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Subcortical circuits mediating sleep–wake functions have been well characterized in ani-
mal models, and corroborated by more recent human studies. Disruptions in these circuits
have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin
Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepi-
ness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off
state determined by subcortical circuits, but encompasses a complex range of behaviors
determined by the interaction between cortical networks and subcortical circuits. While
conceived as disorders of sleep, HDs are equally disorders of wake, representing a funda-
mental instability in neural state characterized by lapses of alertness during wake. These
episodic lapses in alertness and wakefulness are also frequently seen in neurodegener-
ative disorders where electroencephalogram demonstrates abnormal function in cortical
regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI
shows instability of cortical networks in individuals with CFs. We propose that the inability
to stabilize neural state due to disruptions in the sleep–wake control networks is com-
mon to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative
disorders.

Keywords: hypersomnia, cognitive fluctuations, sleep, review, brain networks

INTRODUCTION
The brain is a complex dynamic system in which interactions
on multiple temporal and spatial scales enable adaptive behav-
iors appropriate to environmental stimuli. These interactions are
accomplished not only by specific network activities that produce
organismal responses to stimuli but also by the general state of
the system, which is most clearly represented in the shift of state
from wake to sleep. Thus, system-wide dysfunctions can occur
both in the networks responsible for specific functional responses
to the external world and in the less well understood networks
responsible for the maintenance of and switching between neural
states.

The normal neural state transition from wake to sleep is defined
by changes in scalp-recorded electroencephalogram (EEG) that
exhibit a stereotypic progression through a full nocturnal sleep
bout (Figure 1) (1). The transitional state from wake to sleep is
characterized by a shift in EEG spectral content in which alpha (8–
12 Hz) band power is reduced as theta (4–7 Hz) power increases.
Behaviorally, subjects are drowsy and physically relaxed, although
when questioned they do not report being asleep. Following this
transitional period, as subjects descend to true sleep (N2) the scalp
EEG exhibits an increase in low frequency power and character-
istic spindles of sleep (7–14 Hz). Subjects then descend into slow

wave sleep (SWS, N3) that is characterized by the presence of large
amplitude slow (0.5–4 Hz) delta frequency waves on scalp EEG.
Stages N1–N3 comprise non-rapid eye-movement (NREM) sleep
and will cyclically alternate with rapid-eye-movement (2) sleep
through the sleep bout. REM sleep exhibits an “active” pattern
similar to that of wake, and is characterized by the distinct eye-
movements from which its name was derived, peripheral atonia,
and behavioral quiescence.

In 1949, Moruzzi and Magoun reported that stimulation of the
brainstem reticular core produced changes in the EEG akin to those
seen in arousal (3). Following the description of REM sleep by
Aserinsky and Kleitman (4), studies in animal models showed the
importance of the brainstem in the generation of this sleep stage
(1, 5). Subsequent studies explored the neurotransmitter systems
involved in the cyclic alternation of REM and NREM sleep, as well
as brainstem regions active during wake, pointing to an important
role for the brainstem reticular core in the control of sleep and
waking. These studies clarified many mechanisms of the induc-
tion and maintenance of normal sleep, and the control of both
circadian (24-h) and ultradian (90–120 min cycle of NREM/REM)
rhythm generation in both animal and human subjects (1, 6–14).

Disruptions of sleep–wake and circadian cycling commonly
accompany neuropsychiatric and neurodegenerative disease (15,
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FIGURE 1 | Scalp-recorded EEG defines the neural and behavioral states
of wake and sleep (A), which are charted over a full nocturnal sleep
bout in a hypnogram (B). The descent to sleep is characterized by changes
in EEG frequency content and amplitude [above state bars in (A)], with deep
sleep (slow wave sleep, N3) characterized by large amplitude slow waves

(0.5–4 Hz). Over the nocturnal sleep bout, SWS (N3) duration is reduced
[blue bars in (B)] while REM sleep duration increases [red bars in (B)] and is
generally longest just prior to waking. A cycle is defined by the shift from
REM sleep to another sleep stage, and normal sleepers generate two to
seven cycles per night.

16). Such disruptions range from changes in the duration of
nighttime sleep or specific sleep periods to disorders of circadian
patterning such as seen in “sundowning” in Alzheimer’s Disease
(AD) patients (15–19). In addition to overt disruption of night-
time sleep, and often considered solely a concomitant of the loss of
sleep, daytime cognitive function may also be adversely impacted
in these disorders. While the mechanisms by which neurocognitive
and neurobehavioral dysfunction interact with sleep and circadian
rhythm disruptions are currently unknown, there is clear over-
lap between sleep regulating regions and neurotransmitter and
neural network systems affected in these disorders (15, 17, 20)
that points to the potential for complex interactions between sleep
and cognition.

