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Abstract: Dental implants are among the most common treatments for missing teeth. The thickness
of the crestal cortical bone at the potential dental implant site is a critical factor affecting the success
rate of dental implant surgery. However, previous studies have predominantly focused on female
patients, who are at a high risk of osteoporosis, for the discussion of bone quality and quantity
at the dental implant site. This study aimed to investigate the effect of male patients’ age on the
crestal cortical bone of the jaw at the dental implant site by using dental cone-beam computed
tomography (CBCT). This study performed dental CBCT on 84 male patients of various ages to
obtain tomograms of 288 dental implant sites at the jawbone (41 sites in the anterior maxilla, 95 in
the posterior maxilla, 59 in the anterior mandible, and 93 in the posterior mandible) for measuring
the cortical bone thickness. A one-way analysis of variance and Scheffe’s test were performed on the
measurement results to compare the cortical bone thickness at implant sites in the four jaw areas.
The correlation between male patient age and cortical bone thickness at the dental implant site was
determined. The four jaw areas in order of the cortical bone thickness were as follows: posterior
mandible (1.07 ± 0.44 mm), anterior mandible (0.99 ± 0.30 mm), anterior maxilla (0.82 ± 0.32 mm),
and posterior maxilla (0.71 ± 0.27 mm). Apart from dental implant sites in the anterior and posterior
mandibles, no significant correlation was observed between male patients’ age and the cortical bone
thickness at the dental implant site.

Keywords: male; dental implant; dental cone-beam computed tomography; cortical bone thickness

1. Introduction

Dental implants are a popular treatment option for the replacement of missing teeth [1–6].
Titanium, due to its high biocompatibility, facilitates osseointegration between the dental
implant and the jawbone, aiding in the fixation of the implant to the alveolar bone [1,7,8].
Jawbone quality and quantity can influence dental implant osseointegration ability and
the failure rate of dental implant surgery [4,7–10]. The jawbone is constituted by porous
cancellous bone on the inner side and by dense cortical bone on the outer side [5,6]. The
literature has revealed a high correlation between the thickness of the cortical bone and the
initial stability of dental implants; a high level of initial implant stability is conducive to
osseointegration between the cancellous bone and implants [3,4,7,9].

Studies have uncovered a significant correlation between age and bone loss. According
to the World Health Organization, “osteoporosis is present when the bone mass is more
than 2.5 standard deviations (SD) below that of healthy premenopausal adult females,
the T-score” [11]. Osteoporosis is categorized into two major types: primary osteoporosis
and secondary osteoporosis [11–15]. Primary osteoporosis can be further categorized into
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two types: menopausal women experience rapid decline in the bone mass density due to
estrogen reduction in Type I, and Type II is senile osteoporosis, which commonly occurs in
people 60 years or older [11,14]. With age, vitamin D synthesis and calcium ion absorption
into the gastrointestinal tract decrease, which can result in the development of secondary
hyperparathyroidism, increase osteoclast activity, and accelerate bone loss [5,12–14].

Clinically, osteoporosis often leads to fractures in the hip bone and lumbar vertebrae.
Iwasaki et al., 2012 [16] observed that osteoporosis increases the possibility of alveolar
bone loss and tooth loss. Borrud et al., 2012 [13] found that women are four to six times
more likely to develop osteoporosis than men. Studies have predominantly focused
osteoporosis development in women. Men typically start to develop bone fractures in the
hip, wrist, and lumbar vertebrae approximately 10 years later than women do. However,
various researchers, including Alswat, 2017 [12], have shown that men are more prone to
complications of osteoporosis. The mortality of men (37%) within 1 year of bone fractures
was found to be 1.5 times higher than that of women [14]. The problem of missing teeth in
older people has received increasing research attention, for which dental implant surgery is
the common treatment. However, the survival rate of dental implants can be undermined
if bone quality is low. Osteoporosis attributable to aging mainly involves reduced density
of the cancellous bone. Nevertheless, few studies have explored the relationship between
osteoporosis and the cortical bone [6], particularly cortical bone thickness in the jawbone.

