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Background and Aims. Previous studies modelling human neural crest differentiation from stem cells have resulted in a low yield of
sympathetic neurons. Our aim was to optimise a method for the differentiation of human embryonic stem cells (hESCs) to
sympathetic neuron-like cells (SN) to model normal human SNS development. Results. Using stromal-derived inducing activity
(SDIA) of PA6 cells plus BMP4 and B27 supplements, the H9 hESC line was differentiated to neural crest stem-like cells and
SN-like cells. After 7 days of PA6 cell coculture, mRNA expression of SNAIL and SOX-9 neural crest specifier genes and the
neural marker peripherin (PRPH) increased. Expression of the pluripotency marker OCT 4 decreased, whereas TP53 and
LIN28B expression remained high at levels similar to SHSY5Y and IMR32 neuroblastoma cell lines. A 5-fold increase in the
expression of the catecholaminergic marker tyrosine hydroxylase (TH) and the noradrenergic marker dopamine betahydroxylase
(DBH) was observed by day 7 of differentiation. Fluorescence-activated cell sorting for the neural crest marker p75, enriched for
cells expressing p75, DBH, TH, and PRPH, was more specific than p75 neural crest stem cell (NCSC) microbeads. On day 28
post p75 sorting, dual immunofluorescence identified sympathetic neurons by PRPH and TH copositivity cells in 20% of the cell
population. Noradrenergic sympathetic neurons, identified by copositivity for both PHOX2B and DBH, were present in
9.4%± 5.5% of cells. Conclusions. We have optimised a method for noradrenergic SNS development using the H9 hESC line to
improve our understanding of normal human SNS development and, in a future work, the pathogenesis of neuroblastoma.

1. Introduction

The neural crest is a transient embryonic cell population
which undergoes extensive migration and differentiation to
give rise to a diverse range of cell populations in the embryo,
ranging from the peripheral nervous system (sensory, enteric,
and autonomic (sympathetic and parasympathetic)) to the

craniofacial skeleton and pigment cells (reviewed by [1]).
Neural crest cells are multipotent stem cells which can self-
renew and in humans undergo extensive migration around
the third to fourth weeks of gestation [2].

Sympathetic neurons originate from trunk neural crest
cells that arrest their migration upon arrival at the dorsal
aorta and begin to express the catecholaminergic and
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noradrenergic biosynthetic enzymes tyrosine hydroxylase
(TH) and dopamine betahydroxylase (DBH), respectively
(Figures 1(a) and 1(b)). Bonemorphogenetic proteins (BMPs),
multifunctional secreted proteins of the transforming growth
factor β superfamily, are secreted in the dorsal aorta and the
gut [3] and are important for noradrenergic autonomic spec-
ification from the neural crest [4, 5].

Neuroblastoma is an embryonal malignancy originating
from neural crest cells which give rise to the sympathetic
nervous system (SNS) [3]. It is the most common child-
hood solid tumour outside the central nervous system,
and in contrast to many other paediatric malignancies,
high-risk neuroblastoma is fatal in around 50% of patients
despite intensive multimodal therapy [6]. In vivo and
in vitro observations have shown that neuroblastic tumours
appear to recapitulate the development of differentiating,
predominantly noradrenergic, sympathetic neurons, and
chromaffin cells of the adrenal medulla, suggesting that
neuroblastoma arises from aberrant or blocked differentia-
tion in normal SNS development (reviewed in [7]). By
modelling the normal development of the neural crest
and SNS, it may be possible to understand the pathogenesis
of neuroblastoma and other abnormalities of the neural
crest, e.g., neurocristopathies.

Human embryonic stem cells (hESCs) and induced plu-
ripotent stem cells (IPSC) have the potential to provide an
unlimited source of cells for both disease modelling and cell
replacement therapy. The ability to differentiate hESC to
neural crest-derived stem-like cells (NCDSC) and autonomic
progenitors provides an important tool for modelling human
neural crest development.