In 1917, Constantin von Economo proposed a neurophysi-
ological substrate for the control of the neural state transition
from wake to sleep based upon the clinical and neuropatholog-
ical features of a disorder in which patients exhibited abnormal
sleep/wake rhythms (21, 22). This disorder, which von Eonomo
termed encephalitis lethargica (EL), exhibited two subtypes with
opposite effects on sleep/wake rhythms; one in which sleep dura-
tion was prolonged and intruded on waking periods and another in
which patients had reduced sleep durations and difficulty in initi-
ating or maintaining sleep (21, 23). Regardless of subtype, patients
reported excessive daytime sleepiness (EDS). His observations led
him to postulate the presence of an active sleep regulatory system
centered in the hypothalamus (21). Von Economo’s hypothe-
sis that the ventral hypothalamic region housed a sleep center
while posterior hypothalamic regions generated the wake-state has
informed studies of the neurobiology of sleep and arousal since its

initial description, with later studies confirming a major role for
hypothalamus in the regulation of sleep and wake (24–29).

The expression of these biological rhythms in the cortex was
the focus of seminal studies by Mercia Steriade and his colleagues
(30–32), who provided evidence of the role of thalamo-cortical cir-
cuits in the generation of the EEG signatures of sleep. This work
was extended to show the importance of thalamus in generating
EEG rhythms (33–35) while pointing out that the full expression
of these rhythms required the interaction of both thalamus and
cortex (30–32, 36–41). While the cortex has been suggested to play
a role in the decentralized control of the homeostatic sleep drive
(42–44), the current consensus puts the sleep/wake control center
in subcortical circuits. However, regardless of its role in the pri-
mary control of sleep, thalamo-cortical circuitry has a clear and
critical role in the regulation of cognitive and behavioral aspects of
sleep and waking. Thus, the reintegration of this circuitry in the-
ories of neural state regulation is necessary if we are to gain a true
understanding of the role of sleep disregulation in pathological
neural and cognitive states.

BRIEF OVERVIEW OF HYPERSOMNIA DISORDERS
Hypersomnia disorder is an umbrella term for a group of disorders
in which the primary characteristic is EDS in the face of normal
or longer than normal nocturnal sleep (45). Hypersomnia disor-
ders (HDs) are recognized as primary disorders of sleep, and it is
the lack of refreshing sleep – sleep that results in a wake period
in which the patient feels alert and motivated – that often drives
sufferers to seek medical assistance. Yet it must be recognized that
disorders of hypersomnia are equally disorders of wake, as it is the
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waking state in which patients report the greatest distress due to
cognitive, social, or workplace dysfunction.

While most research examining neurobiological and neuro-
physiological substrates of these disorders have focused on the
neural circuitry that produces and maintains sleep and wake, it
is the interactions of these sleep-related circuits with those func-
tioning in wake-state arousal, and how these interactions influ-
ence cognition and behavior, that must ultimately be explained if
effective therapies are to be developed.

NARCOLEPSY
Narcolepsy is a disorder in which sleep intrudes on daily activity
while nocturnal sleep is frequently fragmented, and is classified by
the ICDS-2 as a hypersomnia of central origin (46). Narcolepsy
is clinically defined by a short sleep latency and two or more
sleep onset REM periods (SOREMPs) during a multiple sleep
latency test (MSLT) in which individuals are given four to five
standardized daytime nap opportunities (46, 47). Two forms of
narcolepsy are recognized; narcolepsy with cataplexy, currently
named narcolepsy/hypocretin (HCRT) deficiency disorder (47),
and narcolepsy without cataplexy. Narcolepsy with cataplexy is
due to low levels of hypocretin-1, which can be confirmed by mea-
surement in cerebrospinal fluid (47), and it has a strong linkage to
human leukocyte antigens (48) with HLA-DBQ1*0602 mutations
found in 90% of tested patients (49–51).

In 1998, two laboratories announced the discovery of a new
hypothalamic peptide, one reporting its importance in feeding
[orexin (ORX); (52)] and the other focused on its role in wake
and sleep [HCRT; (53)]. The discovery that narcolepsy with cat-
aplexy resulted from loss of ORX/HCRT-containing neurons in
the posterior lateral hypothalamic area (pLHA) provided a fuller
understanding of the symptomology of this disorder (54–56), and
supported an early hypothesis put forward by von Ecomono (21).
In this disorder sleep-to-wake transitions are unstable, as patients
are generally unable to maintain consolidated sleep during the
main nocturnal sleep period, and unable to maintain wake dur-
ing the normal wake period. Individuals with narcolepsy have
early onset of REM sleep; including at sleep onset, during the
main sleep period and during naps, indicating a defect in the
normal progression of sleep stages. Additional REM phenomena
frequently associated with narcolepsy are also due to an instability
between wake and REM: hallucinations in sleep–wake transitions
(dreaming imagery of REM with awareness of wake), sleep paral-
ysis (paralysis of REM sleep with awareness of wake), and REM
sleep behavior disorder (dream imagery of REM sleep with muscle
tonus of wake).