The cortical bone of the jaw is among the most critical factors influencing the initial
stability of dental implants [2–4,7–9,17]. The cortical bone of the jaw is thinner than that of
all other body parts (e.g., cortical femur and tibia). Therefore, computed tomography (CT),
which has low resolution, may fail to accurately determine the cortical bone thickness of
the jaw due to the partial volume effect. By contrast, dental cone beam CT (dental CBCT)
has a lower radiation dose and higher resolution, which contribute to its ability to more
accurately measure the cortical bone thickness of the jaw and thus to its increasing adoption
by dentists over the past few years.

Various studies investigating the relationship between age and bone quality in men
have shown that aging can cause decreases in the bone density of the entire body. For
men aged between 60 and 90 years, Chen et al., 2013 [18] revealed that, annually, the
thickness of the cortical femur decreased by 3–5%, and cortical porosity increased by
31–33%. The survival rate of dental implants is affected by the strength of the jawbone at
the sites of dental implants [19–22]. Additionally, the cortical bone of the jaw contributes
greatly to the initial stability of implants. Several studies have discussed the effect of
cortical bone thickness at the sites of dental implants on the efficacy of dental implant
surgery in patients with missing teeth [5,6,23,24]. In our previous study, we revealed the
effect of perimenopause on the cortical bone thickness at the sites of dental implants [24].
However, few studies have examined how age affects the quality of the jawbone or cortical
bone thickness in men. Furthermore, due to the different movement patterns of and
different forces applied to the mandible and maxilla, we inferred that the cortical bone
thickness in the two parts of the jaw also decrease through different mechanisms. This
study investigated the effect of age on the cortical bone thickness at the sites of dental
implants in male patients by using dental CBCT.

2. Materials and Methods
2.1. Patient Selection and Cone-Beam Computed Tomography (CBCT) Scanning

In this study, 288 dental CBCT images of planned dental implant sites were collected
from 84 male patients (average age: 50.5 ± 17.9 years) at the Dentistry Division of China
Medical University Hospital between 2013 and 2016. The missing teeth were categorized
according to their locations by four regions: 41 missing teeth were located in the anterior
maxilla region, 95 in the posterior maxilla region, 59 in the anterior mandible region, and
93 in the posterior mandible region. The dental CBCT (AZ 3000, Asahi Roentgen, Japan)
imaging parameters were set at 85 kV, 3 mA, and spatial resolution of 155 µm. This study
was approved by the Institutional Review Board of China Medical University Hospital.
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All the patients were carefully evaluated by a dentist and judged to be suitable candidates
for dental implants. The study is retrospective; most of the patients underwent dental
CBCT scanning 4–6 months after tooth extraction. After scanning, they received dental
implant placement.

2.2. Measurement Approach of Cortical Bone Thickness at Dental Implant Sites

The dental CBCT images were imported into the Digital Imaging and Communications
in Medicine medical image software of Mimics 15.0 (Materialise, Leuven, Belgium). The
images were resliced using the online reslice function in accordance with the shape of the
dental arches to obtain the cross-sectional images of the dental arches. The gutta-percha
indicators representing the best location for the implants can be used to obtain the position
information of dental implant on the CBCT images. Crestal cortical bone thickness, which
was made visible by radiopaque gutta-percha indicators, was then measured in the images
(Figure 1).
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Figure 1. Measurement of cortical bone thickness at dental implant site.

2.3. Statistical Analysis

The cortical bone thickness measurement results are expressed as mean and standard
deviation (SD; mean ± SD). (1) To examine whether the cortical bone thickness differed
across jawbone regions (i.e., anterior maxilla, anterior mandible, posterior maxilla, and
posterior mandible), one-way analysis of variance (ANOVA) was conducted, and Scheffe’s
test was used for post hoc testing. (2) The Pearson correlation coefficient was employed to
determine the correlation between age and the cortical bone thickness in male patients. All
statistical analyses were performed using SPSS (IBM Corporation, Armonk, NY, USA).

