions (×1,000 high concentration). 

Cell culture
HEK293T cell line was purchased from the American Type 
Culture Collection (Manassas, VA, USA). The HEK293T cells 
were cultured in DMEM supplemented with 10% FBS and 
antibiotics. The cells were maintained at 37°C in a 5% CO2 
incubator and were split at 90% confluence. The medium was 
exchanged every 2 or 3 days. When the cells reached 60% 
confluence, they were transfected with expression vectors 
by using jetPEI (Polyplus-Transfection, New York, NY, USA) 
according to the manufacturer’s instructions.

Vector construction
The bTrCP1 open reading frame was incorporated into mul-
ticloning sites of the pACT-VP16 mammalian two-hybrid 
vector. The open reading frame of kinases was amplified 
from the human kinase open reading frame kit, containing 
556 distinct human kinases and kinase-related protein open 
reading frames in pDONR-223 Gateway® Entry vectors (Ad-
dgene, Watertown, MA, USA), and inserted into the pBIND-
Gal4 mammalian two hybrid vector. For transient transfection 
of bTrCP1, Cullines, ERK2, and truncated and serial deleted 
bTrCP, mammalian expression vectors pcDNA3-HA, pcD-
NA3-Myc, and pcDNA4-HisMax-Awere utilized. All recom-
bined expression vectors were confirmed by DNA sequenc-
ing.

Mammalian two-hybrid assay
To screen for protein-binding partners, we conducted mam-
malian two-hybrid assays in accordance with the Promega 
Checkmate mammalian two-hybrid system protocols (Prome-
ga, Madison, WI, USA). HEK293T cells (2 × 104 cells/well) 
were seeded into 48-well plates and maintained with 10% 
FBS-DMEM for 18 hours before conducting transfection. 
The vectors pACT-VP16-bTrCP1, pBIND-Gal4-kinases, and 
pG5-luciferase were mixed at the same molar ratios (1:1:1) 
and the total amount of DNA was no more than 100 ng per 
well. Transfection was done utilizing jetPEI according to the 
manufacturer’s recommendations. For the luciferase assay, 
the cells were disrupted by directly adding a cell lysis buffer 
and gently shaking for 30 minutes at room temperature. 
Then, 60 mL aliquot was added to each-well luminescence 
plate. Luminescence activity was automatically measured 
through a VICTOR X3 plate reader (PerkinElmer, Waltham, 
MA, USA). To evaluate transfection efficiency, relative lucif-
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erase activity was calculated based on the pG5-luciferase 
basal control and was normalized against Renilla luciferase 
activity, which was included in the pBIND vector.

Gene silencing
To silence bTrCP1 or ERK2 in HEK293T, lentiviral expression 
plasmids of pLenti-sh-ERK2 (Dharmacon, Lafayette, CO, 
USA) were co-transfected into HEK293T cells with psPAX2 
and pMD2.G (Addgene, Cambridge, MA, USA) as indicated 
by the manufacturer’s recommended protocols. At 24 hours 
and 48 hours after transfection, we obtained a Lenti-sh-ERK2 
medium containing viral particles from the HEK293T cells. 
The medium was filtered with a 0.45 µm filter (Cat. #: 723-
2545, Thermo Fisher Scientific, Waltham, MA, USA) and 
used, with 1 to 2 µg/mL of polybrene, to infect HEK293T. Af-

ter a maximum of 16 hours, the cell medium was exchanged 
with fresh complete medium. After 48 hours of maintenance, 
non-infected control cells were killed over a period of 3 days 
by treatment with 2 mg/mL of puromycin (Cat. #: A111308, 
Thermo Fisher Scientific). Surviving cells were immediately 
examined to determine protein levels by Immunoprecipitation 
(IP) and Western blotting.

Western blot analysis
Samples containing equal amounts of proteins (30 to 50 
µg) were resolved by 8% to 10% SDS PAGE1 and then 
transferred onto polyvinylidene difluoride membranes. The 
membranes were blocked in 5% skim milk and hybridized 
with specific primary and HRP-conjugated secondary Abs as 
indicated. The membranes were washed, and target proteins 

