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ABSTRACT
Prostate cancer (PCa) is the most common malignant tumor in men. Chemotherapy with docetaxel 
(DTX) and novel hormonal agents such as enzalutamide (EZL) and abiraterone are the preferred 
first-line therapeutic regimens. Prostate-specific membrane antigen (PSMA) is overexpressed on 
the surface of PCa cells. This study aimed to prepare a PSMA targeted (Glutamate-Urea-Lysine, 
GUL ligand modified), glutathione (GSH)-sensitive (Cystamine, SS), DTX and EZL co-loaded 
nanoparticles (GUL-SS DTX/EZL-NPs) to treat PCa. Polyethylene glycol (PEG) was conjugated with 
oleic acid (OA) using a GSH-sensitive ligand: cystamine (PEG-SS-OA). GUL was covalently coupled 
to PEG-SS-OA to achieve GUL-PEG-SS-OA. GUL-PEG-SS-OA was used to prepare GUL-SS DTX/
EZL-NPs. To evaluate the in vitro and in vivo efficiency of the system, human prostate cancer cell 
lines and PCa cells bearing mice were applied. Single drug-loaded nanoparticle and free drugs 
systems were utilized for the comparison of the anticancer ability. GUL-SS DTX/EZL-NPs showed 
a size of 143.7 ± 4.1 nm, with a PDI of 0.162 ± 0.037 and a zeta potential of +29.1 ± 2.4 mV. GUL-SS 
DTX/EZL-NPs showed high cancer cell uptake of about 70%, as well as higher cell growth inhibition 
efficiency (a maximum 79% of cells were inhibited after treatment) than single drug-loaded NPs 
and free drugs. GUL-SS DTX/EZL-NPs showed the most prominent tumor inhibition ability and 
less systemic toxicity. The novel GUL-SS DTX/EZL-NPs could be used as a promising system for 
PCa therapy.

Introduction

Prostate cancer (PCa) is the most common malignant tumor 
in men, the second leading cause of cancer death after lung 
cancer, and the most common tumor in over one hundred 
countries (Jemal et  al., 2011; Li et  al., 2012). Based on the 
National Comprehensive Cancer Network (NCCN) guidelines 
for PCa, docetaxel (DTX) is standard chemotherapy and the 
only treatment that has been shown to improve overall sur-
vival for advanced PCa (Berthold et  al., 2008; Yan et  al., 2016).

Chemotherapy with DTX and novel hormonal agents such 
as enzalutamide and abiraterone are the preferred first-line 
therapeutic regimens based on different progressions of 
Castration-Resistant Prostate Cancer (CRPC) (Scher et al., 2012; 
Kellokumpu-Lehtinen et al., 2013; Fizazi et al., 2014). Specifically 
DTX with prednisone is the traditional mainstay of treatment 
for symptomatic CRPC (Tannock et  al., 2004; Berthold et  al., 
2008). Enzalutamide (EZL) with prednisone, the newer therapy, 
has been recommended by the NCCN guidelines as first-line 
therapy for patients with asymptomatic or minimally symp-
tomatic metastatic CRPC (Scher et  al., 2012; “A safety and 

efficacy study of oral MDV3100 in chemotherapy-naïve 
patients with progressive metastatic prostate cancer (PREVAIL) 
(NCT01212991)”, 2014). Meanwhile, researches have proven 
that concomitant enzalutamide and taxanes were synergistic, 
and prior enzalutamide reduced DTX cytotoxicity in Vertebral 
Cancer of the Prostate (VCaP) cells (Marín-Aguilera et al., 2019). 
Therefore, it is anticipated that combination therapy of DTX 
and enzalutamide for CRPC would bring a new future. It is 
an urgent need for engineering a drug delivery system with 
different pharmacokinetic action for both drugs.

