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Abstract

Background

Web queries are now widely used for modeling, nowcasting and forecasting influenza-like

illness (ILI). However, given that ILI attack rates vary significantly across ages, in terms of

both magnitude and timing, little is known about whether the association between ILI mor-

bidity and ILI-related queries is comparable across different age-groups. The present study

aimed to investigate features of the association between ILI morbidity and ILI-related query

volume from the perspective of age.

Methods

Since Google Flu Trends is unavailable in Italy, Google Trends was used to identify entry

terms that correlated highly with official ILI surveillance data. All-age and age-class-specific

modeling was performed by means of linear models with generalized least-square estima-

tion. Hold-out validation was used to quantify prediction accuracy. For purposes of compari-

son, predictions generated by exponential smoothing were computed.

Results

Five search terms showed high correlation coefficients of > .6. In comparison with exponen-

tial smoothing, the all-age query-based model correctly predicted the peak time and yielded

a higher correlation coefficient with observed ILI morbidity (.978 vs. .929). However, query-

based prediction of ILI morbidity was associated with a greater error. Age-class-specific

query-based models varied significantly in terms of prediction accuracy. In the 0–4 and 25–

44-year age-groups, these did well and outperformed exponential smoothing predictions; in

the 15–24 and� 65-year age-classes, however, the query-based models were inaccurate

and highly overestimated peak height. In all but one age-class, peak timing predicted by the

query-based models coincided with observed timing.
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Conclusions

The accuracy of web query-based models in predicting ILI morbidity rates could differ

among ages. Greater age-specific detail may be useful in flu query-based studies in order

to account for age-specific features of the epidemiology of ILI.

Introduction
Seasonal influenza is a relatively predictable annual event which causes approximately half a
million deaths worldwide every year [1]. It is well established that influenza morbidity is age-
related, the greatest attack rates usually being observed in the pediatric population [2–4]. In-
deed, we previously showed [5] that in Italy, in two consecutive post-pandemic influenza sea-
sons, the highest influenza-like illness (ILI) morbidity rate was documented among children
under 14 years of age. Moreover, the timing of influenza peaks may vary across age-groups.
Some studies have highlighted a crucial role of young children, especially preschool children,
in spreading influenza in households [6] and have shown that these subjects display the earliest
peak during influenza epidemics [7]. On the other hand, Glass et al. [8] pointed out the impor-
tance of high-school students in the local spread of the virus, while Schanzer et al. [9] doubted
the hypothesis that younger school-age children drive epidemic waves. Specifically, these latter
authors demonstrated that, during influenza seasons in which H3N2 strains predominated,
young adults aged 20–29 years led teenagers aged 10–19 years by about 4 days, while during
the last pandemic this latter group led both 4–9-year-olds and young adults [9]. Understanding
such age patterns is of interest, as it can help to prioritize the use of limited supplies of vaccines
and antiviral drugs [10].

The early detection of outbreaks of disease, including influenza, is crucial to minimizing
their spread and reducing the disease-associated burden [11]. The spread of influenza at the
community level can be tracked by monitoring laboratory-confirmed cases, cases diagnosed by
general practitioners (GPs), attendances at emergency departments, hospital admissions and
excess deaths [12]. However, in the last few years an increasing number of literature reports
have emphasized the usefulness of collecting and mining web data on notifiable disease surveil-
lance, including, for example, tuberculosis [13], dengue [14], HIV and sexually transmitted in-
fections [13, 15], tick-borne diseases [16] and influenza and ILI [17–29]. This novel
epidemiological approach has been conceptualized as a way of studying “. . .distribution and
determinants of information in an electronic medium. . . or in a population, with the ultimate
aim to inform public health and public policy” [30], and has been widely applied to surveillance
and the analysis of trends. One of the first studies carried out in Canada [19] found a high cor-
relation between cases of ILI reported by sentinel physicians and the number of clicks on a key-
word-triggered link in one of the Google services. An open tool for real-time influenza
surveillance, Google Flu Trends (GFT), was subsequently launched in November 2008 [17, 18]
and somewhat popularized the analysis of influenza-related online activity to track ILI at the
population level [30]. Apart from the most widely explored GFT, the use of other online tools
and data sources for web-based ILI surveillance has been proposed, including search engines
other than Google [20, 25] and web sites [23], Twitter [26, 27, 29], Wikipedia [28], Google Cor-
relate [31] and Google trends (GT) [22, 24]; this last is methodologically similar to GFT but re-
quires the use of ad hoc search terms. Indeed, as of February 2015, GFT is available in only 29
countries. While most of the above-mentioned studies confirmed the utility of flu query-based
surveillance by documenting a high correlation and prediction accuracy, others pointed out
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some major limitations [18, 31–34]. In particular, two recent papers [33, 34] reported that GFT
significantly overestimated influenza activity in the United States. However, prediction accura-
cy may be improved by combining data from both GFT and the Centers for Disease Control
and Prevention (CDC) rather than using GFT data alone [34]. Another concern regards the
earlier peak of flu incidence estimated by search volume in comparison with traditional surveil-
lance, which is very probably due to the influence of the media [32]. Lack of transparency, the
impossibility of accounting for trends of single queries (as a result of combining many queries
into a single variable), opinion-based exclusion of queries from the updated GFT and the static
nature of the model, which ignores changes in search behavior, have also been cited among the
weaknesses of GFT [31].

