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Abstract 
Background: The stress is one of main factors effects on production system. Several factors (both genetic and 
environmental elements) regulate immune response to stress. 
Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning 
Bayesian network approach for those regulatory genes was applied to RNA-Seq data from a bovine leukocyte model 
system. 
Material and Methods: The transcriptome dataset GSE37447 was used from GEO and a Bayesian network on 
differentially expressed genes was learned to investigate the gene regulatory network. 
Results: Applying the method produced a strongly interconnected network with four genes (TERF2IP, PDCD10, 
DDX10 and CENPE) acting as nodes, suggesting these genes may be important in the transcriptome regulation 
program of stress response. Of these genes TERF2IP has been shown previously to regulate gene expression, act as a 
regulator of the nuclear factor-kappa B (NF-κB) signalling, and to activate expression of NF-κB target genes; PDCD10
encodes a conserved protein associated with cell apoptosis; DDX10 encodes a DEAD box protein and is believed to be 
associated with cellular growth and division; and CENPE involves unstable spindle microtubule capture at 
kinetochores. Together these genes are involved in DNA damage of apoptosis, RNA splicing, DNA repairing, and 
regulating cell division in the bovine genome. The topology of the learned Bayesian gene network indicated that the 
genes had a minimal interrelationship with each other. This type of structure, using the publically available 
computational tool, was also observed on human orthologous genes of the differentially expressed genes.
Conclusions: Overall, the results might be used in transcriptomic-assisted selection and design of new drug targets to 
treat stress-related problems in bovines. 
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1. Background
The physiological stress-induced immune response in 
the bovine could happen from many different 
circumstances, including injury, calving, weaning, dry 
period, cell-mediated destruction of pathogens, stress, 
failure of the mammary glands defense mechanism and 
mastitis, and other sources of stress. Some of this 
physiological immune response, such as mastitis 
response, is of vital important in bovine milk 
production, but is hardly possible to tackle using 
quantitative genetic theory. For instance, the estimated 
heritability of mastitis is quite low (0.01 to 0.17 in 
different references). Therefore, disorders of immune 

responses affecting many dangerous and costly diseases 
in cattle should be well addressed. One approach would 
be integrative systems biology methods, using OMICS 
data from RNA-Seq transcriptomics to explore the 
molecular networks underlying immune response 
mechanisms. RNA-Seq is a novel sequencing 
technology generating detailed information on gene 
expression (1). In the context of bovine transcriptomics 
studies, RNA-Seq has been used in various areas, e.g. 
detection of novel splice variants in Zebu cattle to cure 
horn cancer (2), transcriptome profiling to study 
growth and development of muscle in Chinese Luxi and 
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Angus beef cattle (3), the stress response to weaning in 
bovine leukocytes (4), and transcriptional profiling of 
peripheral blood leukocytes from cattle infected with 
mycobacterium bovis (5). The Bayesian network (BN) is 
an attractive formalism that could capture gene 
regulatory properties and conditional probabilistic 
independence among genes. This formalism reduces the 
parameter space search over the domain of variables. In 
this way, considering k variables (X1, …, Xk) then, the  
notion of: 

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑘 = 𝑥𝑘) =  ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑃𝑎(𝑋𝑖)

𝑘

𝑖=1

  

