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ABSTRACT Objective: Hepatitis B virus (HBV) infection is a major public health problem worldwide. However, the regulatory mechanisms 

underlying HBV replication remain unclear. Cullin 4B-RING ubiquitin E3 ligase (CRL4B) is involved in regulating diverse 

physiological and pathophysiological processes. In our study, we aimed to explain the role of CUL4B in HBV infection.

Methods: Cul4b transgenic mice or conditional knockout mice, as well as liver cell lines with CUL4B overexpression or knockdown, 

were used to assess the role of CUL4B in HBV replication. Immunoprecipitation assays and immunofluorescence staining were 

performed to study the interaction between CUL4B and HBx. Cycloheximide chase assays and in vivo ubiquitination assays were 

performed to evaluate the half-life and the ubiquitination status of HBx.

Results: The hydrodynamics-based hepatitis B model in Cul4b transgenic or conditional knockout mice indicated that CUL4B 

promoted HBV replication (P < 0.05). Moreover, the overexpression or knockdown system in human liver cell lines validated that 

CUL4B increased HBV replication in an HBx-dependent manner. Importantly, immunoprecipitation assays and immunofluorescence 

staining showed an interaction between CUL4B and HBx. Furthermore, CUL4B upregulated HBx protein levels by inhibiting HBx 

ubiquitination and proteasomal degradation (P < 0.05). Finally, a positive correlation between CUL4B expression and HBV pgRNA 

level was observed in liver tissues from HBV-positive patients and HBV transgenic mice.

Conclusions: CUL4B enhances HBV replication by interacting with HBx and disrupting its ubiquitin-dependent proteasomal 

degradation. CUL4B may therefore be a potential target for anti-HBV therapy.
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Introduction

Hepatitis B virus (HBV) infection remains a serious health 

problem. Despite the availability of an effective preventive 

vaccine, 257 million people worldwide are chronically infected 

with HBV and are at increased risk of developing liver cirrho-

sis and hepatocellular carcinoma (HCC). Each year, an esti-

mated 600,000 people die from HBV-related liver diseases1.

HBV is a hepatotropic, non-cytopathic, small enveloped 

DNA virus. The encapsidated viral genome consists of a 3.2 kb 

partially double-stranded relaxed circular DNA (rcDNA)2. 

After viral entry into hepatocytes, the capsid dissociates, and 

the rcDNA genome translocates into the nucleus and is con-

verted into a covalently closed circular DNA molecule. This 

molecule is then transcribed and produces pre-genomic RNA 

(pgRNA) and other subgenomic viral RNAs. HBV polymerase 

(Pol) then recognizes the 5′-ε signal in pgRNA and facilitates 

the encapsidation of pgRNA into a newly formed HBV capsid, 
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wherein pgRNA is reverse transcribed into rcDNA. Mature 

nucleocapsids with HBV rcDNA are then released from the 

cells after being enveloped with HBs proteins or recycled to 

the closed circular DNA reservoir in the nucleus3.

 A variety of viral and host factors contribute to regulating 

HBV replication. The ubiquitin-proteasome pathway of pro-

tein degradation is also involved in modulating the life cycle of 

HBV. Bandi et al.4 have reported that the proteasome inhibitor 

bortezomib (Velcade) dose-dependently inhibits HBV repli-

cation as well as viral RNA and protein expression. However, 

another proteasome inhibitor, MLN-273, has only a minor 

effect on wild-type HBV transgenic mice, but substantially 

enhances HBV replication in HBx-deficient HBV transgenic 

mice5. These findings indicate that the proteasome system 

might play complicated roles in HBV replication. However, 

similarly to other viral proteins, HBV viral proteins interact 

with or otherwise modulate the ubiquitin-proteasome activity, 

thus manipulating the cellular environment to the advantage 

of the virus and/or resulting in physiopathological changes 

in host cells6. The HBV X protein (HBx), well-known for its 

pleiotropic roles in HBV replication and its numerous bind-

ing partners in both the cytoplasm and nucleus7, has been 

shown to interact with several proteasome subunits, includ-

ing PSMA7 and PSMC1, and to inhibit proteasome activation 

or the degradation of ubiquitinated proteins, thus facilitating 

viral persistence8,9.