Kawasaki and colleagues were the first to demonstrate
efficient induction of peripheral autonomic neuronal lineages
from murine and primate hESC by coculture with PA6 cells,
which possess stromal-derived inducing activity (SDIA)
[8, 9]. Mizuseki et al. showed that early exposure of cocul-
tured cells to BMP4 inhibited neural differentiation, whereas
late exposure to high concentrations of BMP4 (days 5–9)
induced differentiation to neural crest cells and autonomic
progenitors [9]. Recently, other studies differentiating hESC
have used BMP4 [10] or a feeder layer [11] to help induce
SN differentiation.

The aim of this study was to develop an in vitro model
using both BMP4 and a stromal feeder layer for efficient dif-
ferentiation of hESC to noradrenergic sympathetic neurons
(Figures 1(a) and 1(b)). We sought to determine the opti-
mum conditions for the differentiation of hESC to SN by
comparing different neural differentiation media, sorting
methods for neural crest-like cells, and plating conditions
for sorted cells.

Understanding normal SNS development in hESC
models will enable us to learn more about the SNS as well
as neural crest-derived malignancies such as neuroblastoma.

2. Materials and Methods

2.1. Cell Culture. H9 cells were obtained from the WiCell
Bank (Wisconsin) following approval from the UK Medical
Research Council (MRC) Stem Cell Steering Committee.

Undifferentiated H9 hESCs [12] were cultured on either the
human foreskin fibroblast cell line (NclFed(R)1A) [13], inac-
tivated with 35Gy ionising radiation, or irradiated MEF-CF1
standard density cells (AMSBIO, UK). hESCs were cultured
in stem cell media (20% KnockOut Serum Replacement
(Invitrogen, USA), 0.1% nonessential amino acids (NEAA)
(Invitrogen, USA), 0.1mM β-mercaptoethanol (Invitrogen,
USA), 2mM Glutamax (Invitrogen, USA), and 8ng/ml
FGF2 (Invitrogen, USA) in KO-DMEM (Invitrogen, USA)).
Cells were passaged weekly and replated on 6-well plates
coated with irradiated feeder cells at a density of 6.5× 103
cells per well. The mouse stromal PA6 cell line was obtained
from the Riken Cell Bank (Japan).

All cell lines were checked regularly and found to be free
from contamination with Mycoplasma. Karyotypic analysis
of H9 cells was also undertaken to confirm their identity
using standard Giemsa banding techniques.

SKNAS (S-substrate adherent type, non-MYCN ampli-
fied) [14], IMR32 (N-neuronal type, MYCN amplified [15]),
and SHSY5Y (N type, non-MYCN amplified) [16] human
neuroblastoma cell lines were used as controls.

2.2. Differentiation to Neural Crest-Like Cells and Sympathetic
Progenitors. Neural crest differentiation was induced by
coculture of hESC with PA6 cells in neural differentiation
media as outlined in Figure 1(c). Cells were detached from
Fed1A feeders using 1mg/ml collagenase IV and incubated
for 10 minutes at 37°C to detach hESC colonies. 500–800 cells
were transferred to 12- or 24-well plates, each well containing
1 or 0.5× 104 PA6 cells, respectively, and cultured for up to
28 days.

To optimise differentiation to p75+ve neural crest-like
cells, two neural differentiation media were compared: (1)
neural BHK media (90% BHK-21 medium/Glasgow modi-
fied Eagle medium (MEM) with 10% KO-SR, 1% L-Gluta-
max, 0.5% NEAA, 1% pyruvate, 1% penicillin/streptomycin,
and 2×N2 neuronal supplement) and (2) 90% MACS®
neuronal media plus 2% MACS B27 supplement, 1% L-Glu-
tamax, 0.5% NEAA, and 1% penicillin/streptomycin. Condi-
tions required for optimal development of noradrenergic
sympathetic neurons were established by comparing the
addition or withdrawal of 10ng/ml BMP4 and 10ng/ml
BMP2 and 4 with 10 ng/ml BMP4 alone, on days 5 to 9 of dif-
ferentiation. N2 supplement (Life Technologies) and 10ng/
ml nerve growth factor (NGF) (R&D systems) were added
to the media from day 4 of differentiation and 0.1mM dibu-
tyryl cyclic AMP (dbcAMP) was added on day 8 and with-
drawn from the media after 10 days of differentiation. Cells
were further differentiated for 3–4 weeks, and media were
changed every two days. Differentiation experiments were
carried out to n = 3.