Large population-based surveys [35] have revealed that using the Internet to search for
health-related topics varies across age-classes; surfing the web for symptoms, for example, is
highest among middle-age adults. There is also some age-related difference in the primary pur-
pose of online searching, in terms of looking for information related to one’s own health or on
behalf of somebody else. Indeed, online health information seekers aged over 65 years are more
likely to search on their own behalf [35].

Despite the above-described age-related patterns in online information seeking, little is
known about whether the association between ILI-related queries and ILI morbidity is homo-
geneous across age-classes or not. Indeed, in one study [36], correlation coefficients between
GFT and both the number of positive influenza tests and emergency department ILI visits were
found to be substantially higher among adults than among pediatric patients. This paper there-
fore aimed to investigate how well ILI-related queries submitted to the most popular search en-
gine may predict age-class-specific ILI morbidity rates.

Methods

ILI morbidity data
Weekly ILI morbidity was recorded from data collected by the Inter-University Centre for Re-
search on Influenza and other Transmissible Infections (CIRI-IT), Genoa (Italy) [37]. The
CIRI-IT is one of the two reference centers of the Italian sentinel surveillance of influenza
(Influnet), which covers over two percent of the Italian population. Sentinel GPs and indepen-
dent pediatricians send reports (including zero reports) of ILI cases diagnosed among their pa-
tients on a weekly basis [5, 38]. ILI is defined as the abrupt onset of fever of 38°C or more, at
least one respiratory symptom (non-productive cough, sore throat, rhinitis) and at least one
systemic symptom (headache, myalgia and severe malaise) [5]. The CIRI-IT coordinates the
activities of sentinel physicians from nine of 20 Italian regions (Liguria, Lombardy, Friuli Vene-
zia Giulia, Tuscany, Umbria, Abruzzo, Apulia, Calabria and Sicily). In order to better analyze
ILI dynamics among adults, the CIRI-IT recorded age-specific ILI morbidity data from the
2011/2012 (42nd week of 2011) influenza season in a more detailed way, i.e. by subdividing the
population into six age-classes (0–4, 5–14, 15–24, 25–44, 45–64 and� 65 years) instead of four
(0–4, 5–14, 15–64 and� 65 years). Overall and age-class-specific ILI morbidity data, expressed
as the number of cases per 100,000 inhabitants, were recorded from the 42nd week of 2011 to
the 8th week of 2015 (175 weeks).

Query volume and selection of search terms
To date (February 2015), GFT is not available in Italy. Query volume (QV) was therefore as-
sessed by means of GT. On GT, weekly search volume data from October 2011 to February
2015 were extracted (on February 27, 2015); these were regarded as ILI morbidity data. GT an-
alyzes selected web queries (provided that their search volume is sufficient) and displays the
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results on a normalized scale ranging from 0 to 100 [24]. Search terms were identified through
two steps. First, GT was explored by searching for ILI-related terms identified on the basis of
common knowledge of the disease, Google autocomplete service and previous research [22,
24]. QVs of selected terms, downloaded one by one, were then correlated with CIRI-IT data.
Second, since GT only enables up to five entry terms to be inserted at a time, these five were se-
lected from among those showing the highest correlation coefficients at the previous step (in
order to account for the difference in magnitude of their search volume) [Data Source: Google
Trends (www.google.com/trends)].