Nanocarrier-based drug delivery systems are currently 
developed to improve the survival and clinical outcome of 
the drugs (Zhang et al., 2017). The nanocarriers may introduce 
controlled drug release ability and improving antitumor activ-
ity by responding to environmental stimuli (such as pH or 
reduction) in the tumor microenvironment (Wang et al., 2019). 
For example, Kim et  al. used a gelatin–oleic acid (OA) sodium 
salt conjugate as a novel solubilizing adjuvant to prepare 
nanocarriers for delivering poorly water-soluble drugs (Kim 
et  al., 2020). Phan et  al. developed a Fucoidan–OA conjugate 
for the co-delivery of curcumin and paclitaxel (Phan et  al., 
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2016). One of the important characteristics of PCa is signifi-
cantly higher (fourfold higher) glutathione (GSH) level 
(Argenziano et  al., 2018; Xu et  al., 2018). Besides, tumor cells 
contain higher concentration of GSH than normal cells (Xu 
et al., 2015). So GSH has emerged as a popular biodegradable 
polymer and GSH-sensitive linkage (disulfide) has been exten-
sively evaluated in GSH-sensitive drug delivery systems for 
cancer therapy (Jabir et  al., 2020). Cystamine (SS) is a 
GSH-sensitive linker that could offer response on the reduction 
environment such as tumor site, examples include the SS was 
used to prepare a GSH-responsive prodrug for photodiagnosis 
and photodynamic therapy of tumors (Li et  al., 2019).

Prostate-specific membrane antigen (PSMA) is overex-
pressed on the surface of PCa cells (Afsharzadeh et  al., 2020). 
Therefore, PSMA has been extensively used as a target anti-
gen for targeted drug delivery in the treatment of PCa 
(Cohen et  al., 2021). In the present study, to enhance the 
cancer cell-specific targeting, uptake, and retention (Nagesh 
et  al., 2016), we design a PSMA-targeted, GSH-sensitive, poly-
ethylene glycol (PEG)-contained drug delivery system to 
co-delivery DTX and EZL. First, PEG was conjugated with OA 
using a GSH-sensitive ligand: cystamine to achieve PEG-SS-OA. 
Then a targeting ligand—Glutamate-Urea-Lysine (GUL)—
which could specifically bind to the PSMA was conjugated 
to PEG to achieve GUL-PEG-SS-OA (Cohen et  al., 2021).

In this research, GUL modified, DTX and EZL co-loaded, 
GSH-sensitive nanoparticles (GUL-SS DTX/EZL-NPs) were pre-
pared and evaluated in vitro and in vivo on human PCa cell 
lines and PCa cells bearing mice.

Materials and methods

Materials

DTX, EZL, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
(EDC), N-hydroxysuccinimide (NHS), dimethylaminopyridine 
(DMAP), and dimethyl sulfoxide (DMSO) were purchased from 
Sigma-Aldrich Co., Ltd. (St Louis, MO). Soybean lecithin (SL), 
O A ,  H O O C - P E G 2 0 0 0 - C O O H  ( P E G ) ,  a n d 
1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were 
obtained from Avanti Polar Lipids (Alabaster, AL). Glu-Urea-Lys 
(GUL) with protecting groups of tert-butyl esters was 

purchased from ABX advanced biochemical compounds 
(Radeberg, Germany).

The human PCa cell lines (PC3 cells) were received from 
American Type Culture Collection (ATCC, Manassas, VA, USA).

BALB/c mice (20 ± 2 g) were purchased from Jiangsu ALF 
Biotechnology Co., Ltd. (Nanjing, China) and the animal 
experiments are operated in accordance with the National 
Institutes of Health Guide for the Care and Use of Laboratory 
Animals and approved by the Ethics Committee of the 
Affiliated Hospital of Jiangnan University (No. 2020121901).