CUL4B, a member of the Cullin 4 proteins, assembles 

Cullin 4B-Ring E3 ligases (CRL4B), together with DDB1 and 

ROC110. Unlike CUL4A and other Cullin proteins, CUL4B 

mainly localizes to the nucleus, as directed by its unique 

N-terminal nuclear sequence, and mediates either polyubi-

quitination for proteasomal degradation of substrates or H2A 

monoubiquitination for epigenetic regulation11. Loss-of-

function mutations in human CUL4B lead to X-linked men-

tal retardation, and Cul4b knockout is embryonically lethal in 

mice12, thus indicating the important biological roles of the 

Cul4b gene. Accumulating data indicate that CRL4B displays 

pleiotropic functions in both physiologic (e.g., DNA replica-

tion licensing13, cell cycle regulation14, and metabolic home-

ostasis15) and pathologic (carcinogenesis11,16,17 and obesity18) 

milieux. In viral infection, CRL4B is hijacked by viral proteins, 

thus causing polyubiquitination and proteasomal degradation 

of host proteins. For example, HIV Vpr and Vpx bind with 

CRL4B, thus triggering the degradation of the DNA repair 

protein uracil-N-glycosylase 2 (UNG2), the anti-viral pro-

tein SAMHD1, and the human silencing hub complex HUSH, 

which promotes viral replication and HIV pathogenesis19. To 

date, no direct evidence has been reported regarding the role 

of CRL4B in HBV replication. However, crystallographic and 

functional analyses have revealed an interaction of HBx with 

UV-damaged DNA binding protein 1 (DDB1), an evolution-

arily conserved adaptor protein for CUL4-RING E3 ubiquitin 

ligases20 that is required for HBx protein stability21 and has 

biological roles in viral promoter activation and cell cycle 

dysregulation22,23. Moreover, CRL4 is recruited by HBx and 

functions in the ubiquitination and degradation of the struc-

tural maintenance of chromosomes (SMC) complex proteins 

SMC5/6, thus restricting HBV replication by inhibiting HBV 

gene expression24. These findings suggest that CUL4B-RING 

E3 ligase might be involved in HBV replication.

Here, we provide the first reported evidence that CUL4B 

promotes HBV replication in an HBx-dependent  manner. 

Interestingly, CUL4B protects HBx against proteasomal 

 degradation. Moreover, CUL4B expression is positively 

 correlated with the HBV replication level in HBV-positive liver 

tissues. Our findings thus reveal a novel mechanism under-

lying the involvement of CUL4B E3 ubiquitin ligase in HBV 

replication and shed light on a potential therapeutic target for 

HBV elimination.

Materials and methods

Clinical samples

HBV-positive liver tissues from patients with hepatic cav-

ernous hemangioma or distant nontumor normal liver tis-

sues from HBV-positive HCC patients were collected at Qilu 

Hospital and Shandong Provincial Hospital affiliated with 

Shandong University (Shandong, China) between October 30 

2012 and August 31 2015. All patients were negative for HCV 

or HIV, had no history of heavy drinking, and did not receive 

any therapy before surgery. Informed consent was obtained 

from all patients before the study was performed, with the 

approval of Shandong University Medical Ethics Committee 

in accordance with the Declaration of Helsinki (approval No. 

2011023). All tissues were stored at −80 °C for analysis of HBV 

pgRNA levels and CUL4B expression.

Plasmids and cell lines

pcDNA3-HBV1.1, carrying 110% of HBV genotype C, 

 pcDNA3-HBx-HA, and pcDNA3-Pol, containing C-terminal 
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HA-tagged HBx and a polymerase gene fragment, were as 

described previously25. HBx-null HBV plasmids (ΔHBx) 

with a stop codon at position 7 of the HBx open reading 

frame, and polymerase-null HBV plasmids (ΔPol) with a 

frame-shift mutation involving deletion of the T nucleotide 

of the second ATG, and a point mutation of the first ATG to 

ACG in the polymerase open reading frame, which did not 

alter the encoded amino acid, were constructed with a PCR-

based specific mutagenesis kit (TOYOBO, Shanghai, China). 