Statistical analysis and modeling
Pearson’s correlation coefficient with 95% confidence intervals (CIs) was used to evaluate the
correlation between the relative QV and ILI morbidity. The whole dataset was split into a train-
ing set—comprising three years (156 weeks: from 42nd week of 2011 to 41st week of 2014)—
and a hold-out validation set (the remaining 19 weeks). Since the dependent variable “ILI mor-
bidity” was highly positively skewed, the square-root transformation was applied in order to
obtain a more symmetric distributions. Modeling of QV data may be challenging, owing to the
serial correlation of residuals [34]. To take autocorrelation into account, models using asymp-
totically efficient generalized least-squares (GLS) estimation with residuals following the (p, q)
autoregressive-moving-average (ARMA) process (where p and q determine the order of the
process) were constructed. Model selection was performed in two main steps. Firstly, the best
subset of independent variables—i.e. the one that minimized the corrected Akaike Information
Criterion (AICc)—was identified among all possible regressions estimated by means of an or-
dinary least squares (OLS) approach. If two or more competing models showed approximately
equal AICc (Δ AICc< 2), the more/most parsimonious one was preferred. Secondly, to find an
optimal (p, q) order for the ARMA process, residual autocorrelations of the preliminary OLS
model were examined by plotting autocorrelation and partial autocorrelation functions [39]. In
addition, GLS models with alternative ARMA orders and estimation methods (maximum-like-
lihood or restricted maximum-likelihood) were compared by means of AIC. Model selection,
estimation and hold-out validation procedures were performed for each age-class separately.
Hold-out predictions made by Holt-Winters exponential smoothing were assessed for compar-
ative purposes. The prediction accuracy of age-class-specific models in hold-out sets was quan-
tified by mean absolute error (MAE), root-mean-square error (RMSE) and Pearson’s r. The
difference in the prediction accuracy of GLS and exponential smoothing models was formally
tested by means of the Diebold-Mariano test. Statistical significance was set to two-sided p<
.05 All data analyses and modeling were performed by means of the R stats package, version
3.1.2 [40]. Raw data used for the analysis are reported in the Dataset A in S1 File.

Results
The QV of 18 individual search terms was retrieved (Table 1). Of these, five entry terms, name-
ly “Influenza”, “Fever”, “Cough”, “Tachipirina” (a popular brand name of Paracetamol) and
“Paracetamol” (henceforth referred to as Influenza, Fever, etc) showed high correlation coeffi-
cients of> .6 with CIRI-IT morbidity data. These five entry terms were therefore reinserted
into GT all together and their relative QV was downloaded.

Among several QV-based candidate models for predicting overall ILI morbidity, we chose a
model in which the independent variables were Influenza, Fever and Tachipirina and residuals
followed the ARMA(1,0) process. The maximum likelihood estimation of the error-autoregres-
sive parameter was sizable. During the validation stage, prediction based on the selected QV
model was associated with greater errors (Δ RMSE 27%) in comparison with Holt-Winters
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exponential smoothing (Table 2). The between-model difference in prediction accuracy was,
however, not statistically significant. By contrast, the QV-based model was able to correctly
predict the peak time (4th week), although the height of the peak was significantly underesti-
mated (Table 3 and Fig 1). QV-based prediction yielded a higher correlation coefficient with
the official ILI data [.978 (95% CI: .942–.992)] than the Holt-Winters model [.929 (95% CI:
.821–.973)]. In Fig 1, a significant spike (overestimation of about 70%) can be seen at the 48th

week in the QV-based prediction time-series.
The set of explanatory variables of QV-based models selected for the out-of-sample valida-

tion of age-class-specific ILI morbidity was the same as that used for the all-age data (i.e. Influ-
enza, Fever and Tachipirina). Full model specifications and parameter estimates are reported
in Table A in S1 File. As shown in Fig 2 and Table 4, the prediction accuracy of six QV-based
models varied substantially among the age-classes. Thus, in the 0–4 and 25–44-year age-
groups, prediction errors produced by the QV-based models were lower than those produced

Table 1. Pearson’s correlation coefficient between ILI morbidity and query volume of selected entry terms.