Leads to a dramatic decrease in the number of 
parameters over parameter space. BN is a strong method 
that is able to learn and capture linear/nonlinear, 
combinatorial and stochastic relationships among many 
variables (6). BN is being used in modelling immune 
response (6), mastitis management on dairy farms (7), 
presence of claw and digital skin diseases (8), to study 
simple gene regulatory networks of immune system 
candidate genes in dairy cattle (9), and to estimate 
inference of gene regulatory network from RNA-Seq 
time series data (10). Over several years, much attention 
has been given to improve production traits in cattle, 
which might have (in) directly impaired the immune 
system. Recently, genetic selection has been used to 
improve the immune system in dairy cows (11).  
A thousand genes (8-9% of the genome) are responsible 
for regulation of the immune system in mammals 
(11).This number of genes poses many challenges to 
researchers and breeders before it would be possible to 
produce an animal with superior immune responses and 
benefit the farming enterprise.  
In this study, it has been hypothesized that BN 
algorithm based on conditional probabilities could find 
out gene interactions alike in cellular form. To uncover 
the regulation scenario, data from bovine transcriptomic 
leukocytes RAN-Seq were used in a learning Bayesian 
network approach to find causative stress-related genes 
underlying the immune system. Constructing the 
Bayesian network on such data might reveal major genes 
and biomarkers controlling the immune system, in 
pathways that would attractive for interventions. By 
capturing regulator genes on the transcriptome of 
bovine's immune system, it could be likely possible to 
single out genes with pivotal effects on general health 
performance of cattle. They could have a plausible 
application in constructing a promising breeding 
program.  

2. Objectives 
The re-use of previously published data due from 
transcriptomics technologies is becoming 
commonplace to derive new hypothetical motivated 
questions. Newly generated experimental data is often 
not needed to generate good biological questions. In 
this study, using previously issued data, we tried to draw 

out some regulatory genes performed in bovine immune 
systems. Also, to enrich the results of this study, we have 
tried to map the set of differentially expressed genes to 
their orthologous human counterpart genes. The 
transfer of such animal-based knowledge to the human 
application can be very beneficial. 

3. Materials and Methods 

3.1. RNA-Seq Dataset Processing  
The transcriptome dataset was used from GEO under 
accession number GSE37447 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE37447). This data was respect to RNA-Seq 
leukocyte of male beef calves in response to weaning 
stress over different days (0, 1, 2 and 7 d). The whole 
description of this dataset can be found in (4). The data 
quality control, to assess possible biases in the RNA-Seq 
data, was done by FastQC (12). Trimming and filtering 
poor bases quality (quality score < 20) of RNA-Seq data 
was done by Trimmomatic software (13). Alignment of 

reads to bovine reference genome (asia.ensemble.org) 
was performed by tophat2 (v 2.0.9) (14). Covering 
aligned read to counts per gene was accomplished by 
HT-Seq (15). Merging HT-Seq was done to make a 
gene expression matrix with at least 3 counts in every 
sample. Differentially expressed genes were obtained 
with the edgeR package (16) that evaluates the 
differential expression in read counts of RNA-Seq data 
by empirical Bayesian approaches. Adjusted P-value was 
set to 0.05 as a threshold for selecting genes with 
differential read counts during the time point between 
samples. Then, normalization was performed using the 
Limma package (17). The package was originally 
designed for the analysis of microarray data, but it has 
been extended to the analysis of RNA-Seq data in the 
form of normalized log2-transformed counts by adding 
a new normalization function termed voom. The voom 
transformation converts the counts to log-counts per 
million with the associated precision weights (18). 

3.2. RNA-Seq Bayesian Network  
To investigate the gene regulatory network, a Bayesian 
network on differentially expressed genes was learned 
using the networkBMA package (19). To accomplish 
the analysis, the matrix of differentially expressed genes 
was transposed, columns and rows represented genes 
and observations at different time points, respectively. 
Cytoscape software was used for visualization of the 
learned regulatory network and extracting graph-
theoretic measures (20).  
To further enrich the results, we sought human 
orthologue genes of the most connected genes found in 
this study. To do so, the most connected genes to 
http://www.esyn.org were imported to get the genetic 
and physical interactions and also the graph theoretic 
measure of those genes with themselves and with other 
genes deposited in the H. sapiens (BioGrid) database 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37447
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37447
file:///C:/Users/mahan/Downloads/asia.ensemble.org
http://www.esyn.org/
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(21). To find the gene pathway and ontology of the 
most connected genes, the InnateDB Pathway Analysis 
software (www.innatedb.com/batchSearchInit.do) was 
used (22). Also, the gene pathway analysis and gene 
ontology enrichment for whole differentially expressed 

genes was found by DAVID software (23). The pipeline 
of analysis to discover cellular mechanism and major 
genes associated with the activation of the immune 
system induced by weaning stress is presented in Figure 
1. 