Synthesis of GUL-PEG-SS-OA

PEG-SS-OA was synthesized by conjugating the amine groups 
of cystamine with the carboxyl groups of PEG and OA 
(Figure  1) (Tan & Wang, 2017). OA (1 equiv.), EDC (1.2 equiv.), 
and NHS (1.2 equiv.) were added in DMSO (10 mL) and stirred 
for 1 h (mixture 1). Cystamine (1 equiv.) was dissolved in 
DMSO (10 mL) and added dropwise to mixture 1, stirred for 
10 h to achieve cystamine-OA. PEG (1.5 equivalents) was 
added dropwise to cystamine-OA, stirred for 10 h and dia-
lyzed against excess ultrapure water for 24 h to get PEG-SS-OA. 
GUL-PEG-SS-OA was synthesized by covalent coupling of 
PEG-SS-OA with the amine group in the side chain of lysine 
in the GUL (Figure 1). Briefly, PEG-SS-OA (1 equiv.), GUL (1 
equiv.), EDC (1.2 equiv.), and DMAP (0.1 equiv.) were dissolved 
in DMSO (10 mL), stirred for 10 h and dialyzed against excess 
ultrapure water for 24 h to get GUL-PEG-SS-OA. The formation 
of GUL-PEG-SS-OA was determined by using hydrogen-1 
nuclear magnetic resonance (1H NMR) and Fourier transform 
infrared spectroscopy (FTIR) analysis.

Preparation of GUL-SS DTX/EZL-NPs

GUL-SS DTX/EZL-NPs were prepared using a solvent diffusion 
and sonication method (Figure 2) (Pang et  al., 2020). 
GUL-PEG-SS-OA (100 mg) and DOTAP (1%, wt/vol) were dis-
persed in ultrapure water (30 mL) and warmed to about 60 °C 
to prepare the aqueous phase. DTX (25 mg), EZL (25 mg), and 
SL (100 mg) was dissolved in acetone (20 mL) to get the lipid 
phase. The lipid phase was added dropwise into the aqueous 

Figure 1. gul-Peg-SS-OA was synthesized by conjugating Peg, OA with gul. The formation of Peg-SS-OA was determined by using hydrogen-1 nuclear 
magnetic resonance (1H NMr) analysis (1–8 in the 1H NMr are marked one by one on the structure of gul-Peg-SS-OA).
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phase, sonicated for 10 min, and then stirred for 10 h to evap-
orate the organic solvent. GUL-SS DTX/EZL-NPs were purified 
by washing three times using an Amicon Ultra-4 centrifuge 
filter (molecular weight cutoff of 30 kDa).

Blank NPs without drugs (GUL-SS NPs) were prepared 
using no drugs in the lipid phase.

Single drug-loaded NPs (SS DTX-NPs and SS EZL-NPs) were 
prepared using DTX or EZL only in the lipid phase.

Characterization of GUL-SS DTX/EZL-NPs

The mean particle size, size distribution (polydispersity, PDI), 
and zeta potential of the GUL-SS DTX/EZL-NPs and other NPs 
were determined by dynamic light scattering (DLS) using a 
NanoZS Zetasizer (Malvern Instruments Ltd., Malvern, UK) 
(Wang et al., 2020). A transmission electron microscope (JEOL, 
Tokyo, Japan) was used to record the surface morphology 
of DTX/EZL-NPs. DTX content was analyzed through 
high-performance liquid chromatography (HPLC) (Guan et  al., 
2016). EZL content was analyzed at 254 nm via a UV system 
(Jiang et  al., 2020). The formulas for drug loading content 
(DL) and entrapment efficiency (EE) are:

 DL   Drugs entrapped in NPs Total weight of NPs  1% / ;� � � � 00

 EE   Drugs entrapped in NPs Total weight of drugs 1% /� � � � 00..

The stability of nanoparticles was tested at physiological 
temperature and pH. NPs were kept undisturbed at 37 °C in 
various concentrations of bicarbonate buffer, 0.1 M, 0.01 M, 
and 0.001 M, pH 7.4. Accumulation of NPs at the bottom of 
microcentrifuge tube was used as a sign of agglomerate 
formation (Sonkusre et  al., 2014).

In vitro drug release

In vitro drug release from GUL-SS DTX/EZL-NPs was evaluated 
in phosphate buffer solution (PBS) with or without GSH 
(10 mM) by a dialysis method (Conte et  al., 2018). GUL-SS 
DTX/EZL-NPs was dispersed in PBS and placed in a dialysis 

bag (molecular weight cutoff of 3500 Da). The sample was 
placed in PBS under shaken (100 rpm) at 37 °C. The release 
medium (1 mL) was taken out at determined time points and 
replaced with an equal volume of fresh medium. The amount 
of drugs released was determined by the methods in the 
above section.