Figure 1. ERK2 and bbTrCP1 are components of the Cullin 1 containing SCFbTrCP1 complex. (A) Mammalian two-hybrid assay screening. 
Mammalian two-hybrid recombinant plasmids including pACT-VP16-bbTrCP1, pG5-luciferase reporters, and each of pBIND-Gal4-kinases (as 
indicated) were transfected into HEK293T cells with a molar ratio 1:1:1. Relative luciferase activity was converted by comparison to luciferase activity 
obtained from pACT-VP16-bTrCP1/pBIND-Gal4-mock/pG5-luc. Equal transfection was normalized by Renilla luciferase activity obtained from each 
of pBIND-Gal4-kinase expression vectors. (B) Confirmation of bTrCP1 and ERK2 interaction obtained through IP. pBIND-Gla4-MAPKs (as indicated) 
and pcDNA3-HA-bTrCP1 were co-transfected into HEK293T cells. The interaction of ERK2 and bTrCP1 was visualized by IP/Western blotting as 
indicated. (C) Confirmation of ERK2 and Cullin 1 interaction. pcDNA3-Myc-Cullins and pcDNA4-HisMAX-ERK2 were co-transfected into HEK293T 
cells. The interaction of ERK2 and each of the Cullins was visualized by IP/Western blotting as indicated. CDK, cyclin-dependent kinase; DAPK, 
death-associated protein kinase; GRK5, G protein-cou pled receptor kinase 5; LCK, lymphocyte-specific protein-tyrosine kinase; NEK6, NIMA-related 
kinase 6; CSK, C-terminal SRC kinase; STK16, serine/threonine-protein kinase 16; TOPK, lymphokine-activated killer T-cell-origi nated protein kinase; 
PAK2, p21 protein-activated kinase 2; SGK, serum/glucocorticoid-regulated kinase; ERK, extracellular signal-activated kinase; JNK2, c-Jun N-terminal 
kinase 2; IP, immunoprecipitation; HA, hemagglutinin; WCL, whole cell lysates.
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were visualized by an enhanced chemiluminescence detec-
tion system (Amersham Biosciences, Piscataway, NJ, USA) 
using a Chemidoc XRS+ imager (Bio-Rad Laboratories, Her-
cules, CA, USA).

IP
HEK293T cells (2 × 106) were seeded into 100-mm dishes 
and incubated overnight. Individual expression vectors were 
transfected into HEK293T with jetPEI as indicated, and the 
cells were incubated for 24 hours. Protein samples from the 
cells were extracted by using a NP-40 cell lysis buffer. IP was 
conducted with the same amount of each sample and the Ab 
specific to the vector-transfected sample. The protein extracts 
were combined with protein G beads (50% slurry) (Cat. #: 17-
0618-02, Protein G Sepharose 4 Fast Flow, GE Healthcare, 
Little Chalfont, UK) by rocking at 4°C for at least 5 hours or 
overnight. The protein G beads were washed and mixed with 
6× SDS sample buffer and boiled. The precipitated proteins 
were resolved by 10% to 15% SDS PAGE and detected by 
Western blotting using specific Abs as indicated.

Statistical analysis and figure panels
Mammalian two-hybrid screening data was obtained from a 
triplicated experiment. Data are expressed as mean ± SEM 
values. Student’s t-test using the Microsoft Excel program 
(Microsoft, Redmond, WA, USA) was used to compare val-
ues between two groups. P-values < 0.05 (two-tailed) were 
considered significant. The Western blotting and IP experi-
ments were conducted at least twice. The figure panels are 
representative photographs for Western blotting. 

RESULTS

ERK2 and bbTrCP1 are components of Cullin 1 
SCF complex
To identify the new binding partners to bTrCP1, we conduct-
ed a mammalian two-hybrid assay using kinases which were 
constructed in our laboratories. We found that mitogen-acti-
vated protein kinases (MAPK), including ERK2, ERK3, p38α, 
p38δ, and JNK2, showed a relatively high interaction strength 
(about 3-5.4 folds) compared to other kinases, including 
CDK1 (cyclin-dependent kinase 1), CDK10, CHK1 (cell cycle 
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check kinase 1), DAPK2 (death-associated protein kinase 
2), DAPK3, GRK5 (G protein-cou pled receptor kinase 5), 
LCK (lymphocyte-specific protein-tyrosine kinase), NEK6 (NI-
MA-related kinase 6), CSK (C-terminal SRC kinase), STK16 
(serine/threonine-protein kinase 16), TOPK (lymphokine-ac-
tivated killer T-cell-origi nated protein kinase), PAK2 (p21 
protein-activated kinase 2), SGK (serum/glucocorticoid-reg-
ulated kinase) (Fig. 1A). Since bTrCP1 showed a strong in-
teraction with the MAPK members, IP was utilized to confirm 
binding to the following groups: ERK1, ERK2, ERK3, JNK1, 
JNK2, JNK3, p38α, p38b, p38γ, and p38δ (Fig. 1B). The IP of 
bTrCP1, using the HA tag Ab, showed strong coprecipitation 
with ERK2 (Fig. 1B, upper panel of IP). ERK3, p38b, and 
p38δ bands coprecipitated with bTrCP1 were weak compared 
to ERK2, which was attributable to the lower expression lev-
els of these proteins in the whole cell lysates (WCL) (Fig. 1B, 
upper panel). Notably, since bTrCP1 has been classified as a 
member of the Cullin 1 containing SCF complex [13], ERK2 
showed a band in IP with Cullin 1 when IP was conducted 
with Myc Ab (Fig. 1C, top panel). Additionally, the His-ERK2 
protein levels in WCL were similar to other lanes in which 
were co-transfected with His-ERK2 and each of Myc-Cullin 2, 
3, 4A, 4B, and 7 (Fig. 1C, 3rd panel from top). These results 
indicate that ERK2 is a new interacting partner with bTrCP1.