2.3. p75 (CD271) Fluorescence-Activated Cell Sorting (FACS)
of Differentiating Cells. Two methods of cell sorting for
p75-positive cells were used to compare the yield of p75-
positive cells obtained.

H9 cells were harvested on day 8 of PA6 coculture, which
was found to yield the optimal number of p75-positive cells
(data not shown) using 1mg/ml collagenase, incubated for
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10 minutes at 37°C, followed by incubation in Accumax
(Stemgent) for 10 minutes with gentle agitation to obtain a
single cell suspension. Cells were washed once in FACS wash
buffer (1 in 20 dilution of bovine serum albumin (Miltenyi
Biotec, UK) in MACs rinsing solution (Miltenyi Biotec) and
centrifuged at 150 g for 4 minutes. 10% Fc block in FACS
wash buffer was added to the cell suspension and incubated
for 10 minutes at room temperature. Anti-p75 (CD 271) pri-
mary antibody directly conjugated with phycoerythrin (PE)

(Miltenyi Biotec) was added to cells at 1 in 33 dilution. Mul-
tiple cell sorts were performed (n = 3) using a FACS Aria II
Cell Sorter (BD Bioscience™) and a minimum of 5.5× 104
p75+ ve and p75– ve cells plated onto either PA6-coated 24
well plates or BD BioCoat™ poly-l-ornithine/laminin-coated
24 well plates (BD Biosciences). All sorted cells were cultured
in MACS neuronal medium containing B27 supplement,
10 ng/ml NGF, 10 ng/ml fibroblast growth factor (FGF2),
and 10ng/ml epidermal growth factor (EGF).
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Figure 1: (a) Markers used to identify cell populations in this study. (b) The catecholamine biosynthesis pathway. (c) Flow chart detailing
experimental outline of neural differentiation.
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2.4. Neural Crest Stem Cell (NCSC) Microbead Sorting. Dif-
ferentiating H9 cells were harvested using Trypsin/EDTA
and dissociated to a cell suspension. Positive cell enrichment
was performed using anti-p75- (CD271) coated NCSC
MicroBeads, according to the manufacturer’s instructions
(Miltenyi Biotec). Sorted cells were cultured in either 24-
well PA6-coated plates or BD BioCoat™ poly-l-ornithine/
laminin-coated 24-well plates.

2.5. Live Cell Immunofluorescence of Undifferentiated H9
Cells. Undifferentiated H9 hESC colonies were immuno-
stained with 1 : 100 dilutions of TRA-1-60-FITC conjugate
(Millipore) and anti-SSEA-4/clone MC-813-70-PE conjugate
(Millipore). HESC colonies were incubated with primary
antibodies at 37°C for 2 hours followed by a 10-minute incu-
bation with 0.5μg/ml Hoechst-hESC media solution and
twice washed with hESC media to ensure all Hoechst dye
was removed. The colonies were then imaged in hESC media
under a Nikon eclipse TE2000U inverted microscope after
which the media was replaced with fresh hESC media con-
taining 10μM Rho-associated kinase (ROCK) inhibitor Ste-
molecule™ Y27632 [17] (Stemgent, MA, USA).