Search term r 95% CI

English spelling Italian spelling

Flu/Influenza Influenza .882 .844–.911

Fever Febbre .712 .630–.778

Cough Tosse .643 .546–.722

– Tachipirinaa .657 .564–.734

Paracetamol Paracetamolo .607 .504–.693

Aspirin Aspirina .598 .493–.685

Common cold Raffreddore .460 .334–.569

Stuffy nose Naso chiuso .449 .322–.560

Antibiotic Antibiotico .422 .291–.536

Sore throat Mal di gola .370 .235–.492

Chills Brividi .250 .105–.384

H3N2 H3N2 .188 .041–.327

Rhinitis Rinite -.050 -.197–.099

H1N1 H1N1 n/ab –

Oseltamivir Oseltamivir n/ab –

Tamiflu Tamiflu n/ab –

Bird flu Influenza aviaria n/ab –

Swine flu Influenza suina n/ab –

a: Popular brand name of Paracetamol;
b: Only monthly data were available

doi:10.1371/journal.pone.0127754.t001

Table 2. Hold-out validation of models to predict all-age ILI morbidity: comparison in terms of MAE
and RMSE.

Parameter Model Estimate

MAE QV-based 2.87

Holt-Winters 2.17

RMSE QV-based 3.55

Holt-Winters 2.79

Diebold-Mariano test, p .15

doi:10.1371/journal.pone.0127754.t002
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by Holt-Winters models. A particularly accurate prediction was observed in the youngest age-
class, with about a 75% reduction in RMSE in comparison with exponential smoothing errors;
the Diebold-Mariano test confirmed a significantly different level of prediction accuracy (p =
.036). In the 0–4-year age-class, the QV-based model outperformed the competing model in
predicting the peak magnitude and only slight (< 5%) incidence overestimation was observed
(Table 5). Conversely, it can be seen (Fig 2) that QV-based predictions of ILI morbidity in the
age-classes of adolescents and young adults (15–24 years) and the elderly were poorer, especial-
ly with regard to the peak incidence (over 60% overestimation), although mean prediction er-
rors were roughly comparable (p> .5; Diebold-Mariano test) to those generated by the Holt-
Winters models. Similarly, in other age-groups (i.e. 5–14, 15–24, and 45–64 years), the predic-
tion accuracy of QV-based models did not differ significantly from that of exponential smooth-
ing, although the former tended to overestimate and the latter to underestimate ILI peak
activity. Despite an observed tendency of QV-based models to overestimate ILI incidence (Fig
2), their predictions of peak time matched CIRI-based estimates in all but one (over-64-year-
olds) age-class. By contrast, peak time predictions of exponential smoothing were delayed by

Table 3. Hold-out validation of models to predict all-age ILI morbidity: comparison in terms of peak
timing and peakmagnitude.

Parameter Model Estimate

Δ times of peak, weeks QV-based 0

Holt-Winters +2

Δ peak height, % QV-based -29.3

Holt-Winters -21.8

doi:10.1371/journal.pone.0127754.t003

Fig 1. Time-series of reported versus predicted all-age ILI morbidity (hold-out validation). Reported all-
age ILI morbidity compared with hold-out predictions (from 42nd week of 2014 to 8th week of 2015) generated
by the query-basedmodel and exponential smoothing.

doi:10.1371/journal.pone.0127754.g001
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Fig 2. Time-series of reported versus predicted age-class-specific ILI morbidity (hold-out validation). Reported age-class-specific ILI morbidity
compared with hold-out predictions (from 42nd week of 2014 to 8th week of 2015) generated by the age-class-specific query-basedmodels and
exponential smoothing.

doi:10.1371/journal.pone.0127754.g002
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1–3 weeks (Table 5). All predicted age-class-specific incidence rates were very highly correlated
(> .9) with CIRI-IT-based ILI estimates, regardless of the model type (Table B in S1 File).