Cellular uptake

PC3 cells were seeded on 96-well plates (1 × 104 cells per 
well). Coumarin 6-loaded NPs (C6-loaded NPs) were prepared 
the same way as ‘Preparation of GUL-SS DTX/EZL-NPs’ by 
adding Coumarin 6 (10 mg) into the lipid phase (Hong et  al., 
2019). Various kinds of C6-loaded NPs (100 µL) were added 
to each well and incubated for 4 h. Then the cells were 
washed with PBS and were detached with trypsin/EDTA. The 
cells were re-suspended in PBS, photographed by fluores-
cence microscopy, and analyzed using a flow cytometer (BD 
Biosciences, San Jose, CA).

In vitro cell viability

The cytotoxicity of NPs was determined by 3-(4,5-dim
ethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 
(Li et  al., 2017). PC3 cells were seeded on 96-well plates 
(1 × 104 cells per well) and then exposed to free drugs and 
NPs at various concentrations for 72 h, viability was deter-
mined by the MTT assay. The formula for relative cell viability 
is: (The absorbance of the sample well)/(The absorbance of 
the control well) × 100.

In vivo tissue distribution and tumor inhibition effect

BALB/c mice were injected with PC3 cells (105 cells in 100 µL 
of PBS) into the right flank to obtain tumor-bearing xenograft 
(Juang et  al., 2019). When tumor volume reached about 
100 mm3, the mice (10 each group) were injected with GUL-SS 
DTX/EZL-NPs, GUL-SS NPs, SS DTX-NPs, SS EZL-NPs, free DTX/
EZL, and 0.9% saline every three days from day 0 to day 18. 
Tissue distribution of drugs was determined after 1 h and 48 h 

Figure 2. TeM image of gul-SS DTX/eZl-NPs (A); In vitro drug release of DTX (B) and eZl (C) from gul-SS DTX/eZl-NPs were evaluated in phosphate buffer 
solution (PBS) with or without gSH (10 mM) by a dialysis method. results are presented as means ± SD. *p < .05.
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of the first injection. Tissues were excised and homogenized 
in lysis buffer, mixed with methanol, and then centrifuged 
for 30 min. Drug quantitative analysis was performed as 
described in ‘Characterization of GUL-SS DTX/EZL-NPs’ section. 
The tumor volume and body weight changes were tested 
every 3 days after injection. The formula for tumor volume is: 
the longest axis × the perpendicular shorter tumor axis2 × 0.5.

Statistical analysis

The significance of differences was assessed using two-tailed 
Student’s t tests. Results are presented as means ± SD. 
Differences were considered to be significant at a level of 
p < .05 (*).

Results

Characterization of GUL-PEG-SS-OA and GUL-SS DTX/
EZL-NPs

The 1H NMR spectrum of GUL-PEG-SS-OA was presented in 
Figure 1 with the proton signals marked corresponded to 
the structural formula. The peaks c, d, f, and h confirmed 
the formation of the amido linkage. FTIR ν/cm−1: 3439 (–NH–); 
2931(–CH2–, –CH–); 1659(–HN–CO–, –HN–); 1422(–CH2CO–).

The particle size, PDI, zeta potential, DL, and EE of the 
GUL-SS DTX/EZL-NPs and other NPs are summarized in 
Table 1. GUL-SS DTX/EZL-NPs was uniform particles (Figure 2A), 
showing a size of 143.7 ± 4.1 nm, with a PDI of 0.162 ± 0.037 
and a zeta potential of +29.1 ± 2.4 mV. The DTX and EZL EE 
of NPs was around 90%. There is no accumulation of NPs at 
the bottom of microcentrifuge tube, which could prove the 
stability of NPs.

In vitro drug release

The drug release behaviors of NPs were evaluated in the 
medium with or without GSH. Figure 2 illustrates that 
although NPs showed sustained release behaviors both in 
PBS and GSH solution, DTX and EZL released faster and more 
sufficient from NPs in the presence of GSH (p < .05). Over 
80% of drugs were released from NPs after 36 h of study in 
the GSH containing medium, which was higher than the 
about 60% of total release in PBS. GUL-SS DTX/EZL-NPs and 
SS DTX/EZL-NPs exhibited similar release behaviors.

