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Summary

Here, we propose to develop microbiome-based
machine learning models to predict the response of
biological wastewater treatment systems to environ-
mental or operational disturbances or to design
specific microbiomes to achieve a desired system
function. These machine learning models can be
used to enhance the stability of microbiome-based
biological systems and warn against the failure of
these systems.

Microbiomes play the key role in biological wastewater
treatment processes such as activated sludge, anaerobic
digestion and bioelectrochemical systems. The perfor-
mance and stability of these processes are highly
depending on the activity and stability of the microbial
community in the microbiome. However, the complexity
of the microbiome (i.e., types of microbes, the function of
each microbe and the interactions among different
microbes) makes it difficult to precisely control these
wastewater treatment processes and hard to predict the
performance of them. Consequently, frequent mainte-
nance is required to these processes, which in return
results in low efficiency, high energy input and poor per-
formance of the systems. Thus, successfully managing
the microbiomes in order to improve their stability and
activity in these biological wastewater treatment

processes can lead to higher efficiency, lower energy
input and more products.
Currently, there are three different approaches to man-

age microbiomes, namely retrospective management,
prospective management and proactive management
(Carballa, et al., 2015). Retrospective microbiome man-
agement simply recorded system performance changes
(success or failure) first and then explain the changes by
microbiomes shift. Retrospective management is effec-
tive, but the conclusions might be unreliable for the fol-
lowing reasons: (i) the performance fluctuation may be
caused by several simultaneous disturbances; (ii) the
limitations of understanding the highly complex relation-
ship between system performance and microbiomes; (iii)
the lack of comprehensive monitoring all parameters of
system dynamics. Prospective management designs a
perturbation experiment with detailed monitoring each
operated parameter and performance indicator, and
then, the relationship between microbial community
structures and the system functional changes could be
established. In this type of management, one waits for
process failure and then finds a solution to remediate it.
On the contrary, proactive management focuses on iden-
tifying and assessing all potential disturbances and
developing strategies to prevent process failure. Thus,
proactive microbiome management has a great potential
for preventing process failure (Stenuit and Agathos,
2015). This kind of microbiome management needs early
responded microbial indicators (i.e., some microbial com-
munities changed before macroscopic performance
reacted to disturbances) to provide early guidance for
instability warning and guaranteeing system function.
The biggest problem for developing this kind of micro-
biome management is the huge experimental works
needed for routine microbiomes analysis and system
performance monitoring. Even though it is possible to
convert DNA sequencing data to meaningful microbial
patterns and microbial related datasets, we could only
obtain limited information about the relationship between
microbiomes dynamics and system function robustness
from experiments. More importantly, proactive microbial
management from experiments is based on the hypothe-
ses that early responded microbial indicators have been
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set down. All mentioned above hinder the development
of proactive microbiome management to maintain the
system performance stability, strategies need to be
adopted to proactively manage microbiome dynamics to
prevent process failure.
Thanks to the rapid development of microbiome diag-

nostics (Koch, et al., 2014), analysis of reactor micro-
biomes become more and more feasible, and large
amount of microbial information data could be obtained.
Models could be developed to warn and prevent system
function failure with the microbial information. However,
exploring models to predict system’s functions via incor-
porating the dynamics of microbial communities is still in
its infancy. The universal stochastic/metabolic models
are not feasible for obtaining temporal and spatial
dynamics of microbial communities (Bucci and Xavier,
2014). The dynamic (the presence, absence and
changes in abundance) of early responded microbes
and the specific functional microbes could be used as
indicators of process fluctuation caused by environmen-
tal stress. If the complex, multivariate and non-linear
relations between the dynamics of microbiomes and sys-
tem performance could be elucidated, people could pre-
dict system performance based on the microbial
indicators and thereby preventing system from failure.
Machine learning has the potential to identify these more
complex relationships through analysis of large datasets
(Jiang and Hu, 2016). Moreover, machine learning mod-
els could also carry out high-throughput modelling from
massive microbial datasets for mining hidden information
that could not be obtained via statistical methods. Sev-
eral supervised machine learning algorithms have been
adopted to predict feed substrates in microbial fuel cells
by incorporating genomic data and thus increasing
chemical detection specificity (Cai, et al., 2019). Besides,
machine learning algorithms have also been used in
anaerobic digestion process to identify determining oper-
ation parameters for biogas production (Wang, et al.,
2020). More interestingly, artificial neural network, a kind
of machine learning approach, has been applied in
microbial fuel cells to predict microbiome response and
reactor performance over a wide range of conditions
(Lesnik and Liu, 2017).
Machine learning also has the potential to be a tool for

proactive microbiome management since it could predict
the system performance fluctuation caused by environ-
mental stress using microbiome dynamics and operation
parameters as input datasets. And it could also be used
to identify the early responded microbial indicators by
extracting the relative coefficient between microbiomes
and performance fluctuation. Algorithms have been
developed to directly predict system function from given
microbiome structures, for example inferring reactor per-
formance from pH disturbance (Lesnik, et al., 2020). This

prediction was based on microbiome structure at a
stable state after the disturbing, while microbiomes
dynamics also play important role in system function sta-
bility, especially the early responded microbial indicators
dynamics. Machine learning could also be used to
design microbiomes to achieve a certain desired system
function in reverse. This will make it possible to design
microbiome diversity, relative abundance and the inter-
actions needed to fulfil the promise of specific engineer-
ing goals (Lawson, et al., 2019).
Selection of suitable algorithms for performance predic-