As with other HD, narcolepsy patients complain of memory
problems and difficulties with concentration and attention (57–
59). Attentional deficits, particularly in vigilance tasks, have also
been reported (58, 60, 61). Attentional deficits seem to be an effect
of the fluctuations of arousal that accompany this disorder, more
than a deficit in attentional control in general (58, 59). These lapses
of attention result in impaired vigilance over long periods that
can be compensated by deploying attention in repeated shorter
bouts (62).

The etiology of narcolepsy is currently unknown (63), although
recent studies have provided strong experimental support for

autoimmune etiology (64–67). Narcolepsy has been reported as
secondary to tumors (68), head trauma (68–70), and immune-
related disorders (67, 71, 72).

KLEINE–LEVIN SYNDROME
The International Classification of Sleep Disorders (ICDS-2) rec-
ognizes idiopathic and recurrent hypersomnia as distinct entities
(46). The most common recurrent hypersomnia is Kleine–Levin
Syndrome (KLS), a rare disorder that predominantly affects ado-
lescent boys and is characterized by bouts of hypersomnolence
during which the patient also exhibits one of the following: cog-
nitive or mood disturbances, compulsive eating, hypersexuality,
or disinhibition behaviors (47, 73). Behavioral, sleep, and mood
symptoms remit in interictal periods (74).

Cognitive disturbances, unlike behavioral and mood distur-
bances, have been reported to outlast ictal periods (73–76).
Depression and anxiety are common in this population (77, 78),
and recent studies suggest that there are long-term deficits in mem-
ory and visuospatial function (73, 75, 76, 79). As these mood and
cognitive symptoms are similar to those reported for idiopathic
HD (iHSD), the pathophysiological mechanisms by which they
are generated is expected to be similar.

Neuroimaging studies have provided some clues as to the
genesis of cognitive and mood disruptions in this population.
Although structural neuroimaging is generally read as normal in
KLS, widespread abnormalities have been reported during ictal
periods based on functional neuroimaging; with reduced blood
flow to thalamus, hypothalamus, basal ganglia, and cortex (73,
80) together with hypometabolism in hypothalamus and cortex
(81). Studies have shown hyperactivation in the thalamus of KLS
patients during performance of a working memory task using
fMRI (75, 76) that significantly differed from the activation seen in
healthy control subjects and correlated with performance deficits
in KLS patients.

The pathophysiology of the disorder is unknown and its diag-
nosis remains based upon symptomology (73, 76, 81). Interest-
ingly, and in common with EL, a viral infection potentially associ-
ated with a subsequent autoimmune response has been proposed
as a causative agent and two autopsy cases have reported inflam-
matory infiltrates in hypothalamus and thalamus (73, 77, 82).

HYPERSOMNOLENCE DISORDER
Hypersomnolence disorder (47) may include only non-refreshing
sleep despite nocturnal sleep durations (idiopathic) but is more
frequently coexistent with other neurological, psychological, men-
tal, and sleep disorders (83, 84). EDS in spite of normal or long
duration nocturnal sleep is characteristic of the disorder though
insufficient to define it (45–47). A characteristic deterioration
in waking function and general alertness is generally remarked
and symptom duration must exceed 3 months with a sleep onset
latency of <10 min for a clinical diagnosis to be made.

Idiopathic hypersomnia (iHSD) occurs in two forms: (1) long
sleep duration, in which patients sleep in excess of 10 h per day
while reporting non-refreshing sleep and EDS, and (2) normal
sleep duration where sleep bouts are within normal range but EDS
and non-refreshing sleep remain primary complaints. Patients
report constant fatigue or a constant lack of alertness during wake
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periods more than sleepiness (85–87) together with great difficulty
in waking after sleep. Sleep efficiency is good in these patients,
and REM sleep onset latencies and durations are generally within
normal range. However, changes in nocturnal sleep architecture
during polysomnography (PSG) have been reported, including a
reduction in the amount of SWS in the main sleep bout with
normal homeostatic reduction (87–89).

In addition to non-refreshing sleep, patients report memory
and attention deficits and commonly present with digestive sys-
tem disorders, depression, and anxiety (84, 86). In a recent study
based on self-reported cognitive changes, 79% of patients with
hypersomnolence disorder (HSD) reported memory problems
that included frequent forgetfulness (86). A recent study assess-
ing sustained attention in a range of HSD patients found impaired
vigilance that did not differ significantly between patient groups
(90), suggesting that this is a common feature of HSD. Mood
disorders are also commonly reported by individuals with iHSD,
with prevalence between 15 and 25% in this population (78, 91)
during asymptomatic periods. The prevalence of depressive symp-
toms during symptomatic episodes is greater (82), with up to 40%
of patients exhibiting symptoms. The pathophysiological mecha-
nisms for mood and cognitive symptoms in iHSD have yet to be
specifically explored, although they are similar to those reported
for KLS.