The human HCC cell lines HepG2 and SMMC7721, human 

embryonic kidney 293 (HEK293) cells, and the human cer-

vical cancer cell line HeLa were purchased from the Shanghai 

Cell Collection (Chinese Academy of Sciences). These cells 

were maintained in DMEM (Gibco, Invitrogen) containing 

10% fetal bovine serum, 100 units/mL penicillin, and 100 

µg/mL streptomycin (Invitrogen, Beijing, China). Cells were 

grown under 5% CO2 at 37 °C. HEK293 or HeLa cell lines 

stably infected with CUL4B shRNA lentivirus were generated 

as described previously13. Transfections were performed with 

Lipofectamine 2000 (Invitrogen) according to the manufac-

turer’s instructions.

Mice and hydrodynamic injection model

HBV complete genome (ayw subtype) transgenic Balb/c mice 

expressing high levels of HBV antigens and HBV DNA were 

purchased from the Transgenic Animal Central Laboratory 

(458 Hospital, Guang Zhou, China). The Cul4b transgenic CD1 

mice were generated with the pEGFP-CUL4B construct. The 

Cul4b floxed mice were produced as described previously11. 

To generate mice with inducible Cul4b deletion, we crossed 

Cul4b-floxed mice with Mx1-Cre or Alb-Cre transgenic mice 

(The Jackson Laboratory)26. In the Mx1-Cre; Cul4bflox/y mice, 

the ablation of Cul4b was achieved through 6 injections of 

poly(I:C) i.p. at 48 h intervals.

Six- to seven-week-old male Cul4b transgenic mice, Mx1-

Cre; Cul4bflox/y mice, Alb-Cre; Cul4bflox/y mice or the corre-

sponding control mice were hydrodynamically injected with 

pcDNA3-HBV1.127. In brief, 50 µg of pcDNA3-HBV1.1 in 

phosphate-buffered saline (PBS) was intravenously injected 

into the anesthetized mice at a volume equivalent to 8% of the 

body weight within 5–8 s. Twenty-four hours later, the liver 

tissues were collected, and HBV pgRNA levels were examined.

All mice were housed in the Department of Genetics, 

Shandong University under pathogen-free conditions. All ani-

mal procedures were in compliance with national regulations 

and approved by the Animal Use Committee, Shandong 

University School of Medicine (approval No. 2011008).

Immunoprecipitation

HEK293 cells that had been transfected with pcDNA3-HBx-HA 

for 48 h were washed with cold PBS; lysed with lysis buffer 

containing 1% NP-40, 50 mM Tris-HCl pH 7.4, 50 mM EDTA, 

150 mM NaCl and a protease inhibitor cocktail for 30 min 

at 4 °C; and then centrifugated for 20 min at 12,000 g. The 

supernatants were collected and incubated with 2 µg of anti-

CUL4B, anti-HA or normal rabbit/mouse immunoglobulin 

G (IgG) at 4 °C overnight. Protein A/G agarose beads (Santa 

Cruz Biotechnology) were added to the mixture and incubated 

for 6 h, then washed 6 times with cold PBS. The beads were 

eluted with 1% SDS, boiled 5 min, and subjected to SDS-PAGE 

followed by immunoblotting with specific primary and cor-

responding secondary antibodies. The immunodetection was 

performed with ECL.

In vivo ubiquitination assays

HEK293 cells were cotransfected with HA-tagged HBx and 

CUL4B siRNA or negative control siRNA. Forty-eight hours 

later, cells were treated with MG132 for 6 h. The cell lysates were 

immunoprecipitated with anti-HA antibody and then subjected 

to Western blot with antibodies specific to Ub and HA.

Statistical analysis

Data are reported as mean values ± SEM. Cell experiments 

were performed in triplicate, and a minimum of 3 independ-

ent experiments were evaluated. GraphPad Prism (GraphPad 

Software, San Diego, CA, USA) was used for data analysis. 