3. Results

In this study, the thickness of the occlusal cortical bone at the planned dental implant
sites was measured for 84 male patients; 288 measurements were obtained and are pre-
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sented as mean ± SD. The cortical bone thickness was 0.89 ± 0.38 mm on average and
ranged from 0.12 to 2.92 mm (Figure 2).
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3.1. Cortical Bone Thickness at Dental Implant Sites

The cortical bone thickness of the four jawbone regions in descending order was as
follows: posterior mandible: 1.07 ± 0.44 mm, anterior mandible: 0.99 ± 0.30 mm, anterior
maxilla: 0.82 ± 0.32 mm, and posterior maxilla: 0.71 ± 0.27 mm. The cortical bone thickness
of the four jawbone regions was subsequently compared in pairs, and only the following
three pairs had significantly different thicknesses of cortical bone: posterior mandible
(1.07 + 0.44 mm) > anterior maxilla (0.82 + 0.32 mm; p < 0.001) and anterior mandible
(0.99 + 0.30 mm) > posterior maxilla (0.71 + 0.27 mm; p = 0.001) and posterior mandible
(1.07 + 0.44 mm) > posterior maxilla (0.71 + 0.27 mm; p < 0.001; Figure 3).
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Figure 3. Cortical bone thickness at dental implant sites in different regions of the jawbone. Post-hoc
Scheffe test results indicated significant differences (p < 0.05) between the posterior mandible and the
anterior maxilla, between the anterior mandible and the posterior maxilla, and between the posterior
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3.2. Relationship between Age and Cortical Bone Thickness at Dental Implant Sites

Figure 4 presents the correlation between age and the cortical bone thickness of
different jawbone regions. No significant correlation was observed between age and
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cortical bone thickness in the anterior maxilla (Figure 4a) or posterior maxilla (Figure 4b;
p > 0.05). Notably, age was moderately and negatively correlated (r = −0.552, p = 0.001)
with cortical bone thickness in the anterior mandible region (Figure 4c) and weakly and
negatively correlated (r = −0.173, p = 0.048) with that in the posterior mandible region.
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4. Discussion

Population aging has led to an increasing prevalence of osteoporosis and missing teeth
among older adults, both of which are critical issues affecting older adults’ quality of life.
Dental implant surgery is used to restore occlusion function and replace missing teeth; in
such surgery, bone quality and quantity at dental implant sites are crucial factors affecting
the stability of the implants. Population aging has resulted in the increased occurrence of
missing teeth. Recent studies have used dental CBCT to determine jawbone quality at the
site of dental implants [10,25,26], but few studies have examined the relationship between
age and jawbone quality in men; no study has investigated how age affects the cortical
bone thickness at dental implant sites for men. Therefore, the present study explored the
relationship between age and cortical bone thickness measured using dental CBCT before
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dental implant surgery in male patients, and the results revealed that the cortical bone
thickness at the sites of mandibular dental implants, particularly in the anterior mandible
region, decreased with age.

Various studies have uncovered a strong correlation of bone quality and quantity with
the success rate of dental implantation [19–22]. Jemt and Lekholm, 1995 studied how the
bone strength affects the failure rate of dental implantation and found that the rate was
limited to 7.9% if bone quality at the planned implant sites was high; the rate increased
to 28.8% if bone quality was low. Following the jawbone quality classification standards
proposed by Lekholm and Zarb, 1985 [1], Jaffin and Berman, 1991 [19] investigated the
relationship between the bone types of jaw regions with dental implants and the failure rate
of the implantation. They investigated more than 1000 dental implants and found that bone
type IV, which represented the lowest bone quality, was associated with a failure rate of 35%;
for bone types I–III, the failure rate was limited to approximately 3%. High bone quality
reduced the probability of the failure of dental implantation. Jawbone quality and quantity
are typically determined through quantitative measurement of the cancellous bone density
and cortical bone thickness [27], and the crestal cortical bone thickness of the jaw is closely
related to the initial stability of dental implants. Miyamoto et al., 2005 [21] employed CT
to measure the cortical bone thickness at the dental implant sites and proposed that the
initial stability of dental implants is more affected by the cortical bone thickness than by
the cancellous bone density.