NEUROBIOLOGICAL SUBSTRATES OF SLEEP AND WAKING
SUBCORTICAL NETWORK INTERACTIONS IN SLEEP AND WAKING
Control of the sleep–wake cycle depends upon a widely distributed
and complex neural system, many components of which have been
shown to be affected by HD. The hypothalamus represents a pri-
mary control center in the regulation of this system; acting as the
interface between circadian, energetic, sleep, and autonomic cir-
cuits that are all modulated in sleep (92–94). The circadian system
provides information critical to the function of the sleep–wake
control system, contributing one arm of the two-process model
of sleep regulation (95) and interacting closely with subcortical
regions to link this to the ultradian sleep–wake rhythm (96, 97).
In the following, we provide a brief overview of the subcortical
brain circuits involved in the regulation and control of sleep and
wake together with the interactions between these systems and the
cortex.

The preoptic region of the hypothalamus is currently recog-
nized as the major sleep-promoting brain region (27–29, 98–100),
with the ventrolateral preoptic area (VLPO) and the median pre-
optic nucleus (MnPO) providing inhibitory drive to brain regions
engaged in the induction and maintenance of the waking state
(Figure 2). Recent studies have pointed to an important role for
melanin concentrating hormone (MCH) neurons of the lateral
hypothalamic area (LHA) in sleep-promotion (101–105). MCH
neurons co-release gamma-amino butyric acid (GABA) in wake-
promoting regions, thus promoting sleep (106, 107). MCH neu-
rons are active in both NREM and REM sleep and there is evidence
suggestive of a specific role in the control of REM sleep, perhaps
together with GABAergic neurons found interspersed with them
in the lateral hypothalamus (101, 106, 108).

Orexin producing cells in the LHA have been shown to play
a major role in the induction and maintenance of the waking

FIGURE 2 |The sleep–wake cycle is controlled by a widely distributed
and complex neural system that includes interacting components of
the brainstem, hypothalamus, basal ganglia, basal forebrain, and
thalamus. The interactions between these systems result in both global
changes in neural state and their behavioral expression at the level of the
spinal cord and brainstem (motor atonia or phasic bursts, autonomic
responses) as well as the cortex (conscious awareness of external
environment). Ach, acetylcholine; GABA, gamma-amino butyric acid; GLU,
glutamate; Hypoth, hypothalamus; LHA, lateral hypothalamic area; ORX,
orexin; VLPO, ventrolateral preoptic area; TMN, tuberomammillary nucleus;
Hist, histamine; NA, noradrenaline; 5HT, serotonin; DA, dopamine; Gly,
glycine.

state (109–112) while linking autonomic and metabolic centers
(113), thus acting as a major integrative system (Figure 3). Sleep-
promoting MCH and GABA neurons are interspersed in the LHA
with wake-promoting ORX neurons, providing for rapid mutual
inhibition in state transitions. The waking state is generated by the
inhibition of hypothalamic sleep-promoting centers together with
excitation of wake-promoting centers in the hypothalamus, brain-
stem, and basal forebrain (Figures 2 and 3). Wake centers of the
hypothalamus include both ORX cells of LHA and histaminergic
(HIST) neurons of the tuberomammillary nucleus (TMN). The
brainstem reticular activating system (RAS) represents the primary
control system for wake (6, 26, 114–117) and consists of acetyl-
choline (Ach)-containing neurons in the pedunculopontine (PPT)
and laterodorsal tegmental (LDT) nuclei, noradrenaline (NE)-
containing cells in the locus coeruleus (LC), serotonergic (5HT)
neurons of the dorsal and median raphe nuclei (RN), glutamater-
gic cells of the subcoeruleus complex (SCC), and dopaminergic
cells of the ventral periaqueductal gray (vPAG) that are reciprocally
connected to wake-promoting hypothalamic centers. Considered
by some a rostral extension of the RAS, the basal forebrain includes
a small population of Ach cells that are active in both wake and
REM sleep, playing an important role in the generation of desyn-
chronized electrical activity of the cortex in both states (118, 119).
Basal forebrain neurons receive input from both hypothalamic
and brainstem wake centers (Figure 2) and may represent a key
mediating center of cortical arousal (120).