ERK2 binds to F-box and linker domains of 
bbTrCP1
After the discovery of the interaction between bTrCP1 and 
ERK2, the ERK2-binding domains of bTrCP1 were then de-
termined. Since ERK2 is a member of MAPK family proteins, 
and ERKs docking consensus sequences are published as 
(R/K)(R/K)XXXXX(L/V/I) [14], we searched whether bTrCP1 
contained the amino acid sequences or not. Surprisingly, 
bTrCP1 harbored two consensus sequences in the F-box 
domain and the linker domain between the F-box and WD40 
domains (Fig. 2A). The conserved KK-----V (referred to as 
PEDS1) and RR-----L (referred to as PEDS2) were located at 
amino acid 190 to 197 and 209 to 216 (Fig. 2A). To decipher 
more detail, we constructed bTrCP1 deletion mutant expres-
sion vectors using a pcDNA3-HA tag expression vector (Fig. 
2B). The IP experiment using cell lysates expressing His-
ERK2 and each of HA-mock, bTrCP1-FL, bTrCP1-1-228, 
and bTrCP1-229-569 showed that ERK2 was co-immuno-
precipitated with bTrCP1-FL and bTrCP1-1-228 but not HA-
mock and bTrCP1-229-569 (Fig. 2C). To verify the interaction 
between aa 190-216 of bTrCP1 and ERK2, we constructed 
bTrCP1 truncated mutant expression vectors: bTrCP1-dD-F-
box and -dD-L (Fig. 2D). We confirmed that none of bTrCP1 
truncated proteins co-immunoprecipitated with ERK2, while 
HA-bTrCP1-FL presented a strong co-immunoprecipitated 
band for ERK2 (Fig. 2E). Since the WD40 domain of bTrCP1 
is located in bTrCP1-229-569, these results suggested that 
ERK2 and bTrCP1 binding may not trigger the ERK2 protein 
stability, but rather ERK2-mediated bTrCP1 phosphorylation.

Determination of bbTrCP1 binding sites to ERK2
Our previous results indicated that PEDS1 and PEDS2 of 
bTrCP1 located in the F and linker domains played a key role 
in the interaction between bTrCP1 and ERK2. Since ERK 1 
and 2 play a pivotal role in intreacellular signal transduction 
activated by diverse mitogenic stimuli that include growth 
factors [15,16], we hypothesized that PEDS1 and PEDS2 of 
bTrCP1 might have been highly conserved in different spe-
cies. Thus, we conducted comparative analysis of bTrCP1 in 
various species including mouse, rat, cow, monkey, snake, 
salmon, ant, and xenopus (Fig. 3A). Despite varying numbers 
of amino acids from the N-terminus, it was found that amino 
acid sequences for the ERK docking sites were perfectly 
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conserved in these animal species (Fig. 3A). To confirm 
whether the PEDS1 and PEDS2 played an essential role in 
the interaction with ERK2, we constructed two different mu-
tants of bTrCP1: bTrCP1-mtPEDS1 and bTrCP1-mtPEDS2. 
bTrCP1-mtPEDS1 was constructed by replacing the lysines 
at aa 190 and 191 and valine at aa 197 to alanine and 
bTrCP1-mtPEDS2 by replacing the arginines at aa 209 and 
210 and leucine at aa 216 to alanine (Fig. 3B). The essen-
tial role of PEDS 1 and 2 of bTrCP1 in the interaction with 
ERK2 was proved by the IP using Xp-ERK2 and each of HA-
bTrCP1-PEDS1 or -PEDS2. We found that ERK2 IP with 
Xp-tag Ab showed a dramatic decrease of both HA-bTrCP1-
PEDS1 or -PEDS2 (Fig. 3C). Importantly, we further found 