 

 
Figure 1. Pipeline of RNA-Seq data processing in current study. 

 

4. Results
The details of time series RNA-Seq data, such as the 
numbers of raw reads, trimmed reads, and mapped reads 
to bovine genome are provided in Table S1. 
In the current study, 17817 genes were detected in the 
GSE37447 experiment (by tophat2). A summary of 
differentially expressed genes is given in Table S2. 
Differentially gene expression analysis detected 220 
genes, which have differentially expression level 
between stress and un-stress calve groups.  
According to the RNA-Seq Bayesian gene regulatory 
network developed in the present study, which was 
constructed on 220 differentially expressed genes, it was 
concluded that four genes TERF2IP, PDCD10, DDX10 
and CENPE (Fig. 2) were the most connected hub 
genes, suggesting a significant regulatory effect on other 
immune-related genes. Statistical parameters of BN 
showed in Table 1. Table 2 represents the length and 
number of shortest distances between two connected 
nodes, and Table 3 represents connected components’ 
features. It is highly likely that the extracted hub genes in 
this study would be involved in the immune response 
and prevent large-scale development of inflammation 
that may lead to tissue damage (see: Table S3 for further 
hub genes’ enrichment analysis). Also, the hub genes 

improve immune function by regulating RNA splicing, 
DNA repairing, influencing cell cycle and cell 
proliferation and have an inhibitory effect by apoptosis. 
The results imply that the genes could have a central role 
in other types of immune responses because they usually 
have conserved sequences. By mapping the differentially 
expressed genes to orthologous genes in H. sapiens 
(BioGrid) database repository (http://www.esyn.org/) 
(24), some network measures (Table 4) and their 
topology (Fig. 3) were obtained. Some parts of the 
obtained network were shown in Table 4 (the full 
results can be seen in Table S4). 
It was a great surprise that those genes that turned 
up as hub genes (TERF2IP, PDCD10, DDX10, 
CENPE) in the GSE37447 experiment, were also 
the hub genes in current mapping results in 
H.Sapiens (BioGrid). This culminated in a similar 
topology (comparing the Fig. 2 and Fig. 3). The 
results of gene ontology for most connected genes 
in the innate database can be seen in Table S3. 
Gene pathway analysis showed that spliceosome 
and mismatch repair pathway were two over-
represented pathways in the weaned group versus 
control group (P < 0.01) (Table S3). 

 
Table 1. Statistical parameters of Bayesian gene regulatory network 

Statistical parameters  
Clustering coefficient Shortest  path Radius Diameter Connectivity Density  

0.160024 1343 1 6 4.38 0 Bayesian network 

 
Table 2. Structure of network paths 

Shortest path length 1 2 3 4 5 6 

Number of shortest path 424 564 203 83 67 2 
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Table 3. The network parameters of the most connected genes in GSE37447 experiment 

Closeness 
centrality 

Betweenness 
centrality 

Neighbors 
connectivity 

In-
degree 

Out-
degree 

Clustering 
coefficient 

Gene 
name 

Gene (Ensemble ID) 

0.852 0.016 3.069 5 155 0.003 TERF2IP ENSBTAG00000015686 
0.446 0.009 3.546 3 94 0.003 PDDCD10 ENSBTAG00000031709 
0.601 0.000 6.224 0 68 0.019 DDX10 ENSBTAG00000002382 
1.000 0.000 2.635 0 64 0.001 CENPE ENSBTAG00000009035 

 
Table 4. The network parameters of most connected genes inferred from BioGrid repository 

Gene Degree Radiality Closeness Stress Betweenness Centroid value Eccentricity Collective influence 