Cellular uptake

The cellular uptake results of NPs are displayed in Figure 3. 
The fluorescence images and flow cytometry results showed 

that more C6-loaded GUL-SS DTX/EZL-NPs (70.3%) were taken 
by the cells compared with SS DTX/EZL-NPs, SS DTX-NPs, and 
SS EZL-NPs, indicating the improved cell entry ability of the 
modified NPs.

In vitro cell viability

In vitro cell viability of NPs was evaluated to determine the 
cytotoxicity of the systems. Figure 4 illustrates blank NPs did 
not cause all the cytotoxicity. Drugs containing formulations 
showed obvious cytotoxicity compared with the saline control 
group (p < .05). Dual drugs loaded, modified GUL-SS DTX/
EZL-NPs exhibited higher cell inhibition efficiency than single 
drug loaded NPs and free DTX/EZL (p < .05).

In vivo tissue distribution and tumor inhibition effect

In vivo tissue distribution of drugs is presented in Figure 5. 
At 48 h post injection, the drugs accumulation in the tumor 
of NPs were higher than that of free drugs (p < .05), in the 
meantime, GUL-SS DTX/EZL-NPs showed higher tumor distri-
bution than that of SS DTX-NPs and SS EZL-NPs (p < .05). 
More free drugs were distributed in the kidney compared 
with the NPs formulas (p < .05). Figure 6A illustrates the in 
vivo tumor inhibition effect of GUL-SS DTX/EZL-NPs, which 
was significantly higher than SS DTX-NPs and free DTX/EZL 
(p < .05). Blank GUL-SS NPs did not exhibit effects on tumor 
bearing mice, which showed a similar effect with 0.9% saline 
control groups. The body weight of free drugs groups 
decreased along with the time, while NPs groups did not 
cause body weight loss (Figure 6B).

Discussion

The present study aimed to develop a GUL-modified, 
GSH-sensitive ligand, and used for the construction of 
nanoparticles. First, GUL-PEG-SS-OA was synthesized. OA is a 
lipid that was widely applied for preparation of nano-systems. 
PEG-modification was reported as the most noteworthy mod-
ification to prevent interactions with plasma proteins, thus 
retarding recognition and removal by the reticular endothelial 
system (RES) (Gunaseelan et  al., 2010). In this study, 
GUL-PEG-SS-OA was synthesized and used for NPs preparation.

GUL-SS DTX/EZL-NPs were prepared using a solvent dif-
fusion and sonication method. DOTAP is a double-tailed cat-
ionic lipid which is used as the surfactant of nanoparticles, 
and showed less toxicity than the single-tailed cationic lipid 
such as cetyltrimethylammonium bromide (CTAB). The zeta 
potential of NPs was positive due to the use of cationic 
DOTAP. Particle sizes smaller than 200 nm are conducive to 

Table 1. The particle size, PDi, zeta potential, Dl, and ee of NPs.

Dl (%) ee (%)

NPs Diameter (nm) PDi Zeta potential (mv) DTX eZl DTX eZl

gul-SS DTX/eZl-NPs 143.7 ± 4.1 0.162 ± 0.037 + 29.1 ± 2.4 6.3 ± 0.7 6.1 ± 0.6 90.9 ± 2.7 89.5 ± 2.9
gul-SS NPs 141.6 ± 3.8 0.145 ± 0.022 + 27.9 ± 2.7 / / / /
SS DTX-NPs 121.9 ± 3.7 0.169 ± 0.029 + 19.1 ± 2.1 9.1 ± 0.7 / 90.3 ± 3.3 /
SS eZl-NPs 118.6 ± 4.1 0.178 ± 0.031 + 20.2 ± 1.8 / 7.5 ± 1.1 / 88.3 ± 2.6
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drug accumulation at the tumor site based on the EPR effect, 
thereby reducing the drug dose and minimizing toxicity 
(Wang et  al., 2020). High drug encapsulation efficacy is 

required for the construction of a successful nanoparticle 
system. GUL-SS DTX/EZL-NPs in this research showed a size 
of 143.7 ± 4.1 nm, with an EE around 90%.

Figure 3. The cellular uptake efficiency of C6-loaded NPs. *p < .05.