Cells of the LHA provide glutamatergic and orexinergic inputs
to brainstem wake-promoting regions of the RAS and receive
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FIGURE 3 |The hypothalamus represents a central control center for
the interaction between circadian rhythms paced by the
suprachiasmatic nucleus (SCN) and the sleep homeostat. Complex
feedback loops within the hypothalamus, and between hypothalamus and
brainstem wake-promoting centers control the putative “switch” between
wake and sleep. Wake-promoting (red) signals serve to enhance activation
of brainstem centers comprising the ascending reticular activating system
while sleep-promoting (blue) centers inhibit this activation. In normal sleep,
the state switch is rapid (<5 min) and the new state is quickly stabilized.
RHT, retino-hypothalamic tract; SPV, subparaventricular zone; SCN, supra
charismatic nucleus; DMH, dorsomedial hypothalamic nucleus; PVN,
paraventricular hypothalamic nucleus; LHA, lateral hypothalamic area;
VLPO, ventrolateral peropic area; TMN, tuberomammillary nucleus;
LDT/PPT, laterodorsal tegmental/peduncular pontine tegmentum; LC, locus
coeruleus; SCC, sub-coerulear complex; GABA, gamma-amino butyric acid;
MCH, melanin concentrating hormone; Hist, histamine; Ach, acetylcholine;
5HT, serotonin; NA, noradrenaline; Glu, glutamate; W, wake; S, sleep.

inhibitory drive from the VLPO. Sleep onset is initiated by acti-
vation of the sleep-promoting VLPO, which acts to inhibit both
RAS and LHA. The balance between sleep-promotion and wake-
promotion is accomplished by a feedback mechanism that enables
the relatively rapid switch in state with a mechanism resem-
bling an electronic switch; an analogy that led Saper and his
colleagues to develop the flip–flop switch model of this state
transition (26, 121). This mechanism provides for the rapid stabi-
lization of a newly entered state, but disruption of this balance
can lead to state instability where inappropriate state switches
can occur.

Under normal conditions, sleep initiation moves the system
into NREM sleep, following which cyclic alternations between
NREM and REM sleep develop (Figure 1B) that constitute the
ultradian sleep rhythm. A normal sleeper will exhibit two to seven
such cycles over a nocturnal sleep bout. It is generally agreed that
mesopontine brainstem nuclei contain the regulatory circuitry
for the stereotypic alternations of NREM and REM sleep. Glu-
tamatergic neurons of the SCC are proposed to be the primary
inducer of REM sleep (122, 123), with current studies suggesting
that hypothalamic MCH cells act to stabilize this state (106). SCC
innervation of cholinergic neurons of the LDT/PPN and basal
forebrain result in the desynchronized EEG characteristic of REM
while inhibitory drive to wake-promoting areas such as DRN and
LC aid in state stabilization. Skeletal muscle atonia is a unique
characteristic of normal REM sleep and is due to SCC excita-
tion of medullary reticular centers that act to inhibit spinal motor
neurons (122–124).

In a normal nocturnal sleep bout, there is a gradual reduction
in the duration of NREM sleep periods with the longest period
occurring in early cycles and the late cycles frequently containing
only N2 sleep. In contrast, REM sleep durations are longest in the
final cycles of the nocturnal sleep bout. The reduction in N3 con-
tent over the night represents the reduction in sleep drive that is
currently conceived as a homeostatic regulatory mechanism.

Sleep homeostasis is the process by which sleep propensity
increases over the wake period and is dissipated during the sleep
period. Early observations pointed to a strong tie between prior
wake time and deep NREM sleep (125–128). The proposal of a
two-process control system for the regulation of sleep and waking
was put forward by Borbely and Acherman (127, 129) in a model
where circadian and homeostatic processes interact to maintain
and regulate sleep/wake cycling. Substantial support for this model
has accrued, leading to general acceptance of its central tenets,
which include the importance of slow wave activity (SWA) as
a marker of both sleep need and its dissipation (126, 128, 130–
134). While no central regulatory center for sleep homeostasis has
been defined, a number of studies have implicated circulating neu-
roactive molecules as potential mediators of homeostatic control
(43, 135–138).

THALAMO-CORTICAL NETWORK INTERACTIONS IN AROUSAL AND
SLEEP
Based on a series of studies pointing to the importance of the ros-
tral brainstem in arousal (3, 139, 140) and REM sleep (141, 142),
the majority consensus among physiologists in the 1990s was that
the brainstem reticular system controlled the oscillatory network
responsible for wake and sleep. A large body of evidence followed
these studies, reporting the importance of brainstem cholinergic
systems in the behavioral and electrophysiological expression of
wake and arousal. The discovery that the thalamus did not present
a passive, quiescent response to the shift from wake to sleep, but
instead exhibited dual processing led to the conception of sleep
as a process in which the thalamus acted to “gate out” external
information and thus prevent arousal (143).