STK24 1 1.203846 0.025281 0.000000 0.000000 -204 0.250000 0 
 PDCD10 * 53 1.988462 0.035433 0.476513 0.476513 -100 0.333333 7852 
STK25 1 1.203846 0.025281 0.000000 0.000000 -204 0.250000 0 
AP2B1 1 1.965385 0.035019 0.000000 0.000000 -204 0.250000 0 
TERF2IP * 153 2.750000 0.058065 1.000000 1.000000 98 0.333333 7852 
BUB1B 1 0.407692 0.26087 0.000000 0.000000 -34 0.50000 0 
CENPE * 36 0.538462 0.514286 0.030546 0.030546 34 1.000000 0 
FGFR1OP2 1 1.203846 0.025281 0.000000 0.000000 -204 0.250000 0 
TRAF3IP3 1 1.203846 0.025281 0.000000 0.000000 -204 0.250000 0 
G3BP2 1 0.211538 0.514286 0.000000 0.000000 -17 0.500000 0 
DDX10 * 18 0.276923 1.000000 0.007855 0.007855 17 1.000000 0 
SLX4 1 1.965385 0.035019 0.000000 0.000000 -204 0.250000 0 
PRC1 1 0.407692 0.26087 0.000000 0.000000 -34 0.500000 0 
MAPK1 1 0.407692 0.26087 0.000000 0.000000 -34 0.500000 0 

* The most connected genes  
 

 
Figure 2. RNA-Seq bayesian network visualization by Cytoscape. The biological importance of nodes in the network is identified by color (high 
importance effect to low importance was represented by red to green) and node size (major nodes were represented by larger size). 
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Figure 3. Topological view of the most connected genes (PDCD10, TERF2IP, CENPE and DDX10) with themselves and other genes in BioGrid. 

5. Discussion
It is reported that weaning stress could increase the 
ability of the immune system to identify and clear 
pathogens by affecting related pathways such as 
cytokine signaling, G-protein-coupled receptor 
(GPRC) signaling, transmembrane transport and 
homeostasis (4). Therefore, wisely extracting 
knowledge from current data is crucial to mining 
regulator genes, which are involved in the mechanisms 
of the immune system activation (Fig. 1). In this study, 
17817 genes were detected from related dataset (by 
tophat2), which is more than O’Loughlin et al. (4), that 
used Bowtie as aligner and reported 16514 genes which 
summarize in Table S2.  
Network analysis of constructed BN is detailed on 
Table 1. Network connectivity refers to the number of 
nodes that are pair-wise connected (connected 

components). Network diameter and radius show the 
maximum and minimum distance between two nodes, 
respectively. In the current network, the diameter was 6 
and the radius was calculated as 1. Shortest path 
parameter obtained was 1343, which shows all the 
shortest distances between nodes in the network. The 
network clustering coefficient (0.16) describes the 
average of all nodes clustering coefficient. A substantial 
change in network research, currently facilitated by 
improved computer networks, has recently targeted the 
extraction of the statistical properties of large-scale 
networks (over billion vertex). Biological networks are 
cumbersome to envision and describe without a set of 
network metric statistics or quantitative measures. For 
example, Behdani and Bakhtiarizadeh (25) suggested an 
integrated gene regulatory network using module 
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inference to construct modules of co-expressed genes 
with bovine leukocyte RNA-Seq data and assigning 
transcription factors to these modules using Lemon-
Tree algorithms. They identified two transcription 
factors E2F8 and FOXS1 as novel regulatory candidates 
in immune response. Even though a through account of 
possible application of network theoretical exaptation 
and application in biological sciences can be seen in 
Pavlopoulos et al. (26), but still lots of studies need to be 
performed to pinpoint which network measures are of 
greatest priority in which biological context. Hub genes 
network measures are shown in Table 3. It could be seen 
that DDX10 and CENPE have 0 in-degree value, 
suggesting they could be the sole regulator in this study. 
Statistical parameters of BN showed in Table 1. Table 
2 represents the length and number of shortest distances 
between two connected nodes, and Table 3 represents 
connected components’ features. Node clustering 
coefficient implies the ratio of the number of edges 
between the neighbours of each node to the maximum 
number of edges that could possibly exist between the 
neighbours of same nodes. Out-degree of a given node 
reveals the number of edges that coming out of node and 
the in-degree parameter displays the number of edges 
that are entering the node. Out-degree of current 
network ranged between 0 and 155 and in-degree 
nodes/genes changed between 0 and 4. A neighbour's 
connectivity for a given node/gene shows the average 
connectivity of all its neighbours, and in the current 
study varied from 111.99 to 2.63. The betweenness 
centrality parameter of a node states the amount of node 
regulatory effect on other nodes in the network (Yoon 
et al. 2006), and it changes between 0 and 1. Yoon et al. 
(27) reported that betweenness centrality of a given 
node in a graph describes its influence on other nodes in 
a network. In the current study, betweenness varied 
between 0 and 0.016. Closeness centrality depends on 
average of shortest path between a given node with 
neighbours, and can be between 0 and 1. Newman (28) 
stated that the closeness centrality of each node refers to 
the magnitude of the influence of neighbours on a given 
node. The higher values of closeness centrality, the 
higher regulatory effects of a given node on its 
neighbours. According to this definition a regulatory 
gene (TERF2IP, PDCD10, DDX10 and CENP-E) must 
have a higher value of the parameter. The higher the 
values of closeness centrality for these genes, the 
stronger regulatory effects on other nodes.  
TERF2IP (Telomeric repeat binding factor 2 interacting 
protein) could be having an important role in weaning 
transcriptome network. This gene and several other 
genes (TERT, POT1, TNKS, TERF1, TINF2 and 
TERF2) that expressed in telomeres have less 
nucleotide diversity than other gene families. Reports 
showed TERF2IP has an alternative effect on the 
immune system and inflammation by NF-κB pathway, 
so that inhibition of TERF2IP leads to decreases in pro-
inflammatory factors in mesenchymal stem cells 