that the HA-bTrcP1-PEDS1 and -PEDS2 decreased the 
co-immunoprecipitated Cullin 1 (Fig. 3D). These results indi-
cated that the amino acids, such as lysines at 190 and 191, 
valine 197, arginines at 209 and 210 and leucine 216, play 
a role in not only ERK2 docking, but also Cullin 1-mediated 
SCF complex formation. 

ERK2-mediated bbTrCP1 phosphorylation affects 
bbTrCP1 stability
Our previous results suggested that ERK2 and bTrCP1 inter-
action may involve ERK2-mediated bTrCP1 phosphorylation. 
Since EGF-mediated signaling pathways induce ERK 1 and 
2 phosphorylation and activation, we examined EGF-induced 
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bTrCP1 phosphorylation. To verify bTrCP1 phosphorylation, 
we conducted IP using HA-tag Ab by combining the cell ly-
sates transiently expressing HA-bTrCP1 and stimulated with 
EGF. The phosphorylation levels of HA-bTrCP1 were ob-
served by Western blotting using phospho-serine/threonine 
Ab. The results indicated that the HA-bTrCP1 phosphoryla-
tion level by EGF stimulation was increased at 15 minutes, 
sustained to 60 minutes, and decreased at 120 minutes (Fig. 
4A). The induction pattern of HA-bTrCP1 phosphorylation 
was similar to ERK 1 and 2 phosphorylation by EGF stimu-
lation (Fig. 4A). Interestingly, HA-bTrCP1 total protein levels 
in whole cell lysates had an inverse correlation with ERK 
1/2 phospho- and total-protein levels (Fig. 4A). Importantly, 
the MEKs inhibitor U0126 treatment completely blocked 
HA-bTrCP1 phosphorylation induced by EGF stimulation 
(Fig. 4B). By Western blotting using the whole cell lysates, 
EGF-induced phosphorylation of ERK 1 and 2 disappeared 
with MEKs inhibitor U0126 treatment (Fig. 4B). Notably, ge-
netic knockdown of ERK2 using pLenti-sh-ERK2 (Fig. 4C, 3rd 
panel from top) suppressed phosphorylation of HA-bTrCP1 
(Fig. 4C, top panel). The evidence indicating that ERK2 is 
an upstream kinase of bTrCP1 was provided by IP/Western 
blotting using cell lysates transiently expressing HA-bTrCP1-
WT, HA-bTrCP1-mtPEDS1 and HA-bTrCP1-mtPEDS2 (Fig. 
4D). The results demonstrated that disruption of ERK2 and 
bTrCP1 interaction blocked HA-bTrCP1 phosphorylation (Fig. 
4D). Surprisingly, ectopic co-expression of ERK2 and bTrCP1 
reduced total protein levels and the half-life of HA-bTrCP1 
protein after cycloheximide treatment (Fig. 4E). In contrast, 
ERK2 knockdown using sh-ERK2 attenuated the bTrCP1 
protein reduction, but not strong, by cycloheximide treatment 
(Fig. 4F). Taken together, these results indicate that ERK2 
is an upstream kinase of bTrCP1 and growth factor-induced 
bTrCP1 phosphorylation by ERK2 reduces the half-life of 
bTrCP1 (Fig. 4G).

DISCUSSION

EGF-mediated signaling pathways are well-known oncogenic 
signaling pathways regulating cell proliferation, cell trans-
formation, metastasis, and apoptosis [3,15]. Stimulation at 
the cytoplasmic membrane evokes activation signals and 
transduces the activation signal to the nucleus via a phos-
phate-delivery system. Since the members are stimulated 
by diverse mitogenic factors, including growth factors, se-
rum, cytokines, hormones and environmental stresses, the 
members are referred to as MAPK, which consists of ERKs, 
p38 kinases, and JNK [16]. Although Ras proteins, upstream 
signaling molecules of ERKs, often show constitutively active 
mutations with high percentage in many human solid can-
cers [17], we were curious about why ERKs mutations have 
not been reported in human solid cancer. We hypothesized 
that 1) since ERKs play a pivotal role in cell survival, ERKs 
mutation may be lethal to the cells, resulting in spontaneous 