A different role for the thalamus, and thalamo-cortical interac-
tion, was provided by seminal studies investigating electrophysi-
ological rhythms in the cortex during sleep and wake. In a series
of studies investigating the role of the thalamo-cortical circuitry
in sleep, Steriade and his colleagues (30–32) introduced a new,
ultraslow (<1 Hz) cortical rhythm distinct from SWS that was gen-
erated in cortical neurons and projected to thalamus (32) where it
served to organize the slower sleep rhythms of spindles and slow
waves (30). Emphasizing its cortical origin, studies showed that
thalamic lesions did not abolish the rhythm (143, 144) and that
the cortex itself maintains SWA even in an isolated slice prepara-
tion (38). Further, the ultraslow rhythm is also seen in thalamic
nuclei, most strongly in the reticulothalamic cells that have been
shown responsible for the generation of the spindles of sleep (32).
The importance of these seminal papers was in the understanding
that thalamo-cortical interactions are ultimately the generators of
the major sleep rhythms recorded at the scalp by which sleep states
are defined. Thus, the thalamus acts as a major integrating center,
generating the rhythms of both wake and sleep in concert with a
widespread network encompassing brainstem, hypothalamus, and
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cortex. In the current understanding of sleep–wake circuitry, sleep
is a state actively generated by a large and complex neural network.

In keeping with current theories of brain network function
in sleep, the thalamus has been shown to continue to transmit
external information to the cortex in both NREM and REM
states (145–153). However, while information continues to be
transmitted from the thalamus to the cortex, there are distinct
differences between wake-state responses and those seen in either
NREM or REM sleep. During NREM sleep, neuroimaging studies
have shown that higher order cortical regions show significantly
reduced or absent responses to stimuli (146, 147, 150) while
responses in primary cortices appear to remain near to those
noted in wake (145, 152). Further, the timing of inputs relative
to thalamo-cortical waveforms characterizing NREM sleep sig-
nificantly impacts the degree to which further processing occurs
(150). In REM sleep, where cortical activity resembles that of wake,
recent reports suggest that more complex processing may occur
than seen in deep NREM sleep (149, 153) while yet remaining
suppressed relative to that of wake.

While further research is required to fully describe the complex
network interactions resulting in normal sleep/wake transition-
ing, it is increasingly clear that the hypothalamus and thalamus
represent critical integration and control centers by which these
states are fully expressed. As noted by von Economo and illustrated
by the clear instability of state in narcolepsy and other HDs, the
hypothalamus plays a critical role in the transitions between and
maintenance of the states of wake and sleep. Yet, Llinas and Steri-
ade (39) point to the thalamus as the fundamental determinant of
system state, and this view is upheld by studies showing that thal-
amic ablation leads to a pathologically prolonged state of wake
in both animals and humans (154–156). To complicate matters
further, as research focuses on the role of diffusible somnogens as
potential mediators of the homeostatic sleep drive (43, 135–138),
some are suggesting a central role for the neocortex in the control
of sleep and waking. This suggestion has received some support
from recent studies showing that sleep may not be globally exhib-
ited, but occur locally in specific cortical areas even as the organism
displays behavioral wake (157–161).

Increasing evidence thus points to a widespread and highly con-
nected network that acts in concert with the circadian rhythms
generated in the suprachiasmatic nucleus of the hypothalamus
to not only control the cycling of neural state between wake and
sleep, but to integrate that state with metabolic and physiological
systems sharing the same circadian timing (92, 96, 97). At present,
recognition of the complex and redundant anatomical linkages by
which the thalamo-cortical, hypothalamic, subcortical, and brain-
stem sleep/wake control centers interact (Figures 4 and 5) leads to
a better understanding of the huge array of behavioral and physi-
ological responses that could result from dysfunction at any level
of this network.

COGNITIVE ASPECTS OF AROUSAL AND SLEEP
The complex functional integration of changes in behavioral state
indexed by the alternation of wake and sleep is generally con-
ceived as binary – the system is either in one state or the other.
While changes in behavioral state may indeed show pathological
binary state changes, as in the intrusion of REM sleep on wake seen

FIGURE 4 |The orexinergic cells of the posterior lateral hypothalamic
area are well placed to integrate information from metabolic and
autonomic centers with both sleep–wake and circadian control
systems. LHA, lateral hypothalamic area; ORX, orexin/hypocretin; HIPP,
hippocampal formation; AMY, amygdala; BF, basal forebrain; PVN Thal,
paraventricular nucleus of the thalamus; SCN, suprachiasmatic nucleus;
VTA, ventral tegmental area; VLPO, ventrolateral preoptic area; TMN,
tuberomammillary nucleus; LC, locus coeruleus; Ra, Raphe nuclei;
PPN/LDT, laterodorsal tegmental/peduncular pontine tegmentum; NTS,
nucleus tractus solitaries; DMV, dorsal motor nucleus of the vagus; RAp,
raphe pallidus; SC, spinal cord.

in narcolepsy with cataplexy; such binary shifts in state are far less
common in other HDs, where they frequently present as lapses of
attention that could be considered neural states intermediate to
wake and sleep.