2.6. Immunofluorescence of Differentiating Cells. H9 cells
were immunostained for stem cell and neuronal markers.
Cells were washed in PBS and fixed in 4% paraformaldehyde
for 10 minutes. After washing in PBS (3× 5-minute washes),
the samples were incubated in blocking solution containing
1% BSA and 10% goat serum. The following antibodies were
used at the dilutions indicated: OCT4 1 : 400 (Abcam),
NANOG (R&D systems) 1 : 200, neural cell adhesion mole-
cule (NCAM) 1 : 200 (Millipore), peripherin (PRPH) 7C5
and C-19 1 : 200 (Santa Cruz Biotechnology), TH 1 : 450
(Millipore), DBH, 1 : 450 (Abcam), and paired like homeo-
box2B (PHOX2B) 1 : 450 (Santa Cruz Biotechnology). Cells
were incubated with primary antibodies overnight at either
4°C or room temperature for 1.5 hours. Secondary antibod-
ies coupled to Alexa Fluor 488 or 568 (Molecular Probes,
USA) were used for detection and were used alone as con-
trols for two-colour costaining as well as comparison with
single markers alone. Cells were washed with 3× 10-minute
washes and nuclei stained using 4′,6-diamidino-2-phenylin-
dole, dihydrochloride DAPI (Vectashield) diluted 1 : 10 in
PBS in 24-well plates, and coverslips were stained with
DAPI. 24-well plates and 4-well chamber slides (Millipore,
UK) were viewed and photographed using a Nikon A1r
confocal microscope. Percentages of positively immuno-
stained cells were obtained by counting 100 cells each in 3
different areas of the slide and then scoring the number of
positive cells. This scoring process was applied to all exper-
imental replicates.

2.7. Time Lapse Photography. Live cell analysis and imaging
of p75+ and p75−H9 cells were performed over 4 days using
a Nikon Biostation Cell Tracker. Cells were imaged on both
PA6-coated 24-well plates and poly-l-ornithine/laminin 24-
well plates. The migration rates, including velocity and
meandering index, were measured using the Volocity™ soft-
ware programme (Perkin Elmer, UK).

2.8. RNA Analysis-RT-PCR. RNA was extracted using the
RNeasy mini kit (Qiagen) and 0.5μg reverse transcribed
using the iscript cDNA synthesis kit (BioRAD™). RNA was
isolated from differentiated H9 cells on day 7, 14, and 21 of
differentiation. Undifferentiated stem cells and SKNAS,
SHSY5Y, and IMR-32 neuroblastoma cell lines were used as
controls. In addition, normal human adrenal cortex, medulla,
and dorsal root ganglion tissue from a 14-week gestation
fetus were supplied by the Human Developmental Biology
Resource (http://www.hdbr.org).

RT-PCR reactions were set up in a total volume of 20μl,
containing 10% PCR buffer, 10% magnesium chloride
(MgCl2), 10% dNTPs, 1μl of 10μM forward and reverse
primers, and 1% Amplitaq Gold™ (Applied Biosystems).
RT-PCR was performed for neural crest specifiers (SNAIL,
and SOX9), SNS precursors, (PHOX2b and TH), noradrener-
gic sympathetic neurons (DBH), and other neuronal markers
(NCAM, PRPH) on days 7, 14, and 21 of coculture of
unsorted cells, as well as on day 8 for p75+ ve FACS sorting
(see Supplementary Information 1 for primer sequences).
Densitometry was performed using ImageJ software (NIH,
USA). Total intensity was calculated from PCR bands and
first normalised to GAPDH; mRNA expression for each tar-
get was then calculated as fold change relative to undifferen-
tiated H9 stem cells.

2.9. Quantitative Reverse Transcriptase PCR (QRT-PCR).
Taqman® gene expression assay primers and probes were
used to amplify OCT4, TP53, DBH, and GAPDH. RT-PCR
was performed in a total reaction volume of 10μl containing
5μl of Taqman universal PCR master mix, 0.5μl of primers
and probes mix (Applied Biosystems), 2.5μl cDNA, and
2μl H2O. Reactions were performed in triplicate then quan-
tified using the ABI Prism 7900HT sequence detection sys-
tem (Applied Biosystems) relative to GAPDH.