Researchers have started using dental CBCT to determine jawbone quality and quan-
tity, and it has increasingly replaced medical CT in dentistry due to its higher resolution,
lower radiation dose, and lower cost. Although CBCT was previously considered unsuit-
able for the measurement of jawbone quality [28,29], advances in this technique in the last
few years has led to its increasing use; an increasing number of studies have verified its
suitability for measuring the cancellous bone density [23,24,26,30–33] and for evaluation
and treatment simulation before dental implant surgery. According to Tsutsumi et al.,
2011 [34], dental CBCT is appropriate for the measurement of the cortical bone thickness
at the dental implant site if the thickness is three to four times greater than the voxel
resolution of CBCT. Therefore, given that crestal cortical bone thickness measured in the
present study was mostly three times greater than the resolution (155µm) of CBCT adopted
in this study, dental CBCT was adequate for measuring the thickness of occlusal cortical
bone at the sites of dental implants.

Studies that have measured the cortical bone thickness of the jaw by using dental
CBCT have predominantly focused on the buccal and lingual cortical bone thicknesses at
the sites of orthodontic mini implants [35–37]. Regarding research examining the crestal
cortical bone thickness at the site of dental implants, Ko et al., 2017 [24] suggested the use
of dental CBCT to measure the occlusal cortical bone thickness at different locations of the
jaw; they observed the thickest cortical bone in the posterior mandible region, followed
by the anterior mandible region, the anterior maxilla region, and the posterior maxilla
region. Gupta et al., 2017 [23] found consistent results and verified the suitability of dental
CBCT for measuring the cortical bone thickness of the jaw. The present study investigated
male patients’ cortical bone thickness in dental implant sties and revealed the thickest
cortical bone in the posterior mandible region, followed by the anterior mandible region,
the anterior maxilla region, and the posterior maxilla region. According to the present
study findings and those of the literature, the order of occlusal cortical bone thickness at
the implant site among the aforementioned four jawbone regions is the same across sex
and age. The reason for the thinnest cortical bone in the posterior maxilla region is that
the maxillary sinus is located above the region, which may lead to pneumatization in the
case of a missing tooth, in turn causing the overall bone quality of the posterior maxilla to
decrease and the cortical bone to grow thinner.

In our previous study, we investigated the effect of age on the cortical bone thickness
at the dental implant sites in female patients by dividing the patients into two groups based
on the cut-off age of 50 years, which is the typical menopause age [5]. However, in the
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present study, male patients were not divided into age groups mainly because Type II senile
osteoporosis is the most common osteoporosis type among older men, and this type of
osteoporosis does not typically develop at a specific age. Additionally, the measurements
of the cortical bone thickness obtained in the present study were all smaller than those
obtained in previous studies using CT [21,38]; this is probably because CT has a lower
resolution and thus tends to overestimate the cortical bone thickness if it is approximately
or smaller than 1 m due to the partial volume effect. The CBCT method used in the present
study had a 155 µm resolution, rendering it a more favorable alternative to CT in dentistry,
in which high precision is required.

This study examined how age affects the crestal cortical bone thickness at the sites
of dental implants in male patients and revealed no significant correlation between age
and the bone thickness in the anterior or posterior maxilla region. However, age was
correlated moderately and negatively with the thickness in the anterior mandible region
(r = −0.552, p = 0.001) and weakly and negatively with that in the posterior mandible
region (r = −0.173, p = 0.048). Thus, age was not associated with the crestal cortical
bone thickness in the maxilla region, but that in the mandible region decreased with
age. Chen et al., 2013 [18] explored cortical bone loss in different body parts of men and
observed that as men aged, the cortical bone porosity of the radius increased, and the
cortical bone strength decreased. In the same study, three stages of bone loss caused by
aging were also established: cancellous bone loss caused by the microstructure of the
trabecular bone growing thinner due to damage; cortical bone reduction caused by the
increasing number of resorption cavities and increasing porosity attributable to aging; and
continuous resorption at the cortical bone surface. Regarding studies related to bone loss
in the maxilla and mandible, Abirami, 2016 [39] reported that the mandible shrank four
times faster than the maxilla did. In a clinical observation report, Fanghänel et al., 2006 [40]
proposed the different shrinkage patterns of the maxilla and mandible; specifically, the
maxilla shrank mainly horizontally and the mandible vertically. Woelfel et al., 1976 [41]
asked patients to perform occlusion movement under a force of 50 pounds was applied
and observed how the force was distributed to each region of the jaw; they found that the
amount of force distributed to the mandible (21 pounds/inch) was approximately twice
as high as that to the maxilla (12 pounds/inch). Due to such different amounts of force
applied to the maxilla and mandible during occlusion movement, they concluded that the
bone loss rate may differ in different regions of the jaw. Accordingly, the present study
inferred that the different force distribution to and the different structures of the maxilla and
mandible were the reason why they shrank along different directions, and the greater force
applied to the mandible was probably why the mandible was more susceptible to senile
osteoporosis with regards to cortical bone thinning. The present study results revealed that
the cortical bone thickness in the maxilla did not decrease significantly with age in male
patients, which was possibly because the maxilla, to which force is constantly applied, is
constituted mostly by cancellous bone. Furthermore, according to the findings of D’Souza,
2012 [42], the trabecular bone of the maxilla is parallel to the direction of compression and
deformation; thus, sudden stress increases can be alleviated in the bone and the bone is
thus resilient to deformation. Cancellous bone is porous and contains a large amount of
vascular tissue. Compared with the mandible, the maxilla is composed of more cancellous
bone and thus has higher blood supply. Therefore, the cortical bone thickness reduction in
the maxilla attributable to senile osteoporosis is less obvious than that in the mandible.