Such intermediate states are well recognized in the attentional
lapses seen with day-dreaming, boredom, or drifting off due to
mild sleepiness (162, 163). Cognitive lapses have been the source of
studies investigating transportation safety,where attentional lapses
are a common cause of accidents (164–166). While lapses in atten-
tion are common during wake-state periods, they are exacerbated
by sleep loss (167–169) where brief sleep intrusions (microsleeps)
are identifiable on EEG (170).

Neuroimaging studies have pointed to neural substrates for
such attentional lapses, identifying the importance of the thalamus
in both the maintenance of wake and in the allocation of atten-
tional focus under conditions of high cognitive load (168, 170).
When sleep deprived, subjects showed increased thalamic activity
in response to a visual attention task (168) relative to activation
during rested task performance. A study looking at the neural
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FIGURE 5 | Interactions between thalamo-cortical, hypothalamic,
subcortical, brainstem, and spinal control centers are highly complex
and result in the integrated response of metabolic, autonomic, and
cognitive systems to daily sleep–wake rhythms. Dysfunction at multiple
levels in this system would reverberate to encompass broadly distributed
symptomology. BF, basal forebrain; THAL, thalamus; BG, basal ganglia; HYP,
hypothalamus; MBRAIN, midbrain; MED, medulla; SC, spinal cord; CONSC,
consciousness; SLEEP HOM, sleep homeostasis; AUT REG, autonomic
regulation; CIRC RHY, circadian rhythm; FEED/MET, feeding/metabolism;
S/W switch, sleep/wake switch; RESP, respiratory control; CARDIO,
cardiovascular control; FEED, feeding; NREM/REM, NREM/REM circuit
controlling switching between sleep states; MOTOR CON, motor control;
PERIPH SENS, peripheral sensation; AUTON CON, autonomic control.

correlates of microsleeps during a visual tracking task reported
decreased thalamic activity during microsleep periods (170).

A number of studies have identified two counteracting brain
networks (171–174), one most active during alert arousal [“task-
positive,” (171, 173, 175, 176)] and the other dominant during
periods of quiet waking or internally directed mentation [“default
mode network (DMN),” (171, 177–180)]. When subjects are
actively engaged in task performance, DMN activity is reduced
(177, 181) while that of the “task-positive” network is enhanced
(182, 183). During natural sleep (48) and under conditions of
sleep deprivation (184), the anticorrelated activity noted between
these two networks is reduced. While the level of anticorrela-
tion between task-positive and DMN networks shows substantial
inter-individual variability (172, 185), its maintenance reduces
variability in task performance (172). In keeping with these results,
brief lapses in attention during task performance have been linked
to increased DMN activity (162).

Keeping in mind both the dynamic nature and the connectional
complexity of the brain networks (186) controlling wake, sleep,
and their intermediate states, these data suggest that dysfunction
within these networks can be expressed across the full state space
of the organism, resulting in diverse biobehavioral abnormalities
(Figure 5). Disorders of sleep, such as the HDs, result in disor-
dered cognitive and physiological function together with changes
in the normal alternation of wake and sleep states. It is equally the
case that disorders of cognition, as seen in neurodegenerative dis-
orders such as AD and Dementia with Lewy Bodies (DLB), result
in disordered sleep that includes abnormal alternations between
wake and sleep states.

FLUCTUATIONS OF COGNITION
Cognitive fluctuations are spontaneous alterations in cognition,
attention, and arousal (187) in which EDS is a prominent compo-
nent and may include inappropriate sleep periods or decreased
responsiveness during normal waking hours (188–190). Indi-
viduals with cognitive fluctuations (CFs) not only exhibit a
higher propensity to fall asleep (hypersomnia), they also tran-
sition from a less alert to a more alert state spontaneously.
Thus, the attentional lapses characteristic of CF are a manifes-
tation of a general propensity toward inappropriate alterations in
brain state.

Cognitive fluctuations are a core diagnostic criterion of DLB
(188, 191), and are also seen in AD, Parkinson’s Disease (PD), and
1–3% of non-demented individuals (192–194). In DLB, CFs are
more likely to be associated with daytime sleepiness, lethargy, and
sleeping than in AD or vascular dementias (188, 189). Function-
ally, CFs result in worse clinical dementia ratings and are associated
with poorer neuropsychological performance (195), greater func-
tional impairment (193), poorer quality of life, and increased
caregiver burden (196).