Figure 4. The cytotoxicity of NPs was determined by MTT assay. results are presented as means ± SD. *p < .05.
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To further evaluate the GSH-sensitive drug release of NPs, 
GUL-SS DTX/EZL-NPs were tested in PBS with or without GSH 
by a dialysis method. DTX and EZL released faster and more 
sufficient from NPs in the presence of GSH, indicating 
GSH-sensitive drug release (Huang et  al., 2019). GUL-SS DTX/
EZL-NPs exhibited similar release behavior as unmodified SS 
DTX/EZL-NPs, which excluded the influence of the GUL sur-
face modification on the drug release.

The NPs also showed high tumor cell uptake efficiency, 
which is in accordance with the results of Liu et  al. (2018). 

They argued that the results of qualitative and quantitative 
studies of cellular uptake indicate that the functionalization 
of NPs encapsulation played a key role in the uptake of drugs 
in cancer cells. In vitro cell viability of NPs illustrated that 
blank NPs did not cause all the cytotoxicity, which may be 
the proof of the low toxicity of the materials used in the 
preparation (Wu et  al., 2020). GUL-SS DTX/EZL-NPs exhibited 
higher cell inhibition efficiency than single drug loaded NPs, 
which could be explained by the synergistic effect of the dual 
drugs co-loaded in one system and the PSMA targeted GUL 

Figure 5. In vivo tissue distribution of DTX after 1 h (A) and 48 h (B) of administration; tissue distribution of eZl after 1 h (C) and 48 h (D) of administration. 
results are presented as means ± SD. *p < .05.

Figure 6. In vivo tumor inhibition effect (A) and body weight changes (B). results are presented as means ± SD. *p < .05.
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that delivered more drugs to the cells (Nan, 2019). Drug-loaded 
NPs showed improved cytotoxicity compared with free drugs, 
which proved to be good potential systems for anticancer 
applications (Al-Dulimi et  al., 2020; Mirhadi et  al., 2020).

In vivo drugs distribution of NPs, when compared with 
their free drugs counterparts, higher in the tumor tissue and 
lower in the kidney, could decrease the side effects during 
the tumor therapy (Duan & Liu, 2018). The nanocarrier faces 
several challenges while in the circulation, including main-
taining adequate bioavailabilty and avoiding clearance by the 
kidney (El-Sayed et  al., 2009). In this study, drug-loaded NPs 
showed higher distribution in the tumor and lower accumu-
lation in the kidney than free DTX/EZL, indicating the less 
toxicity of the NPs system in vivo. GUL-SS DTX/EZL-NPs showed 
higher tumor distribution than unmodified SS DTX-NPs and 
SS EZL-NPs, which could be the evidence of the surface mod-
ification (Yu et  al., 2010). Differences in body weight were 
insignificant between the drug-loaded NPs-treated mice and 
control mice, which were in line with the distribution exper-
iments that could be the evidence of the safety of the nano-
system constructed in the present research (Huang et  al., 
2019; Sulaiman et  al., 2020). In vivo tumor inhibition effect of 
GUL-SS DTX/EZL-NPs was significantly higher than single drug 
containing NPs and free DTX/EZL, which was concluded by 
Hong et  al that the dual drugs encapsulated NPs had an 
effective biological function than the single drug-loaded ones 
in vivo (Pang et  al., 2020). GUL-SS DTX/EZL-NPs showed better 
tumor inhibition ability than free DTX/EZL, which was 
explained by Zhu et  al. that the lipid NPs could exhibit high 
biocompatibility and bioavailability due to its similar character 
with the cell membranes (Zhu et  al., 2017).

Conclusion

In the present research, GUL-SS DTX/EZL-NPs showed high 
cancer cell uptake of about 70%, as well as higher cell inhi-
bition efficiency than single drug-loaded specific NPs and 
free drugs. GUL-SS DTX/EZL-NPs showed the most prominent 
tumor inhibition ability and less systemic toxicity. These 
results illustrated that GUL-SS DTX/EZL-NPs could be used 
as a promising system for PCa therapy. However, the 
expanded reproduction of the NPs and the use of this sys-
tem from the bench to bedside should be further considered.
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