Numerous clinical factors can affect cortical bone thickness at the dental implant
sites of the jawbone. Most of the samples in this study were collected using CBCT within
4–6 months after dental extraction. Therefore, the study design excluded the effect of a
missing tooth on cortical bone thickness. In addition, the study did not discuss a number
of conditions. Regarding drug treatment, patients taking bisphosphonate drugs were not
recommended to undergo invasive treatments such as tooth extractions or dental implants.
Therefore, among the implant patients, the number of individuals in this category was
small. Regarding systemic disease, osteoporosis generally does not have a clear time point
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for occurrence in male patients. Therefore, fewer male patients proactively undergo bone
testing, and clinical determination of osteoporosis incidence in male patients is difficult.
With regard to tumor diseases, the disease more relevant to this study should be bone
tumors of the jaw. Such patients are treated with metal bone screws or bone plates after
tumor resection for fixation. Hence, these patients were excluded during image screening.
Regarding risk factor, habits such as smoking and drinking may affect the bone quality and
quantity of the jawbone. Nonetheless, risk factors were not recorded because the study
was retrospective. If subgroup investigations including lifestyle habits are conducted in
the future, the results of this study can be used as a reference.

This study has the following limitations. First, the study participants are all Asian
and ethnically Mongolian. Therefore, further research is required to examine whether
the distribution of cortical bone thickness is consistent across races. Additionally, this
study compared age with the cortical bone thickness in men only through correlation
analysis, without grouping male patients by their type of osteoporosis. Finally, the study is
a retrospective analysis of bone quality and quantity of the dental implant site. Therefore,
information on whether the patients had several treatments, systemic conditions, or local
risk factors was unavailable. In the future, the research team will attempt to explore the
effect of Type II osteoporosis on the thickness of the occlusal cortical bone in the jaw as
well as on the initial and long-term stability of dental implants. Future studies can include
subgrouping by, for example, smoking, drinking, and long-term medication in addition
to age to study crestal cortical bone thickness in the dental implant site, providing more
valuable clinical reference data.

5. Conclusions

This study proposed the following conclusions regarding the relationship between
age and the crestal cortical bone thickness at dental implant sites in male patients:

(1) Male patients were grouped by the jawbone regions where their dental implants were
placed. The cortical bone thickness of the jawbone regions in descending order was
as follows: posterior mandible: 1.07 ± 0.44 mm, anterior mandible: 0.99 ± 0.30 mm,
anterior maxilla: 0.82 ± 0.32 mm, and posterior maxilla: 0.71 ± 0.27 mm.

(2) The cortical bone thickness at dental implant sites in the maxilla did not differ across
age in male patients.

(3) Among male patients, age was correlated moderately and negatively with the cortical
bone thickness in the anterior mandible region (r = −0.552, p = 0.001) and weakly and
negatively with the posterior mandible region (r = −0.173, p = 0.048).
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