The statistical significance of differences between groups was 

determined with Student’s t test. Spearman correlation analy-

sis was performed between CUL4B expression and HBV rep-

lication markers. P values < 0.05 were considered significant.

Results

CUL4B promotes HBV replication both in vivo 
and in vitro

To understand the role of CUL4B in regulating HBV repli-

cation, we generated hydrodynamic-based HBV infection 
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models in both Cul4b transgenic mice (Supplementary Figure 

S1A) and Cul4b conditional knockout mice (Supplementary 

Figure S1B). After hydrodynamic tail-vein injection of pcD-

NA3-HBV1.1, Cul4b transgenic mice displayed higher HBV 

pgRNA (P < 0.01) and serum HBsAg (P < 0.001) and HBeAg 

(P < 0.05) levels than those in wild type mice (Figure 1A). 

Accordingly, Mx1-Cre; Cul4bflox/Y mice treated with poly-

inosinic-polycytidylic acid to induce ablated CUL4B expres-

sion in the liver (Supplementary Figure S1B) had lower lev-

els of pgRNA (P < 0.01) and serum HBV antigen (P < 0.01) 

than wild type mice (Figure 1B). In line with these findings, 

lower serum HBV DNA levels were also observed in Alb-Cre; 

Cul4bflox/Y mice than in wild type mice (Figure 1C) (P < 0.01). 

These data revealed that CUL4B promotes HBV replication in 

vivo.

To further validate CUL4B-mediated promotion of HBV 

replication, we next performed overexpression and loss-of 

function experiments in HCC cell lines. CUL4B overexpres-

sion, as compared with the control, significantly upregulated 

the levels of HBV pgRNA (P < 0.01) and secreted HBV antigens 

(P < 0.01) in HepG2 cells (Supplementary Figure S2A, Figure 

1D). Accordingly, CUL4B overexpression significantly upreg-

ulated the levels of HBV DNA (P < 0.01) and secreted HBV 

antigens (P < 0.0001) in Huh7 cells (Figure 1E). In contrast, 

a specific miRNA construct against CUL4B in HepG2 cells 

led to markedly decreased levels of HBV replication markers 

(Supplementary Figure S2B, Figure 1F) (P < 0.01). Similar 

results were further verified in BEL7402 and HepG2.2.15 

cells (Supplementary Figure S3). Collectively, our in vivo 

and in vitro data clearly showed that CUL4B increases HBV 

replication.

HBx is responsible for optimal CUL4B-
promoted HBV replication

To explore the mechanisms through which CUL4B promotes 

HBV replication, we first investigated whether HBV viral pro-

teins might be involved in this regulatory process. For this pur-

pose, HBx-null or Pol-null HBV plasmids were cotransfected 

with CUL4B expression vector into HepG2 cells, and the effects 

of CUL4B on the replication of these different HBV replicons 

were analyzed. As expected, HBx-null or Pol-null HBV plas-

mids resulted in a marked decrease in virus replication, which 

was restored to wild type levels by the corresponding HBx 

or polymerase expression plasmids (Figure 2A) (P < 0.01). 

Interestingly, although CUL4B upregulated wild type and 

Pol-null HBV replication to similar levels (Figure 2B and 2C), 

this regulatory effect significantly decreased for the HBx-null 

HBV replication, thus resulting in comparable levels of pgRNA 

and secreted HBV antigens to those in control cells; in con-

trast, the ectopic HBx expression plasmid rescued the CUL4B-

mediated promotion of HBx-null HBV replication (Figure 2D 

and 2E) (P < 0.01). Together, these results suggest that HBx is 

required for CUL4B-mediated regulation of HBV replication.