2.10. Statistics. A chi-squared test was used to compare the
percentages of p75+ and p75− ve cells obtained using
MACS® neuronal media and neural BHK media (n = 3).

Continuous velocity data for p75+ cells grown on PA6
cells v poly-l-ornithine/laminin plates was summarised using
the mean and standard deviation for normally distributed
data and medians with quartiles for skewed data. Log trans-
formations were performed to reduce skewness, and two
sample t-tests were used to compare normally distributed
data. The statistical package STATA version 14.1 (StataCorp
2015, Stata Statistical Software: Release 14; College Station,
TX: StataCorp LP) was used for statistical analyses.

3. Results

3.1. Confirmation of Phenotype and Karyotype of H9-
Undifferentiated hESC. Live cell staining using antibodies
specific to the pluripotency markers SSEA4 and TRA-1-60
showed intense staining of undifferentiated H9 ES cell colo-
nies (Figures 2(a-iii) and 2(b-iii)). Hoechst staining of H9
cells was less intense than in the Fed1A feeder cell layer,
indicative of a “Hoechst dim” phenotype due to efflux of
Hoechst dye by stem cells, in contrast to brighter staining
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observed on the feeder layer (Figures 2(a-ii) and 2(b-ii)). Kar-
yotyping of H9 cells confirmed a normal female karyotype
(Figure S1).

3.2. Sympathetic Neuronal Differentiation of H9 Cells
Detected by Immunofluorescence and RT-PCR. Following 7
days of PA6 coculture, morphological changes towards a
neuronal phenotype were observed in H9 cells using phase
contrast microscopy. Immunofluorescence of H9 cells on

day 21 of differentiation for neuronal markers showed
>90% of cocultured cells immunostained positive for NCAM
(Figure 3(a)) with PRPH positivity in 20% (Figure 3(c)). TH-
positive cells were observed in around 10% of the cell popu-
lation (Figure 3(b)). DBH was detected in approximately 5%
of differentiated cells (Figure 3(d)). This cell population
included around 10% PA6 cells, and thus, the percentage of
cells differentiating towards a sympathetic neuronal lineage
is likely to be slightly higher than this.

SSEA 4Hoechst(i) (ii) (iii)

100 𝜇m

(a)

TRA-1-60

100 𝜇m

(i) (ii) (iii)

(b)

Figure 2: H9 hESC live cell staining for pluripotency markers SSEA4 and TRA-1-60. (a-i, b-i) Phase contrast microscopy. (a-ii, b-ii) Hoechst
staining showing efflux of Hoechst from stem cells but not feeder layer. (a-iii) SSEA-4 (red) and (b-iii) TRA-1-60 (green) showing specific
staining for human ES cell colonies compared with control feeder cells. White arrows highlight the stem cell colony borders.
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Figure 3: Immunofluorescence of unsorted H9 hESCs on day 21 of neuronal differentiation demonstrating expression of (a) neural cell
adhesion molecule (NCAM), (b) tyrosine hydroxylase (TH), (c) peripherin (PRPH), and (d) dopamine betahydroxylase (DBH).
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mRNA expression by RT-PCR of early neural crest spec-
ifier genes including SNAIL showed a twofold increase
between day 0 and day 14, and SOX-9 expression increased
14-fold by day 14 (Figure 4(a)). The addition of BMP4
(10ng/ml) on days 5–9 of coculture led to a 12-fold increase
in PRPH expression from day 7 to day 21 of differentiation
compared to 8-fold without BMP4 (Figure 4(a)). p75 expres-
sion was highest between day 7 and day 14 of differentiation
and increased upon addition of BMP4 (Figures 4(a) and
4(b)). Low basal expression of p75, DBH, and TH was
detected, possibly due to spontaneous differentiation into
neuronal cells as has previously been reported for H9 hESC
[18]. High expression of p75 was observed in the neural
crest-derived control tissues, fetal adrenal gland comprising
adrenal cortex and medulla and control dorsal root ganglion
(sensory neurons). There was a 5-fold increase in DBH
expression and a 6-fold increase in TH expression by day 7
of differentiation compared to control H9 cells. High expres-
sion of TH and DBH was observed in the positive controls
(IMR32 and SHSY5Y cells). DBH expression on day 7 was
comparable with one of the fetal adrenal glands, and as