(MSCs) (29). Nuclear factor-kappa B (NF-κB) 
signaling pathways affect the native and adaptive 
immune systems, apoptosis, cell cycle, cell 
differentiation and migration (30). Therefore, TERF2IP 
causes an appropriate immune response and controls 
inflammation by activation of NF-κB (31). In addition, 
TERF2IP controls apoptosis through NF-κB led to 
regulating immune responses and preventing 
development of immune functions (32). Gene ontology 
of this regulator gene approves its proven function 
related to regulation of NF-κB (Table S3).  
The second important gene in this study was PDCD10 
(programmed cell death 10). It is also called CCM3 
(cerebral cavernous malformation 3). In oxidative 
conditions, activation of ezrin/radixin/moesin (ERM) 
protein family can help cell survival. ERM proteins 
involved in apoptosis, cell adhesion and migration by 
connection between cAMP signalling pathway and 
coupled-G protein receptors (33). It was demonstrated 
that PDCD10 is necessary to cell viability under stress 
conditions by activation of ERM protein family. Fidalgo 
et al. (34) showed inhibition of PDCD10 led to 
inefficiency of ERM phosphorylation and made the cell 
more sensitive to stress condition. It seen that PDCD10 
improved immune function by effect on T-cell and 
leukocyte viability. Gene ontology of this hub gene 
showed its role in improvement of the immune response 
by positive affecting on proliferation and negative 
affecting on apoptotic process (Table S3). According to 
current study, DDX10 is an important gene with 
important functions in the immune system under stress 
conditions. DEAD (Asp-Glu-Ala-Asp) box polypeptide 
10 and HRH-J8 are other names for it. DDX10 is an 
ATP-depended RNA helicase involved in initiation of 
transcription, RNA splicing, ribosome and spliceosome 
assembly and mRNA stability (35). As noted earlier, 
splicing process is necessary for optimal immune 
functions. Helicases makes this process easier by 
facilitating the pre-RNA joining and separating to 
snRNA (36). According to results of Bayesian network, 
increased expression of DDX10 as a regulator in 
immune response indicate that it can improve immune 
function by affecting RNA metabolism and RNA 
splicing. 
The last gene that influences immune responses based 
on current results was CENP-E. The protein was 
translated from this gene temporarily presents on 
centromere at special times of cell cycle and leads to 
proper alignment between homologue chromosomes 
due to controlling interactions between kinetochores 
and spindles during mitotic division (37, 38). The role 
is critical for cell survival, as previous studies reported 
that the inhibition of this gene can lead to apoptosis 
(37). During immune response, division of leukocytes 
occurs at a high rate. Therefore, it is necessary to 
efficient cell cycle regulation that it does not lead to 
some immune disorders such as cancer or 
autoimmunity and establishment of immune cells (39). 
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One of the control steps that regulates cell division 
occurs on metaphase during pairing of homologue 
chromosomes, therefore creating of a signal to delay the 
entrance to anaphase occurs in order to verify the 
accuracy of this alignment. It is well known that CENP-
E is one of the proteins that influences the function of 
check points of the cell cycle and affects the signals for 
delayed entrance to anaphase (40). Increased 
expression of CENP-E by affecting accuracy of leukocyte 
proliferation can probably improve immune responses. 
These established roles of this major gene in the 