HBx is physically associated with CUL4B-
RING E3 ligase

DDB1 has been found to be essential to the role of HBx in HBV 

replication, through interaction with HBx21. Interestingly, 

DDB1 functions as an evolutionarily conserved adaptor pro-

tein for CUL4-RING E3 ubiquitin ligases20. Thus, we hypoth-

esized that HBx might be physically associated with CUL4B-

RING E3 ligase. To address this possibility, we subjected total 

proteins from HEK293 cells transfected with HA-tagged HBx 

to coimmunoprecipitation experiments. CUL4B efficiently 

coimmunoprecipitated with HBx as well as DDB1 and ROC1 

(Figure 3A), and vice versa (Figure 3B). To provide further 

support for the association between CUL4B and HBx, we sub-

jected HepG2 cells transfected with HA-tagged HBx expres-

sion plasmid to fixing and staining with antibodies recogniz-

ing CUL4B and HA tag. As shown in Figure 3C, the signals 

representing CUL4B were predominantly distributed in the 

nuclei in HepG2 cells and colocalized with the HBx signal. We 

also observed colocalization of CUL4B and HBx in human 

liver tissues (Supplementary Figure S4). Collectively, these 

results support the physical association of HBx with CUL4B-

RING E3 ligase.

CUL4B promotes the accumulation of HBx 
protein

To further explore the functional connection between 

CUL4B and HBx, we next investigated the potential regu-

lation of CUL4B in HBx expression. HA-tagged HBx and 

CUL4B expression plasmid or empty vector were cotrans-

fected into HEK293 cells. Although CUL4B showed no 

detectable effect on HBx mRNA levels, the protein level of 

HBx was dramatically upregulated in HEK293 cells with 

CUL4B overexpression (Figure 4A and Supplementary 

Figure S5A). In contrast, CUL4B knockdown significantly 

decreased HBx protein (Figure 4B, Supplementary Figure 
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Figure 1 CUL4B enhances HBV replication both in vivo and in vitro. (A) pcDNA3-HBV1.1 plasmid was hydrodynamically injected into CUL4B 
Tg mice or WT control mice. Twenty-four hours later, the mice were sacrificed, and the serum or liver tissues were used for monitoring of HBV 
replication. The pgRNA levels (left panel) in liver tissues were detected by qPCR. Serum HBV antigen levels (right panel) were detected by 
ELISA. (B) Mx1-Cre; CUL4Bflox/Y mice (CUL4BΔ/Y) or Mx1-Cre; CUL4B+/Y mice (WT) were peritoneally injected with PIPC (300 µg per mouse) at 48 
h intervals for 6 times. Five days after the last PIPC injection, pcDNA3-HBV1.1 plasmid was hydrodynamically injected into CUL4BΔ/Y mice or 
control mice. Twenty-four hours later, the mice were sacrificed, and the pgRNA (left panel) in the liver (middle panel) and the HBsAg/HBeAg 
level in the serum (right panel) were detected. (C) Alb-Cre; CUL4Bflox/Y mice (CUL4BΔ/Y) or Alb-Cre; CUL4B+/Y mice (WT) were hydrodynamically 
injected with pcDNA3-HBV1.1 plasmid. Twenty-four hours later, the mice were sacrificed, and HBV DNA in liver tissues was detected by qPCR. 
(D) pcDNA3-HBV1.1 plus Flag-CUL4B or Flag-empty were transfected into HepG2 cells; 48 h later, the pgRNA levels (left panel) in HepG2 cells 
were detected by qPCR. HBV antigen levels in cell supernatants (right panel) were detected by ELISA. (E) pcDNA3-HBV1.1 plus Flag-CUL4B or 
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S5B). Moreover, similar results were found in 3 HCC cell 

lines, HepG2 (Figure 4C and Supplementary Figure S5C), 

SMMC7721 (Figure 4D and Supplementary Figure S5D), 

and HepG2.2.15 (Supplementary Figure S5E), thus validat-

ing that CUL4B promotes the accumulation of HBx protein. 

To further confirm this effect of CUL4B on HBx, we tran-

siently transfected different doses of Flag-tagged, full-length 

RNAi-insensitive CUL4B expression vector into CUL4B-

miRNA stably transfected HeLa cells. As shown in Figure 

4E, the decreased HBx protein in CUL4B knockdown cells 

was rescued by the RNAi-resistant CUL4B expression vector 

in a dose-dependent manner (P < 0.05). These results sup-

ported the argument that CUL4B maintains HBx protein 

expression.