expected, the fetal dorsal root ganglion showed low expres-
sion of DBH (Figure 4(b)). The highest expression of the
pluripotency gene LIN28B expression was observed in H9
cells on day 7 of differentiation (Figure 4(b)).

3.3. Quantitative RT-PCR of Differentiating H9 Cells. The
highest expression of the pluripotency marker OCT4 was
observed in undifferentiated H9 cells, decreasing by day 7
through day 21 of differentiation (Figure 5(a)). SHSY5Y and
IMR-32 neuroblastoma cell lines expressed low levels of
OCT4 compared with undifferentiated H9 cells (Figure 5(a)).
TP53 was expressed in pluripotent H9 cells and expression
maintained throughout differentiation at levels comparable
with the neuroblastoma cell lines (Figure 5(b)). DBH expres-
sion was very low in undifferentiated H9 cells and increased
to a maximum on day 7 of differentiation before declining
during the later stages of differentiation (Figure 5(c)), con-
sistent with the data obtained by RT-PCR where the highest
expression of DBH was also on day 7 of differentiation
(Figure 4(b)). As expected, control neuroblastoma cell lines
expressed very high levels of DBH (Figure 5(c)).
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Figure 4: Neuronal differentiation in H9 cells. (a) Semiquantitative RT-PCR showing mRNA expression of neural crest specifiers p75, SOX-9,
and SNAIL and the neuronal marker PRPH on days 0, 7, 14, and 21 of differentiation in the presence (+) or absence (−) of 10 ng/ml BMP4 on
days 5–9 of differentiation with the SKNAS neuroblastoma cell line as a + control. (b) RT-PCR expression of p75, DBH, TH, and LIN28B
expression in undifferentiated H9 cells and days 7, 14, and 21 of differentiation compared with control SHSY5Y and IMR-32
neuroblastoma cell lines, normal fetal adrenal gland (1 and 2) and fetal dorsal root ganglion. −ve = negative control.
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3.4. Enrichment of Sympathetic Progenitor-Like Cells by p75
Sorting. To enrich for NCDSC and sympathetic neuron-like
cells, cells were sorted using FACS for the NCSC marker
p75 (CD271) on day 8 of coculture (Figure 4(b)). To optimise
neural crest stem cell differentiation further, two different
neuronal media types were compared: (a) MACS® neuronal
media +B27 and (b) neural BHK media +N2 supplement.
On day 8 of differentiation, an increased proportion of p75
+ ve cells were observed using MACS® neuronal media
45.0%± 0.8 (95% confidence interval) compared with 32.7
± 0.8 (95% confidence interval) using neural BHK media
(n = 3, p < 0 0001, chi-squared test) (Figure 6(a)). Prelimi-
nary results undertaking FACS for both p75 and DBH on
day 8 of differentiation showed that 5.5 and 5.7% of cells were
p75 and DBH+, by FACS following culture in BHK and
MACS media, respectively (data not shown).