Diagnosis of CF generally relies upon clinical assessment (192),
although caregiver reports (187, 188, 192) may also be useful.
The hypothesis that fluctuations of performance on attentional
tasks would reflect clinically defined and more long-term CFs
has been tested in a number of studies (193, 197) with mixed
results. A recent study investigating the relationship between
daytime sleepiness and cognitive performance in DLB and PD
patients (197), using maintenance of wake to define alertness lev-
els, reported that CFs and level of alertness may be independent of
one another, a suggestion endorsed by the study of Escandon and
colleagues (195).

Electroencephalogram and neuroimaging data from several
groups support the hypothesis that fluctuations reflect abnor-
mal functional brain network interactions. Cortical slowing is
a common feature of dementia, with a decrease in alpha-band
amplitude in DLB accompanied by a loss of functional alpha
coupling between frontal and temporal regions (198–201). While
spectral abnormalities are common to a number of neurologi-
cal disorders, including AD, recent studies have pointed to higher
amplitude delta and theta rhythms in DLB relative to AD (199)
that, together with other differences in the inter-relationships
between magneto-electrical cortical rhythms may provide bio-
markers of neurodegenerative disorders to aid in early diagnosis
and development of therapeutics (200, 202).
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Neuroimaging studies of DLB report metabolic and blood
flow reductions in parietal, frontal, and occipital cortices together
with gray matter atrophy that is predominant in parieto-temporal
regions (203–209). Occipital lobe dysfunction identified using
both emission tomography and functional magnetic resonance
imaging techniques, has been associated with poor visuospatial
performance and visual hallucinations in some studies (203, 207,
210). While fewer studies have focused on the brain regions or net-
works underlying fluctuating levels of alertness, a single photon
emission tomography (SPECT) study reported an association of
CFs in DLB with increased perfusion in thalamus (211), a finding
partially supported by findings of hyperperfusion in both thal-
amus and striatum in DLB patients in whom fluctuation status
was not reported (212). Additionally, regional deficits in cere-
bral blood flow in the precuneus and occipital lobes have been
reported to differentiate DLB from AD (210, 213, 214). Using
diffusion tensor imaging (DTI), loss of white matter integrity
in the posterior cingulate and visual association areas has been
reported in DLB (215, 216). More recent studies have focused on
the role of neural network interactions, with the understanding
that disparate brain regions interact to produce different brain
states and activities. Increased functional connectivity between
precuneus, putamen, and parietal cortex has been reported (217)
with a second study reporting increases in connectivity between
posterior cingulate regions and thalamus, globus pallidus, and
anterior cingulate (218). Using multivariate analytic techniques
in SPECT, a recent study has reported that decreased activity
in bilateral parietal and parieto-temporal regions distinguished
DLB from AD. While more studies are needed, particularly in
regard to fluctuations of alertness, these studies point to a pat-
tern of deficits in regional connectivity, metabolism, and blood
flow that include areas important in the allocation and mainte-
nance of attention, including the frontal cortex, parietal cortex,
posterior cingulate, and precuneus. While data are mixed con-
cerning changes in thalamic activity levels during rest, and studies
addressing changes in thalamic connectivity in DLB or CFs are
lacking, changes in thalamic function in patients with CF have
been reported (211, 212).

CONCLUSION
Over the past two decades, the central importance of sleep to both
physiological and mental health has become increasingly clear. The
understanding that sleep is both a local and a global phenomenon
(157, 159, 160, 219) not fully constrained to the nocturnal sleep
bout but locally apparent even in wake (158, 220) has provided a
strong basis for the proposal that its effects on wake-state cogni-
tive function are strong. The growing evidence of the importance
of sleep to cognitive function (221–225) suggests that prolonged
sleep disregulation may be a major factor in long-term cognitive
decline, particularly when coupled with normal changes related to
increasing age.

While the neural basis for disruptions in the normal alter-
nation between wake and sleep state differs between HDs and
the CFs seen in DLB, those changes impact the distributed and
complex network controlling those states, while studies focused
on CFs have yet to examine subcortical interactions that may
provide evidence of such associations. The brain must maintain

a balance between dynamic stability and instability; stability so
as to recapitulate states and behaviors with proven efficacy, and
instability so as to rapidly transition between states in response
to unexpected or novel inputs. While neuroimaging studies pro-
vide important information on those brain networks involved in
behavior, it is worth noting that these networks are dynamically
regulated such that regional network membership shifts on mil-
lisecond timescales (186, 226–228). Further, as reported by Hellyer
and colleagues (186), one property of these dynamic interactions
may be the stabilization of network interactions during wake-
state behaviors in which attention must be focused on behavioral
tasks to provide optimal performance. Thus, we propose here that
reductions in the ability to stabilize network interactions may
underlie both disturbances in cognitive function that accompany
sleep abnormalities and the disruptions in sleep that accompany
neuropathological cognitive function.
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