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Malaria mapping: understanding the global
endemicity of falciparum and vivax malaria
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Abstract

The mapping of malaria risk has a history stretching back over 100 years. The last decade, however, has seen dramatic
progress in the scope, rigour and sophistication of malaria mapping such that its global distribution is now probably
better understood than any other infectious disease. In this minireview we consider the main factors that have facilitated
the recent proliferation of malaria risk mapping efforts and describe the most prominent global-scale endemicity mapping
endeavours of recent years. We describe the diversification of malaria mapping to span a wide range of related metrics of
biological and public health importance and consider prospects for the future of the science including its key
role in supporting elimination efforts.
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Introduction
Like most vector-borne diseases, malaria endemicity is
partly determined by the local environment that houses
its human and anopheline hosts and mediates the inter-
actions between them. This environmental dependency
leads to complex patterns of geographical variation in
malaria transmission at almost every scale. Risk is rare-
lyuniform whether considered between households in a
village, villages in a district or districts in a country [1].
The importance of evaluating local heterogeneity has
motivated a long lineage of epidemiologists and disease
control practitioners to generate maps of malaria risk
to better understand local disease ecology and inform
control activities [2]. The first serious attempt to audit
the pattern of malaria endemicity at the global scale
was undertaken in 1968 by Lysenko and Semashko [3].
This represented a major synthesis of historical records,
maps of various malaria metrics (such as parasite rate,
vector distributions, entomological inoculation rate, sickle
cell incidence) and expert opinion and yielded a global
map of malaria endemicity at the assumed peak of trans-
mission intensity around the start of the 20th century.
This map, stratified into four classes of endemicity, has
since been digitised [4] and remains the most plausible
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reconstruction of global malaria risk in the largely pre-
industrial era and prior to widespread malaria control
efforts [5] (Fig. 1).
It is now nearly half a century since the Lysenko map

was published and, during most of that period, few ef-
forts were made to improve on it. However, initiatives
such as the continent-wide Mapping Malaria Risk in
Africa/Atlas du Risque de la Malaria en Afrique
(MARA/ARMA) project [6], instigated in 1997, and
8 years later the global Malaria Atlas Project (MAP)
[7], catalysed a renaissance that has transformed the
science of malaria risk mapping and its role in contem-
porary efforts to control, progressively eliminate and
ultimately eradicate malaria.
In this minireview we present a condensed overview

of: (i) the main factors that have facilitated the recent
proliferation of malaria risk mapping efforts; (ii)
prominent global-scale endemicity mapping endeav-
ours of recent years; (iii) the diversification of malaria
mapping to span a wide range of related metrics of
biological and public health importance; and (iv) prospects
for the future of the science including its key role in
supporting elimination efforts.
Enabling factors in the malaria mapping renaissance
Increasing data availability
Since the late 1980s, nationally representative cross-
sectional household surveys have been supported by a
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Fig. 1 The digitised ‘Lysenko’ map of global malaria endemicity circa 1900. This historic map constructed by Lysenko and Semashko [3] during
the 1960s was based on a worldwide assembly of diverse malariometric data, simple climatic rules and expert opinion. The classic strata of malaria
endemicity are described, each relating to infection prevalence (parasite rate, PR) in children: hypoendemic, PR <10 %; mesoendemic, PR ≥10 %
and <50 %; hyperendemic, PR ≥50 % and <75 %; and holoendemic, PR ≥75 %. This is a reproduction of the map in Hay et al. [4]
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number of multilateral initiatives including the Demo-
graphic and Health Surveys (DHS) Program [8] and
the UNICEF Multiple Indicator Cluster Survey (MICS)
[9]. Such surveys have frequently been conducted in
malaria-endemic countries and now include a growing
suite of questions designed to gauge population access
and use of malaria prevention, diagnostics and treat-
ment. Since 2006, DHS surveys have begun to obtain
blood samples from children under 5 years of age (and
in some surveys, pregnant women) for parasite-based
diagnosis of malaria using rapid diagnostic tests
(RDTs) or microscopy. Crucially for mapping, these
data tend to be accompanied by geographical coordinates
denoting the location of the village or community from
which each individual was sampled. These standardised
and prospectively designed infection prevalence (or ‘para-
site rate’) data are ideally suited as a basis for national-
scale endemicity mapping and have some key advan-
tages over retrospective assemblies of ad hoc parasite
rate data obtained, for example, from systematic litera-
ture searches. The influence of these large-scale pro-
grammes of national surveys, along with an increasing
number of independent and nationally-led malaria
indicator surveys, has transformed the availability of
geolocated parasite rate data over the past decade
(Fig. 2).