Discussion
Influenza-related morbidity and its impact are highly age-specific, suggesting the need for
more detailed age data in surveillance systems [3]. The present paper explored patterns in the
association between ILI-related online queries and age-specific ILI morbidity. We found a per-
ceptible difference in the accuracy of predicting age-class-specific ILI morbidity from GT QV.
Specifically, QV-based models performed well in the age-classes of children aged 0–4 years and
adults aged 25–44 years, while ILI predictions in 15–24-year-olds and the elderly were subject
to high errors. Given that ILI-related QV cannot be differentiated by age, an exact interpreta-
tion of these observations is difficult. They could be explained by the age-based digital divide
and the age-distinct purposes of web searching for health information [35]. In the former case,
it is well-known that elderly people are less likely to use the Internet than younger age-groups
[35, 41]. Although most teenagers and young adults are active web users [42], they may make
less use of online searching for influenza-related content. Indeed, the large National Health In-
terview Survey [41] documented a lower use of the Internet for health purposes among 18–
24-year-olds (46.5%) than among other, non-elderly, adult groups (25–34 years: 55.1%; 35–44
years: 52.2%; 45–64 years: 47.6%). Moreover, Paolotti et al. [43] and Debin et al. [44] have es-
tablished that users of a web-based real-time participatory influenza surveillance system are
not representative of the age structure of the Italian and French populations, respectively. Spe-
cifically, under-20-year-olds and elderly users of the Italian platform Influweb were highly un-
derrepresented in the Internet-based cohort (7.4% vs. 19% and 10.6% vs. 24.8% of the general
population, respectively) [43]. We believe that the above considerations could contribute to the
relatively poor performance in predicting ILI in the 15–24 and� 65-year age-classes. By con-
trast, in� 4 and 25–44-year age-groups, models based on GT did well and even outperformed
the widely used Holt-Winters method. Middle-aged adults are not only the most active internet
users but also most frequently search the web to answer their health-related queries [35, 41]. In

Table 4. Hold-out validation of models to predict age-class-specific ILI morbidity: comparison in terms of MAE and RMSE.

Parameter Model Age-class, years

0–4 5–14 15–24 25–44 45–64 � 65

MAE QV-based 2.90 3.21 2.15 1.60 1.91 1.49

Holt-Winters 5.08 2.89 1.80 1.79 1.57 1.53

RMSE QV-based 3.46 3.86 2.79 2.02 2.19 1.89

Holt-Winters 6.05 3.97 2.47 2.55 2.34 2.07

Diebold-Mariano test, p .036 .88 .54 .33 .79 .67

doi:10.1371/journal.pone.0127754.t004

Table 5. Hold-out validation of models to predict age-class-specific ILI morbidity: comparison in terms of peak timing and peakmagnitude.

Parameter Model Age-class, years

0–4 5–14 15–24 25–44 45–64 � 65

Δ times of peak, weeks QV-based 0 0 0 0 0 -1

Holt-Winters +2 +2 +2 +3 +3 +2

Δ peak height, % QV-based 3.6 -19.9 61.1 25.8 23.4 61.5

Holt-Winters -41.7 -8.8 -31.7 -15.9 -21.0 -34.2

doi:10.1371/journal.pone.0127754.t005
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the case of young children, it is obvious that an ILI-related web search may be conducted by a
“worried” parent. Indeed, research has shown that the Internet is one of the main sources of
child health information, as most parents surf the web for medical information, especially
when their child is sick [45–47]. Parents of children� 3 years of age tend to search the web
more than parents of older ones [48]. Interestingly, parents tend to Google their child’s condi-
tion rather than symptoms [49].

In sum, the natural attack rates of influenza may display a marked difference among age-
classes [5, 50]. An accurate prediction of age-specific ILI morbidity rates is of importance to
public health, as it may, for instance, help to rationalize vaccine supplies for the age-groups rec-
ommended for immunization; forecasting age-specific ILI attack rates should therefore be un-
dertaken through age-specific approaches. The anonymous statistics on queries submitted to
popular search engines do not currently allow us to trace the demographics of those who search
for a given topic. In this regard, web-based participatory systems of influenza surveillance, such
as Influenzanet [51] or its regional partners (e.g. Italian Influweb [52]), provide an advantage
as they are able to distinguish their estimates by age-class and adjust ILI attack rates for age in
order to correct for underrepresented age-classes; the prospective nature of the cohorts also fa-
vors these portals. However, the overall statistics of QV from the common search engines, such
as Google, have a much wider coverage at the population level (for comparison: as of March
12, 2015, Influweb had 3,740 volunteers [52]). Establishing the purpose of ILI-related online
searching among subjects of different ages will further contribute to our understanding of the
relationship between online queries and ILI incidence. For example, before analyzing GT, Cho
et al. [22] asked patients what entry terms they would use if they were searching the web for in-
fluenza. A similar survey involving people of different ages would be helpful, as elderly Internet
users less frequently make use of search engines [53] or look for a specific disease or medical
problem [35] than younger individuals.