tion or specific microbiomes design is very important.
Recursive neural networks (RNN) and convolutional neu-
ral networks (CNN) have shown great ability in modelling
and forecasting non-linear and non-stationary time series
(Mishra and Desai, 2006; Ince, et al., 2016). This kind of
algorithms can be used to connect microbiome dynamics
with performance changes, which is beneficial to warn
reactor performance fluctuation from early responded
microbial indicators to set edge cases to define the normal
scope of operation. They could also identify the most sen-
sitive parameters and unknown microbial indicators in
reverse. Experimental exploration could be used to verify
new hypotheses derived from machine learning models
under designed operation conditions. Random forest (RF),
support vector machine (SVM), partial least-squares
(PLS), neural networks (NNET), XGBOOST, etc. have
always been used in biological wastewater treatments and
are beneficial for some classification and regression prob-
lems (Cai, et al., 2019; Lesnik, et al., 2020). When these
algorithms are being incorporating with microbiomes data
in biological wastewater treatments, and the maximum
accuracy of system function prediction reached to 93%,
while the predictability of some algorithms was lower than
50% (Lesnik and Liu, 2017; Cai, et al., 2019; Lesnik, et al.,
2020). The predictability of machine learning algorithms
mentioned above is highly dependent on the size of data-
sets. Alternatively, rapid development of deep learning
neural network (DLNN) has great potential to effectively
and flexibly mine highly varying non-linear functions based
on multiple non-linear hidden layers, such as the deep
belief networks (DBN) and stacked auto-encoders (SAE)
networks (Lu, et al., 2015). The SAE network algorithm
contains unsupervised pre-training phase and the super-
vised fine-tuning phase to maximizing prediction accuracy.
Especially, stacked denoising auto-encoders (SDAE)
deep learning network derived from SAE network could
get deep feature and accurate predictive results from lim-
ited experimental datasets containing microbiome infor-
mation due to its anti-interference ability and feature
extraction ability (Vincent, et al., 2008).
Dataset is another core component in the predictability

of machine learning models. The success of machine
learning prediction is dependent on the quality of the
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datasets. In biological wastewater treatment process,
microbiomes’ metabolisms could be affected by many
factors, such as react configurations, operation and envi-
ronmental conditions. Even though many abiotic and bio-
tic measurement sets are applied, large datasets are
often not available for a specific system function goal.
For example, pH, temperature, substrate loading and
inoculum all could affect the microbiome dynamics, but
only one experimental variable can be studied at a time
to verify relations between system function and micro-
biome. Besides, the impact of some parameters on the
function stability may be not the determining factors. RF
variable importance measures could be used to deter-
mine the impact of each variable of datasets as well as
the multivariate interactions with other variables (Cai,
et al., 2019). For microbiomes datasets, the presence or
absence of the specific functional microbes, the micro-
biomes interactions and the microbiome dynamics have
different impact on different system functional require-
ments. Functional microbes are indispensable for achiev-
ing specific functional stability under specific operation
conditions. For example, in anaerobic digestion process,
the presence of Clostridia class could be beneficial for
degrading both protein and cellulose (Carballa, et al.,
2015), while the presence of Syntrophomonas and Syn-
ergistetes might be a sign of good acetogenic and ace-
totrophic performance (Nelson, et al., 2011; Regueiro,
et al., 2014). In bioelectrochemical systems, Geobacter
and Shewanella are the most commonly identified exo-
electrogens for current production, while methanogens
result in electron sink at the anode (Borole, et al., 2011;
Logan, et al., 2019). In aerobic denitrification process,
Hyphomicrobium and Methylotenera represent obligate
aerobes for utilizing both O2 and NO3

- or NO2
- as termi-

nal electron acceptors, while Pseudomonas prefers
using NO3

- than O2 in aerobic denitrifier (Zhu, et al.,
2016). However, datasets only containing these func-
tional microbes are not enough for a successful machine
learning model for microbiome-based biotechnologies.
Microbial interactions could also be used as machine
learning input datasets to predict functional performance
fluctuation caused by environmental or process distur-
bances. Similarity-based network inference or regres-
sion- and rule-based networks (Faust and Raes, 2012;
Stenuit and Agathos, 2015) have been built to visualized
microbiome interactions under the same operation condi-
tions or different conditions and then being converted to
numerical data, such as relative coefficient as machine
learning input datasets. Most importantly, the microbiome
dynamics over time is crucial for maintaining system
functional stability and robustness. It could be adjusted
according to the operational or environmental distur-
bance, providing system with access to functional speci-
ficity and flexibility. It is significantly important to indicate

system performance fluctuations under disturbances
from cross-sectional at one time point to time series
based on microbiome dynamics. Microbiome dynamics,
especial early responded microbial indicators dynamics,
being combined with operation conditions could be used
as input datasets for warning against performance fail-
ure. For specific functional microbiomes design, relative
coefficient extracted from interactions between system
function and microbiomes and desired system perfor-
mance indicators could be used as input datasets to pre-
dict microbiome compositions.
In summary, achieving microbiome management using

machine learning models will have an important impact
in biological wastewater treatment development, by
shortening experimental research period and minimizing
experimental work. Suitable machine learning models
with specific input datasets (incorporating the information
of microbiomes along with environmental conditions and
operation parameters) provide a new approach for better
managing microbiomes and eventually promote biologi-
cal wastewater treatment operation. Model accuracy
could be further improved with new experimental results.
Therefore, combining experimental study with machine
learning will be more efficient and effective on enhancing
the performance of biological wastewater treatment sys-
tems.
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