Following p75 sorting, autonomic neuronal populations
were enriched when cells were grown in preconditioned
media from cultured hESC in the presence of N2 supplement,
NGF, and dbcAMP (data not shown). On day 28 post p75
sorting, dual immunofluorescence identified sympathetic

neurons by PRPH and TH copositivity cells in H9 cells
(Figure 6(b-i)) in up to 20% cells. Noradrenergic sympathetic
neurons identified by copositivity for both PHOX2B and
DBH were present in 9.4%± 5.5% H9 cells (Figure 6(b-ii)).
mRNA expression by RT-PCR of p75+ ve H9 cells showed
enrichment for p75 and the sympathetic neuronal markers,
TH and DBH, together with PRPH where expression was
observed exclusively in p75+ ve cells (Figure 6(c)). This was
in contrast to the early neural crest specifier SNAIL which
was expressed in both p75+ ve and p75− ve cells. Following
selection of p75+ ve cells using neural crest stem cell
microbeads in differentiating H9 cells, p75mRNA expression
was highly enriched in the p75+ ve cell fraction andDBHwas
expressed exclusively in p75+ ve cells whereas TH was
expressed in both the p75-enriched and the p75-depleted cell
populations (Figure 6(d)). This indicates possible contamina-
tion of p75+ ve cells in the p75-depleted population.

3.5. Live Cell Imaging (Biostation). p75+ ve-sorted cells
plated onto PA6-coated plates cells survived better compared
to those on poly-l-ornithine/laminin-coated plates (data not
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Figure 5: Quantitative RT-PCR of H9 cells. (a) High mRNA expression of OCT4 in pluripotent H9 cells decreases throughout neuronal
differentiation with low expression in SHSY5Y and IMR-32 neuroblastoma cell lines. (b) Sustained TP53 expression throughout
differentiation at levels similar to SHSY5Y and IMR-32 neuroblastoma cell lines. (c) Low DBH expression in undifferentiated H9 cells
increases to a maximum on day 7 of differentiation but is less than SHSY5Y and IMR32 neuroblastoma cell lines (n = 3 in triplicate,
values relative to GAPDH).
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shown). H9 cells appeared to track and follow PA6 cells
adhering to them which in turn led to enhanced survival.
Time-lapse microscopy revealed that p75+ ve cells showed
increased migration compared with p75− ve cells. A t-test
for independent groups with correction for unequal vari-
ances showed that the mean logged velocity for p75+ ve cells
grown on PA6 cells was higher than that for p75− ve cells
(p < 0 001). A similar analysis showed that the mean logged
velocity for p75+ ve cells grown on poly-l-ornithine /laminin
cells was higher than that for p75− ve cells (p < 0 001)
(Figures 7(a) and 7(b); Supplementary online video 1).

4. Discussion

The aim of the current study was to optimise a model of nor-
mal human sympathetic neuronal development using hESC,
which could be used to understand the normal development
of the SNS and in the future the pathogenesis of neuroblas-
toma and other neural crest-derived malignancies.

In this study, we optimised derivation of neural crest-like
cells and noradrenergic sympathetic neuron-like cells using a
variety of methods. Initially, we tested conditions for neural
crest-derived stem line cell differentiation by comparison of
two media types: (1) MACS® neuronal media and (2) neural
BHK media, where the former was found to be superior for
the generation of p75+ ve cells. We also optimised BMP
exposure and showed that BMP4 exposure alone was supe-
rior, in agreement with previous studies showing that
although early exposure to BMP4 can promote dorsal neural
differentiation, when applied at later stages, BMP4 enhances
the production of NCSC and autonomic neurons in primate
and murine cells [9, 19]. BMP signalling is essential for the
initiation of differentiation of neural crest cells into sympa-
thetic neurons in the developing embryo [20, 21]. To our
knowledge, there is only one other study differentiating hESC
to autonomic neurons which has employed the use of BMP4
during differentiation [10], but this study did not use SDIA

which is likely to be at least partly responsible for the higher
yields of sympathetic neurons we observed (Table 1).

p75 is the low affinity NGF receptor and a well-
characterised marker for neural crest-derived stem-like cells
[22]. Using a murine in vivo model, NGF was shown to bind
the high-affinity NGF receptor (TRKA) which regulates the
expression of both TH and DBH in developing and maturing
sympathetic neurons [23]. p75 cell sorting has been used pre-
viously to purify neural crest stem cells from hESCs [24, 25],
and our work has extended this field by showing that day 8 of
differentiation induced by SDIA is the optimal time for p75
cell sorting.