To test the possibility that CUL4B might regulate HBx 

 degradation, we measured the half-life of HBx protein. HEK293 

cells stably expressing Neg-miRNA or CUL4B-miRNA were 

transfected with HBx and treated with cycloheximide (CHX) 

for the indicated intervals. Silencing of CUL4B resulted in 

a significant decrease in the half-life of HBx (Figure 4F) 

(P < 0.00001), thus further supporting that CUL4B promotes 

the accumulation of HBx.

Flag-empty were transfected into Huh7 cells; 48 h later, HBV DNA levels (left panel) in Huh7 cells were detected by qPCR. HBV antigen levels 
in cell supernatants (right panel) were detected by ELISA. (F) pcDNA3-HBV1.1 plus CUL4B-miRNA or Neg-miRNA was transfected into HepG2 
cells; 48 h later, pgRNA levels (left panel) in HepG2 cells were detected by qPCR. HBV antigen levels in cell supernatants (right panel) were 
detected by ELISA. The data in panels A–C are the mean ± SEM, with each sample value from an individual mouse. The data in panels D and 
E are the mean ± SD of 3 independent experiments, and Student’s t-test was performed (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Figure 2 HBx is required for CUL4B-mediated enhancement of HBV replication. (A) pcDNA3-HBV1.1, pcDNA3-HBV1.1(ΔHBx), pcD-
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pendent experiments, and Student’s t-test was performed (*P < 0.05; **P < 0.01; ***P < 0.001).
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CUL4B inhibits the ubiquitination 
and proteasomal degradation of HBx

HBx is a protein with rapid turnover, which is finely regu-

lated by proteasome-mediated degradation through ubiquit-

ination8. We therefore sought to determine whether CUL4B 

might affect the ubiquitination and proteasomal degradation 

of HBx. To test this possibility, we transfected CUL4B knock-

down or control HepG2 cells, with HA-tagged HBx expression 

vector, then treated them with MG132, an inhibitor of the 

26S proteasome. Although CUL4B knockdown led to a severe 

decrease in HBx protein in the DMSO-treated group, MG132 

treatment substantially mitigated this inhibitory effect (Figure 

5A and Supplementary Figure S6). Similar results were 

obtained in HEK293 cells (Figure 5B and Supplementary 

Figure S6). These data support that CUL4B regulates HBx 

expression in a proteasomal-degradation dependent manner.

We next investigated whether CUL4B might also affect 

HBx ubiquitination. HEK293 cells were transfected with a 

HA-tagged HBx expression construct together with a con-

struct for CUL4B knockdown. The cell lysates were immu-

noprecipitated with anti-HA antibody and immunoblotted 

with anti-Ub antibody to detect ubiquitinated HBx proteins. 

As shown in Figure 5C, HBx ubiquitination was significantly 

higher in cells with CUL4B knockdown (Figure 5C, lane 3) 

than in control cells. Collectively, these results further sup-

ported our hypothesis that CUL4B protects HBx expression 

from ubiquitination and proteasomal degradation.

CUL4B expression is positively correlated with 
HBV replication in human and mouse livers

To further demonstrate CUL4B regulation of HBV replication, 

we analyzed the relationship between CUL4B expression and 

HBV pgRNA level in liver tissues from patients with chronic 

HBV and from HBV transgenic mice. CUL4B mRNA in HBV-

positive human liver tissues positively correlated with pgRNA 

levels (Figure 6A) (P < 0.01). Moreover, a positive correlation 

between CUL4B mRNA and HBV pgRNA levels was found in 

liver tissues from HBV transgenic mice (Figure 6B) (P < 0.01). 

Collectively, these data further suggested that CUL4B is indeed 

involved in regulating HBV replication.