Improved environmental covariates of malaria risk
Along with data on malaria infection prevalence itself, a
vital component of modern disease mapping methods
is the inclusion of high quality data layers describing
environmental or socio-demographic variables that cor-
relate with malaria risk and can be used as empirical
covariates. The ongoing refinement of satellite and airborne
remote sensing platforms, and commensurate sophistica-
tion of post-processing algorithms and computational infra-
structure for storage and dissemination of the resulting
imagery, has led to a huge diversity of variables being
included as part of spatial malaria models, as reviewed
elsewhere [10]. In addition, work by malaria modelling
groups has sought to modify existing geospatial vari-
ables to create malaria-specific products to enhance
their utility for mapping. One recent example has been
the manipulation of remotely-sensed data on land-
surface temperature to create indices of temperature
suitability for transmission of Plasmodium falciparum
and Plasmodium vivax [11–13]. Recent work has also
focused on the extension of traditionally static geospatial
covariates into libraries of temporally dynamic data that
potentially enable exploration of seasonal, inter-annual
and long-term changes in environmental conditions on
malaria transmission [10]. With the greater abundance of
potential covariate layers has come an increased need for
robust approaches to variable selection – allowing multi-
variate spatial models of malaria risk to be constructed
that use an optimum set of covariates that maximise
predictive power and avoid over-fitting the response
data. Such approaches include Bayesian model selection
procedures [14, 15] and exhaustive machine-learning
techniques [10].



Fig. 2 Growth in the availability of georeferenced data on Plasmodium falciparum parasite rate. The data shown here represent the assembly for
sub-Saharan Africa maintained by the Malaria Atlas Project, with an individual ‘point’ representing a spatially and temporally unique observation
of community-level infection prevalence. The search methodology used to acquire the published literature and personal communication data
points is described in detail elsewhere [67], and the household survey data points are collated from the sources described above and additional
reports from national malaria control programmes. The reduced numbers in 2013 and 2014 are to be expected due to the lag time between data
collection and its subsequent release
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Advances in analytical techniques
The Lysenko map was constructed in the best traditions
of manual cartography – with an emphasis on assimilating
a wide variety of disparate data sources into a single synthe-
sised map without any formal underlying quantitative
framework. Whilst the result was an impressive summary
of the state of knowledge existing at that time, this heuristic
approach suffers a number of important drawbacks. Im-
portantly, the likely accuracy of the map and how this varies
from place to place can be neither measured nor communi-
cated to end-users, placing a fundamental limitation on its
use for critical public health decisions. In contrast, modern
maps of malaria and other infectious diseases tend to result
from formal spatial statistical models that aim to not only
optimise accuracy but convey the spatially varying level of
uncertainty associated with the mapped surface. The
current state-of-the-art models tend to stem from a body of
theory defined in the late 1990s known as model-based
geostatistics (MBG) [16, 17]. MBG disease models, gener-
ally implemented in a Bayesian framework [16, 17], take
point observations of disease prevalence from dispersed
survey locations and generate interpolated estimates of
prevalence at unsampled locations to generate continuous
maps. Unlike simpler interpolation methods, MBG models
capture both the inherent spatial structure displayed in a
dataset (via a covariance function) and the uncertainty
around that structure. They also provide a natural frame-
work for incorporation of multivariate relationships with
covariates, and the use of disease response data in continu-
ous, count or proportion format with appropriate models
for sampling error. Since such techniques were first demon-
strated in a malaria mapping context [18], many useful
elaborations have been developed. Gosoniu et al. [15, 19]
demonstrated an approach to allow non-stationarity –
enabling the spatial structure of the model to vary from
place to place to better capture local variation when
modelling over large areas. MBG techniques have been
extended to map malaria both spatially and temporally
[20], allowing data from multiple time points to contribute
appropriately to a single cross-sectional map [21–23] and,
more recently, to explore spatio-temporal patterns of
change through time [24]. Gething et al. [25] introduced
the ability to quantify aggregated uncertainty over space
and time in a global-scale MBG model with use of an
approximating joint simulation algorithm. This allowed
predicted malaria risk levels to be summarised formally at
the varying scales of geographical aggregation over which
public health decisions are usually made.