The presence of TH and PRPH costaining or DBH and
PHOX2B was used to identify catecholaminergic and norad-
renergic sympathetic neurons, respectively. TH is the rate-
limiting enzyme in the biosynthesis of dopamine and nor-
adrenaline and is a useful marker for catecholaminergic neu-
rons (Figure 1(b)) [26]. PRPH is expressed in neurons of the
developing peripheral nervous system [27].

PHOX2B regulates the expression of PHOX2A and heart
and neural crest-derived expressed protein 2 (HAND2).
Hand2 is induced by BMPs and is first observed after the
onset of Phox2B and Asc-1 expression. Overexpression of
Hand2 has been shown to induce the generation of catechol-
aminergic neurons from neural precursor cells both in vitro
and in vivo [4, 5]. Furthermore, germline mutations in
PHOX2B have been identified in hereditary neuroblastoma
[28, 29]. DBH, a specific marker of noradrenergic sympa-
thetic neurons, is expressed in some neuroblastoma cell lines
[30]; it catalyses the conversion of dopamine to noradren-
aline in the catecholamine synthesis pathway leading to
noradrenergic neurons [31]. In the current study, norad-
renergic sympathetic neurons were identified byDBHmRNA
expression and immunostaining for DBH alone and DBH/
PHOX2B copositivity.

Time-lapse analysis of p75+ ve and p75− ve cells showed
that p75+ ve cells had increased migration compared with
p75− ve cells, consistent with migratory properties of neural
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Figure 7: Migration of p75+ and p75–H9 cells sorted by FACS on (a) PA6 coated wells showing a higher mean logged velocity of p75+ cells
compared with p75− cells (p < 0 001), and (b) poly ‘L’ornithine/Laminin coated plates again showing a higher mean logged velocity in
p75+ cells (p < 0 001).
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crest cells [1]. These results mirror findings observed in vivo
using live cell imaging during embryogenesis [32].

QRT-PCR gene expression analysis showed high expres-
sion of the pluripotency markers OCT4 and LIN28B in plu-
ripotent H9 cells decreasing with the onset of neural
differentiation as expected [35].

TP53 expression was observed throughout differentiation
at levels similar to those in neuroblastoma cell lines consis-
tent with evidence that p53 regulates the proliferation and
differentiation of neural progenitor cells independently of
its role in the induction of apoptosis. In vivo studies using
transgenic mouse models have demonstrated a fundamental
role for p53 during neural stem cell self-renewal and differen-
tiation [36, 37].

Previous studies have used murine neural crest systems
to investigate neuroblastoma development by MYCN trans-
formation of primary neural crest cells derived from day 9.5
mouse embryos [38]. Further studies also reported that
MYCN and common ALK mutations exert a role in neuro-
blastoma tumour initiation using neural crest progenitor cell
lines MONC-1 and JoMa1 [39, 40]. Very recently, human
NCSC derived from hESC have been transformed byMYCN
to form neuroblastoma in vivo [11]. The use of human stem
cell models of sympathoadrenal development such as ours
will develop this field further.

In conclusion, our study describes advancement in the
generation of noradrenergic sympathetic neuron-like cells
from hESC to improve our understanding of the normal
development of the human SNS and abnormalities thereof
including neural crest-derived malignancies such as neuro-
blastoma. This model could later be perturbed by onco-
genic transformation of these cells with genes known to
be important in the development of neuroblastoma includ-
ing MYCN and/or ALK as has been reported for NCDSC,
to better understand events leading to the development of
neuroblastoma, its cell of origin, and new potential treat-
ment targets.
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