Discussion

A wide array of viral and host factors contribute to the regu-

lation of HBV replication. Exploration of the novel regulatory 

mechanisms and development of the potential therapeutic 
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targets for HBV-related diseases are urgently needed. In this 

report, we first identified the effect of CUL4B E3 ligase on 

HBV replication and found that suppression of CUL4B had 

potent antiviral effects. Chronic HBV infection is a high-

risk factor for human HCC28. Thus, CUL4B’s promotion of 

HBV replication might also be involved in the development 
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of HBV-associated HCC. Indeed, our previous study has 

shown that CUL4B also promotes the malignancy of HCC by 

upregulating Wnt/β-catenin signaling29. In mice, overexpres-

sion of CUL4B strongly promotes spontaneous and DEN-

induced hepatocarcinogenesis30. Thus, inhibition of CUL4B 

might be a potential therapeutic strategy for HCC treatment 

by effectively suppressing both HBV replication and HCC 

malignancy.

CUL4B has recently been reported to have an interchange-

able role with that of CUL4A in HIV-induced cell cycle arrest 

and depletion of the anti-viral protein SAMHD119. Although 

several studies have revealed that DDB1, the only known 
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adaptor for CUL4 E3 ubiquitin ligases20, is required for max-

imal HBV replication through association with HBx, little is 

known about the exact role of the scaffold protein CUL4B in 

this process. In this work, results from both Cul4b transgenic 

or conditional knockout mice and HBV-infected cell lines 

verified that CUL4B promotes HBV replication. Moreover, 

we demonstrated the potential correlation between CUL4B 

expression and pgRNA levels in liver tissues from HBV-positive 

patients and HBV transgenic mouse liver tissues. These find-

ings extend understanding of the relationship between CRL4B 

and HBV. In addition, although CUL4B and CUL4A share sev-

eral functional similarities in certain biological milieux (e.g., 

HIV infection), owing to their 80% amino acid sequence iden-

tity10, the differences in the N-terminal protein sequences and 

subcellular distribution confer functional specificity. Whether 

CUL4A and CUL4B play redundant or complementary roles 

in HBV regulation is worthy of further study.

HBx, a regulatory viral protein, is well conserved among 

mammalian hepadnaviruses, thus suggesting an important 

biological function. Several studies have found that HBx pro-

tein is essential for the viral replication process31,32, mainly 

through promoting viral gene expression33. Here, we validated 

that HBx, but not polymerase, is indispensable for CUL4B 

regulation of HBV replication. CUL4B had no clear effects 

on HBx-null HBV replication. Immunoprecipitation assays 

and immunofluorescence staining further indicated the inter-

action of CUL4B with HBx. Given that DDB1 is a conserved 

binding partner of HBx20, CUL4B-RING ligase together with 

HBx might plausibly form a functional complex, and the 

integrity of this complex may be important for the efficient 

replication of HBV.

An important question is what biological functions are exe-

cuted by the CRL4B ligase and HBx complex. We first analyzed 

the effect of CUL4B on HBx and found that CUL4B upregu-

lates HBx protein expression by protecting it from uniquitina-

tion and proteasomal degradation. These results suggest that 

CUL4B determines the accumulation of HBx, thereby facilitat-

ing maximal HBV replication31-33. Nevertheless, the detailed 

mechanisms underlying how CUL4B inhibits HBx ubiquitina-

tion and proteasomal degradation remain to be determined. 

Several molecules have been reported to control or regulate 

the degradation of HBx. Siah-1 is one known E3 ligase that 

directly mediates HBx poly-ubiquitination and proteasomal 

degradation34. In addition, both Hdj1, a human Hsp40/DnaJ 

chaperone protein, and Id-1, a member of the HLH protein 

family, have been found to facilitate the proteasomal degra-

dation of HBx35,36. Whether CUL4B E3 ligase disrupts HBx 

ubiquitination by competing for HBx binding or by modulat-

ing the function of these regulatory molecules must be studied 

further.

Conclusions

In summary, our study revealed that CUL4B enhances HBV 

replication by interacting with HBx and disrupting its ubiq-

uitin-dependent proteasomal degradation, thus providing a 

molecular basis for the interplay between HBV and the host 

ubiquitin-proteasome system (Figure 7). Our data indicate 

that CUL4B stimulates HBV replication, thus supporting the 

potential of CUL4B as a target in anti-viral therapy.
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