Contemporary maps of continental and global endemicity
Numerous studies have developed Bayesian geostatistical
models to create national or multi-national maps of
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malaria risk, often intended to aid national malaria con-
trol programme policy decisions in specific regions and
improve understanding of within-country patterns of
spatial heterogeneity in malaria transmission and burden
[26–38]. Additionally, spatial scanning methods to detect
clusters (or ‘hotspots’) of intense malaria transmission at
very fine spatial scales have been developed and applied
at a sub-national scale. These methods can be used to
identify individual homesteads within hotspots with par-
ticularly intense malaria transmission [1, 39].
The first attempt to map malaria endemicity at global

scales using MBG techniques was completed for P. falcip-
arum in 2009 by the Malaria Atlas Project [23]. This was
the culmination of 5 years of data assembly [40], delinea-
tion of the limits of stable transmission [41], and methodo-
logical development to extend existing MBG approaches to
incorporate additional functionality including an embedded
age-prevalence standardization model [42] and the incorp-
oration of the spherical shape of the Earth within the model
computation. The resulting map, describing infection
prevalence in 2–10 year olds across a 5 × 5 km resolution
grid, was the first global assessment of malaria risk that
used a standardised data and modelling framework and
was able to provide accompanying maps describing the
geographically varying uncertainty associated with each
predicted pixel value. While the 2007 map marked a new
era in global malaria cartography, the field continued to
evolve rapidly and an updated map was generated for the
year 2010 (Fig. 3a) in which, along with a large influx of
new PfPR surveys, some important methodological ad-
vances were made [21]. Early computational constraints in
the implementation of MBG at the global scale meant that
the earlier map included no environmental covariates with
the exception of urbanity. For the 2010 iteration, a
more efficient MCMC algorithm allowed the multivariate
effects on PfPR of a wider suite of 20 environmental and
socio-demographic covariates to be incorporated, substan-
tially improving predictive accuracy and the level of spatial
detail that could be resolved.
In that same year, a corresponding global endemicity

map of P. vivax prevalence was produced by the Malaria
Atlas Project [22] (Fig. 3b). While the basic geostatistical
architecture mirrored that developed for P. falciparum,
the unique epidemiology [43] of this less well studied
parasite species posed unique challenges for global map-
ping. A particular challenge was the handling of data in
Africa, where a commonly held mantra is that P. vivax
is absent due to the near-fixation in the population of
Duffy negativity – a genetic blood disorder that conveys
near total protection from P. vivax infection. A detailed
literature review, however, demonstrated the presence of
the parasite in nearly all Africa countries. Rather than
branding large swathes of the continent as being vivax-
free, a more elaborate approach was developed that drew
from data on both PvPR and population prevalence of
the Duffy genetic trait [44] such that both quantities
could be mapped simultaneously. These works paved the
way to a comprehensive review of the global public
health significance of P. vivax, which suggested that
morbidity and fatalities caused by P. vivax may be sub-
stantially underestimated [45].
These maps provided new benchmark evaluations of

the contemporary landscape of malaria risk worldwide.
For the first time, international policy makers could
draw upon a standardised methodology that allowed
meaningful country-to-country comparison of malaria
risk exposure for national populations. Since the publica-
tion of these 2010 maps, there has been an increasing inter-
est in extending the methodologies to allow prediction of
risk both geographically and through time, motivated in
part by the need to evaluate progress towards international
targets set for the year 2015 [46]. By mapping malaria risk
dynamically, patterns of change can be explored. In 2014,
Noor et al. produced an analysis of changing risk of P. fal-
ciparum malaria across Africa since 2000 [47]. This analysis
used a large assembly of PfPR data collected over the
preceding decades, along with four static environmental
covariates (precipitation, temperature suitability index,
enhanced vegetation index and urbanisation) in an
MBG model to generate cross-sectional risk maps for
the years 2000, 2005 and 2010 [47]. This analysis
allowed the first formal insights into patterns of chan-
ging malaria in Africa since the turn of the millennium,
a period of major international efforts to raise funding
and scale up control efforts. The study described evi-
dence of declining PfPR in nearly all endemic Africa
countries between 2000 and 2010, but in many cases
these declines were relatively modest.
A more recent study by the Malaria Atlas Project has