elimination 2) since ERKs’ roles are backed up by other ERK 
isozymes, apparent phenotypes are not observable; and 3) 
since ERKs roles are trivial in biological processes, ERKs 
mutations may have not affected the manifestation of pheno-
types. However, for the last several decades, research has 
emphasized the importance of ERK as a prime signaling mol-
ecule [16]. Recently, we found that ERK1 and 2 induce Klf4 
phosphorylation, resulting in the formation of a SCFbTrCP com-
plex and Klf4 degradation [4]. Although there is no evidence 
that the SCFbTrCP-Klf4 complex contains ERK 1 or 2, it was 
found that ERK2 is a new binding partner of bTrCP1 (Fig. 1). 
Thus, ERK2 might affect the biological processes depending 
on not only the protein stability regulation, but also gene tran-
scription.
 The role of bTrCP 1 and 2 are controversial. Since bTrCPs 
mRNA and protein levels are increased in 56% of colorectal 
cancers and showed poor prognosis [10]. Moreover, hepa-
toblastoma [11] and some breast cancers [18] showed high 
expression of bTrCP1 and bTrCP2. NF-κB activation was ob-
served in hepatocellular carcinoma [19]. Since the constitu-
tively active NF-κB was associated with bTrCP-mediated IκB 
degradation [20], the signaling pathways produced by various 
cytokines, growth factors, and diverse stresses might be reg-
ulated by bTrCP. In contrast, somatic mutations of bTrCP1 
and bTrCP2 that abolish E3 ligase activity were detected 
in human gastric cancer [12,21]. These mutations increase 
b-catenin stabilization in gastric cancer tissues [21]. Thus, 
the role of bTrCPs is context-dependent as a tumor suppres-
sor or oncogene. Since our research has demonstrated that 
RSK2, downstream of ERK 1 and 2, enhances NF-κB trans-
activation activity [22], ERK 1 and 2-mediated tumorigenesis 
might have a connection with bTrCP-mediated protein stabili-
ty regulation. 
 In this study, we found that bTrCP1 and ERK2 interaction 
is mediated via F and linker domains of bTrcP1, but not the 
WD40 domain (Fig. 2 and 3). Since substrates of F-box pro-
teins generally interact with the WD40 domain, this point was 
crucial in hypothesizing that the interaction between bTRCP1 
and ERK2 was not aimed to degrade ERK2 proteins. How-
ever, since ERK2 phosphorylates bTrCP1 (Fig. 4), the ERK2 
and bTrCP1 interaction might affect bTrCP1 enzymatic ac-
tivity although the detailed mechanisms are unknown. We 
have considered a possible mechanism. Phosphorylation 
plays a key role in protein-protein interaction as well as pro-
tein degradation, especially in ubiquitin-proteasome systems 
[23]. In fact, many proteins such as c-Myc, cyclin E, c-Jun, 
Notch1 and androgen receptor are degraded by E3 ubiquitin 
ligase after phosphorylation by specific kinases, respectively 
[24-27]. Although we did not identify specific E3 ligase that 
regulates the protein stability of bTrCP1, we found that ERK2 
could phosphorylate bTrCP1 and that the mutants of bTrCP1 
(mtPEDS1 and mtPEDS2) decreased the interaction with 
ERK2 (Fig. 3C). Furthermore, overexpression of ERK2 re-
duced bTrCP1 protein half-life under cycloheximide treatment 
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(Fig. 4E). Therefore, we suggest that protein stability of the 
mutants of bTrCP1 (mtPEDS1 and mtPEDS2) would be in-
creased compared to the bTrCP1 wild type.
 The p90RSK family members RSK1-4 and MSK1-2, regula-
tory kinases located between ERKs and many transcription 
factors in the signaling pathway, are well-known substrates of 
ERK1 and ERK2 which play essential roles in diverse cellular 
processes [28]. Since at least 200 ERK substrates have been 
discovered, ERK1- and ERK2-mediated cellular signaling 
might be dependent on the subcellular distribution of ERKs 
and their substrates and stimulus-dependent signaling axis 
activation by protein-protein interaction [16,28]. As ERK2 
being a proline-directed kinase, the phosphorylation of ERKs 
substrates occurs at Pro-X-Ser/Thr-Pro consensus sequenc-
es [29]. In this study, we found that bTrCP1 contained two 
independent PEDSs; however, the phosphorylation site(s) by 
ERK2 is still unknown.
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