Some important remarks and comparisons with previous research regarding the accuracy of
our estimates of all-age ILI morbidity should be made. GFT has been shown to have signifi-
cantly overestimated CDC data in the consecutive influenza seasons 2011/2012 [34], 2012/
2013 [18, 33, 34] and 2013/2014 [54]. Apparently, this is in contrast with our findings, in
which peak height was significantly underestimated by about 30%. It should be borne in mind,
however, that in the 2014/2015 influenza season in Italy overall ILI morbidity was significantly
higher and peaked earlier (4th week of 2015) than in the previous three seasons, and was at the
level recorded in the 2010/2011 post-pandemic period. GFT underestimation of ILI activity
was also seen earlier; the original GFT model underestimated ILI at the beginning of the last
pandemic [18, 33]. Although our QV-based model did not produce accurate predictions of
overall ILI incidence, its estimate of the timing of peak activity coincided with the official sur-
veillance data and yielded a very high correlation coefficient with CIRI-IT-based data; this is
consistent with a great body of previous research [55, 56].

More generally, as far as we know this is the first study to investigate the application and
utility of GT QV for near-real-time ILI surveillance in Italy. Overall, our correlation analysis re-
vealed that ILI-related QV, especially Influenza, is highly correlated with official surveillance
data; this is in line with previous research conducted in different settings [21–29]. However,
some noteworthy differences arose between our results and those of studies [22, 24] from re-
gions where GFT is unavailable. In a study conducted in South Korea [22], the correlation coef-
ficient between the GT QV of Flu and both ILI morbidity and virological surveillance was
much lower, or even negative, in the 2008/09 influenza season. A similarly low strength of cor-
relation between the search term Flu and ILI attack rates was reported in Southern China [24].
On the other hand, the studies by Cho et al. [22] and Kang et al. [24] were able to identify other
entry terms, such as Bird flu or Tamiflu, which proved to be highly correlated with both
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virological and syndromic surveillance data. Again, such inconsistence may be due to the dif-
ferent study periods, since both Asian studies included the pandemic period, which could affect
search behavior. Indeed, in our study, the QV of H1N1 was insufficient on a weekly basis, while
in both Asian studies this entry term was investigated. Another possible explanation may re-
gard cross-cultural differences and variations in the Internet penetration rate.

Apart from the well-known shortcomings of web-based surveillance methods, which are de-
scribed elsewhere [30, 57], the present study may have other limitations; our results should
therefore be interpreted cautiously. First, the catchment area of the CIRI-IT encompasses nine
(of 20) regions, roughly corresponding to 50% of the Italian population. However, our syndro-
mic surveillance data are fairly representative of the whole population, since they come from
Northern, Central, Southern and Insular Italy. Moreover, the correlation between CIRI-IT data
and the nationwide Influnet data (which is available for only 28 weeks) [58] during the last
three influenza seasons was 0.996–0.999 (results not shown). Second, only a few entry terms
were used in the analysis. These, however, may be seen as an information concepts [57] and
not as simple keywords, since, according to the Google trends instructions [59], typing the
word Influenza without quotation marks, for example, will also include related searches, such
as I’ve got influenza, Influenza symptoms or Influenza remedies. Third, our models did not take
into account media activity, which may lead to an increase in ILI-related searches [17]. For in-
stance, GFT may correlate positively with the number of both television broadcasts and news-
paper articles [60]. Our QV-based predictions showed a substantial overestimation of ILI
activity in the 48th week (last week of November) of 2014. In Italy, a series of alleged post-flu
shot deaths were reported in the elderly in this period (no causal association was later estab-
lished) and on November 27 two batches of a vaccine were suspended for precautionary pur-
poses [61]. On the other hand, this “false alarm” was not able to shift the peak time, and QV-
based predictions peaked in the same week as in the data from syndromic surveillance. Fourth,
as has been suggested by Santillana et al. [31], the web-searching behavior of Google users may
change over time; prediction models should therefore be dynamic enough to capture these
changes. In this regard, our models are rather static and may not be generalizable to long-term
forecasts or to other geographical settings. Fifth, since GT displays only the relative QV, its val-
ues may change over time and/or on using different keyword comparators.

In conclusion, it is unlikely that web-based techniques of ILI surveillance will substitute tra-
ditional surveillance methods in the near future and the former should be seen as a low-cost
near-real-time complementary source to the latter. In Italy, digital ILI detection may have a
certain value: among users of the Influweb portal, only 55% and 4% phoned and visited, respec-
tively, their GP during an ILI episode [43]. A better understanding of how people of different
ages exploit common search engines to find ILI-related information, together with greater age-
specific detail, may be useful in future web query-based studies and field implementation of
digital disease surveillance techniques, in order to take into account age-specific features of the
epidemiology of ILI.
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