also sought to evaluate changing risk patterns in Africa,
for the more recent year of 2015, with some important
differences in input data and approach (Bhatt S, Weiss
DJ, Mappin B, Dalrymple U, Cameron E, Bisanzio D, et
al: Insecticide-treated nets (ITNs) in Africa 2000–2017:
coverage, system efficiency and future needs to achieve
international targets, unpublished). Most significant was
the development and incorporation of detailed spatio-
temporal reconstructions of coverage patterns for the
major malaria control interventions over the same time
period [24]: insecticide-treated bed nets (ITNs); indoor
residual spraying (IRS); and artemisinin-based combination
therapy (ACT) antimalarials for malaria case management.
Incorporating these within a space-time MBG framework
allowed improved estimates of infection prevalence through
time. By also including a wide range of temporally dynamic
background covariates since 2000 [10], it was possible to
disentangle the relative contributions of each intervention
to the observed declines in PfPR, in the context of any



Fig. 3 Global a Plasmodium falciparum and b Plasmodium vivax endemicity in 2010. These contemporary maps, produced by the Malaria Atlas
Project, used model-based geostatistics to interpolate continuous predicted surfaces of risk based on more than 20,000 georeferenced surveys
measuring infection prevalence for each parasite species. Part A is reproduced from [21] and part B is reproduced from [22]
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changes in underlying environmental conditions. This work
provided important evidence on the impact of large-scale
control efforts in Africa since the turn of the Millennium.

Beyond prevalence: the diversification of malaria
mapping
Deriving malariometrics from parasite rate estimates
The developments in mapping malaria infection preva-
lence, described above, have spawned a larger and more
diverse body of work, allowing maps of parasite rate to be
used as an input to predict the distribution of a wide range
of other malariometrics with distinct utility to biologists,
epidemiologists and decision-makers. These have included
the mapping of clinical incidence rates, entomological in-
oculation rates (EIRs), the basic reproductive number (R)
and the burden of morbidity due to malaria in pregnancy.
The measurement of malaria incidence (the number

of clinical cases that occur annually within a given
population) is typically measured by one of two approaches:
either by using direct data on observed cases detected via
routine surveillance systems; or by using maps of infection
prevalence and using a model to convert this metric into a
plausible value of clinical incidence at each mapped loca-
tion (known as the ‘cartographic’ approach). In much of
sub-Saharan Africa, and in particular those countries with
the higher malaria burdens, routine surveillance data are
not considered sufficiently robust to use as a basis for esti-
mating clinical incidence or evaluating trends through time
[24]. The development of continuous parasite rate maps
has made it possible to model statistically the relationship
between P. falciparum prevalence and clinical incidence
rates. Initial efforts to construct a PfPR-incidence relation-
ship for P. falciparum burden estimation used data-driven
fits with varying sophistication from first-order stratification
by endemicity class to hierarchical Gaussian process regres-
sion [48–50], and projections based on the calibration of a
steady-state compartmental transmission model [51]. In
2015, Cameron et al. used three of the most contemporary
published prevalence-incidence models were calibrated
against a purpose-built dataset of incidence counts from
numerous sites across sub-Saharan Africa (Cameron E,
Battle KE, Bhatt S, Weiss DJ, Bisanzio D, Dalrymple U,
et al.: Defining the relationship between infection preva-
lence and clinical incidence of Plasmodium falciparum
malaria: an ensemble model, Submitted). The combined
predictive power of this ensemble model allowed forecasts
of expected malaria incidence with limited uncertainty,
and highlighted general conceptual agreement between
the models. The ensemble model has since been utilised,
alongside the Malaria Atlas Project’s estimations of yearly
PfPR, to estimate the changing incidence of P. falciparum
malaria from 2000 to 2015.
The EIR, or entomological inoculation rate, describes