Bayesian network is confirmed by significant terms of its 
gene ontology (Table S3). 
Our results indicated spliceosome and mismatch repair 
pathway were two over-represented pathways in 
comparison of weaned group versus control group 
(Table S3). The spliceosome is a large multi-subunit 
protein and RNA complex that facilitates intron 
separating, and alternative splicing refers to a process in 
which several different transcripts from a pre-transcript 
are produced by spliceosome complex (41). In addition, 
some reports have shown that genes involved in 
different aspects of the biological T-cell functions, have 
been rich signals that associated with alternative splicing 
(42). Activation of the DNA damage pathway may 
represent a more distinctive feature of oxidative stress in 
livestock that was induced by many factors such as 
weaning stress (43). In stress conditions, neutrophils 
and lymphocytes increase respiratory burst, which leads 
to increased reactive oxygen species and the creation of 
oxidative stress (44). The mismatch repair system is the 
main post-replicative pathway for the correction of 
replication errors that are not corrected by 
proofreading. Some receptors were shown that 
simulation of the innate immune system was up-
regulated in the DNA damage process. Thus, DNA 
damage responses such as the mismatch repair 
mechanism can active the innate immune system. In 
addition, some evidence has shown some pro-
inflammatory factors can accelerate the DNA repair 
activity in cells during inflammation (31). Some reports 
have found that conditions that involve damage to 
DNA, lead to accelerated immune system response by 
increasing the expression of ligands for NKG2D 
receptors (45). Reports stated some inflammatory 
modulators such as NF-κB can regulate DNA repair 
process during the immune responses. Bacterial or viral 
productions, oxidative stress, and pro-inflammatory 
cytokines such as IL1 and TNF-α could play a role as 
signals to activate the NF-κB pathway and to affect the 
immune responses, apoptosis, inflammation and DNA 
repair process (46). Results of gene ontology of 
differentially expressed genes have shown cellular 
response to stress, cellular response to DNA damage 
stimulus, mRNA splicing via spliceosome, RNA 
splicing, and cell cycle were the most significant terms 
(Table S5). These results matched with gene pathway 

analysis and functions of hub genes in the Bayesian 
regulatory network. 

6. Conclusions 
According to the Bayesian gene regulatory network 
developed here, it is concluded that four genes/nodes 
(TERF2IP, PDCD10, DDX10 and CENP-E) had 
regulatory effects on other immune related genes. Based 
on the results, these modulation of these genes could 
improve immune response and prevent large-scale 
development of inflammation that may lead to tissue 
damage. Also, they improve immune function by 
regulating RNA splicing, DNA repairing, influencing 
cell cycle and cell proliferation and have an inhibitory 
effect by apoptosis. The results showed these genes have 
a central role in other species immune responses, 
because usually have conserved sequences. Pathway 
analysis shown weaning stress could damage DNA by 
creating oxidative conditions and it leads to activating 
DNA repair mechanisms. DNA damage not only affects 
DNA repair mechanisms, but also actives immune 
responses and releases inflammatory mediators that 
leads to the involvement of spliceosome pathway. In 
addition, inflammatory mediators can directly affect and 
enhance the DNA repair mechanisms.  
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