the number of expected bites from infected mosquitoes
per person per unit time and is often used as a standar-
dised measure of transmission intensity [21]. Work has
been done to assemble observations of EIR across
Africa and define their relationship with PfPR [52]. In
an analogous way to the cartographic estimation of
clinical incidence, this has allowed maps of infection
prevalence to be converted into maps of EIR, describing
this key entomological quantity geographically across
the endemic world [21]. The same work also included a
model to extend PfPR maps to describe the global distribu-
tion of the basic reproductive number, R, for P. falciparum
malaria. R quantifies the potential of P. falciparum to
spread throughout a population (formally the number
of new cases arising per index case per generation of
the parasite) and provides important insights into, for
example, the magnitude of impact that control efforts
must have at each location in order to drive transmission
towards elimination.
Estimates of the number of pregnant women at risk of

malaria infection globally have been made [53] by com-
bining national estimates of numbers of pregnancies for
2007 and MAP’s 2007 and 2003 estimates of global P.
falciparum [41] and P. vivax endemicity [54], respect-
ively. Although the World Health Organization (WHO)
estimates annually the number of pregnant women at risk
of malaria in Africa, this study provided the first compre-
hensive and contemporary estimation of the number of
pregnancies at risk of malaria outside of Africa.

Mapping for elimination
Long-term international policy around malaria control is
increasingly reoriented to achieve progressive elimination
of malaria country-by-country with the ultimate goal of
reaching eradication of the disease [55, 56]. An initial utility
of global endemicity maps in this context has been as one
component of a wider assessment of relative elimination
feasibility between countries, helping guide prioritisation
and target-setting [57]. As more malaria-endemic countries
enter the elimination phase, new challenges arise for mal-
aria cartography to provide geospatial information tailored
to the distinct operational requirements of elimination
activities. An immediate technical challenge arises from
the difficulty in obtaining useful metrics of malaria
transmission at very low levels of transmission. Traditional
parasite rate surveys become underpowered to detect very
rare infections, and research is underway to examine a
range of alternative metrics for mapping, including
molecular-based parasite detection or identification of
serological markers of infection exposure [58–60]. In
elimination scenarios, the diagnostic accuracy of re-
sponse data becomes more important in order to detect
subpatent infections which are thought to account for
20–50 % of human-to-mosquito transmissions in low
endemicity areas [61]. Investment in more sensitive
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case detection methods is required to accurately assess
transmission intensity [62]. Additionally, methods to
standardise diagnostic data inputs prior to mapping are
required to eliminate uncertainty, especially in elimination
areas. Regression models have been developed in recent
years between both microscopy and PCR [61], and RDT
and microscopy [63]. These models can be applied to
observed prevalence measured by one diagnostic test in
an elimination area to estimate the expected observed
prevalence using an alternative method of diagnosis.
Additionally, measuring progress towards elimination is
aided by the ever-increasing availability of map data
and measurements of parasite rate over time and space
which can be used for comparison.
Further challenges in defining geographic patterns of

risk arise from the issue of human movement. When
cases become rare, the relative contribution of imported
malaria – infections originating outside the eliminating
country – tends to increase until they can become the
primary reason for transmission being sustained. This
complicates the description of risk patterns and necessi-
tates an understanding of human movement alongside
data on observed infections. In a study in Namibia, Tatem
et al. integrated mobile phone data (which can serve as a
proxy for human movement patterns) with case-based risk
maps to predict hotspots of transmission in generally low-
transmission settings [64]. Other work has sought to use a
range of input metrics and mapping techniques to identify
the fine-scale or seasonal variations in risk which become
important in understanding the highly heterogeneous
pattern of risk in elimination settings [65, 66].

Conclusions
This review has summarised the evolution of malaria
risk mapping over the past decade and the improvements
in data availability, computational power and methodo-
logical developments that have facilitated it. This ongoing
development has transformed malaria risk mapping
from an art to a science, and can now bring mature
and statistically robust approaches to bear on a diverse
range of cartographic questions. As the global malaria
landscape continues to change over the coming years,
these geospatial approaches must continue to evolve in
order to provide accurate descriptions of change, insight
into the many factors driving those changes and, ultim-
ately, to continue to contribute to evidence-based malaria
control and elimination activities worldwide.
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