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Magnetic Resonance images are normally corrupted by random noise from the measurement process complicating the automatic
feature extraction and analysis of clinical data. It is because of this reason that denoising methods have been traditionally applied
to improve MR image quality. Many of these methods use the information of a single image without taking into consideration the
intrinsic multicomponent nature of MR images. In this paper we propose a new filter to reduce random noise in multicomponent
MR images by spatially averaging similar pixels using information from all available image components to perform the denoising
process. The proposed algorithm also uses a local Principal Component Analysis decomposition as a postprocessing step to remove
more noise by using information not only in the spatial domain but also in the intercomponent domain dealing in a higher noise
reduction without significantly affecting the original image resolution. The proposed method has been compared with similar
state-of-art methods over synthetic and real clinical multicomponent MR images showing an improved performance in all cases
analyzed.
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1. Introduction

Image deno ising is a common preprocessing step in many
Magnetic Resonance (MR) image processing and analysis
tasks, such as segmentation [1], registration [2] or paramet-
ric image synthesis [3]. Many filtering methods use the signal
averaging principle which is based on the natural spatial
pattern redundancy in the images. In this sense, Gaussian
filters have been largely used in some applications such
as functional MR imaging (fMRI) [4]. However, they have
the disadvantage of blurring edges due to the averaging of
nonsimilar patterns.

In order to avoid this problem, many edge preserving
filters have been proposed. Probably the most well-known
filter is the Anisotropic Diffusion Filter (ADF) [5, 6]. ADF
respects edges by averaging pixels in the orthogonal direction
of the local gradient. However, such filtering usually erases
small features and transforms image statistics due to its edge
enhancement effect resulting in unnatural images.

Modern wavelet-based filters have also been applied to
MR image denoising [7, 8]. Such filters, although effective,
are prone to introduce characteristic artifacts (small spots)
that can hamper the image analysis process.

Many existing filters used in MRI work using a single
image component or volume without taking into consider-
ation the multicomponent intrinsic nature of MR studies.
A typical MR study is comprised by many different types
of images of the same patient (e.g., T1,T2, FLAIR, etc.),
where after a registration process each voxel can be seen
as vector with as many components as image types in the
study.

There are few methods that use this multicomponent
information as a basis for the denoising process. One of the
first attempts to use this information was the multicom-
ponent ADF proposed by Gerig et al. [6]. In this method,
the authors proposed using the gradient information of
different image sequences of the same subject to constrain
the diffusion process.
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In the context of wavelet thresholding, a new denoising
technique for multicomponent images, exploiting interscale
and intercomponent correlations was recently proposed by
Scheunders and Backer [9]. This technique was demon-
strated to outperform similar single and multicomponent
wavelet thresholding techniques.

On the other hand, a partial volume modelling-based
approach has been also recently proposed by Thacker and
Pokric [10] where the filtering was performed using multi-
dimensional data and a partial volume data density model.
This approach abandons altogether local smoothness con-
straints and achieves noise reduction by enforcing agreement
between measured data using underlying tissue proportions
computed from a physics-based image formation model.

In the present work, a novel method for multicomponent
MR image denoising is presented. This method is inspired on
a new filter recently proposed by Buades et al. [11] known as
Nonlocal Means (NLM). The main hypothesis in this work is
that when multiple MR images of different type or different
acquisition times are available, the filtering process can be
improved by using the additional correlated information
in such images. The proposed method will work on both
spatial and intercomponent domain. In the next sections, the
proposed filter is fully described and its application in real
and simulated multicomponent MR data is evaluated and
compared with related previous state-of-the art methods.

2. Material and Methods

The NLM filter is a neighbourhood filter [12] which achieves
denoising by averaging similar image pixels according to
their intensity similarity. The main difference between the
NLM and previous related filters is that the similarity
between pixels has been made more robust to the noise level
by using region comparison rather than pixel comparison;
furthermore, pattern redundancy has been not restricted to
be local (nonlocal). That is, pixels far from the pixel being
filtered are not penalized due to its distance to the current
pixel, as for example, happens in the bilateral filter [13].

2.1. NLM Filter. Given an image Y, the filtered value at pixel
p using the NLM method is computed as a weighted average
of all the pixels in search area Ω within the image:
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where Y(p) is the pixel being filtered and Y(q) represents
each one of the pixels in the image. The weights w(Np,Nq)
are based on the similarity between the neighbourhoods
Np and Nq of pixels Y(p) and Y(q). The neighbourhood
Ni is defined as a square window centered on pixel i with
a user-defined radius Rsim. The region Ω is defined as a
squared region surrounding the pixel being processed of
radius Rsearch. Although the original method claims that this
region Ω can be the entire image due to computational
reasons this region has to be restricted to be of smaller size.

(a) (b)

Figure 1: (a) Each filtered pixel in the image (e.g., center pixel of the
red square) is computed as the weighted average of all the pixels of
the search window (blue square). (b) Weights of pixels of the search
region as calculated by (2). As can be observed in the example edge
pixels are averaged with other edge pixels preventing the blurring
effect.
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Where Z(p) is the normalizing constant, h is a exponential
decay control parameter and d is a Gaussian weighted
squared Euclidian distance (with standard deviation 1) of all
the pixels of each neighbourhood as defined in [11]:
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This measure penalizes pixels far from the center of the
neighbourhood window giving more weight to pixels near
the center of the window in the distance computation.

In (2) there is a special case when p = q. As the self
distance is zero, it can produce an over-weighting effect. To
solve this problem, Buades proposed to calculate d(Np,Np) as
the minimum distance of the rest of the pixels in the image
[14]:
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In Figure 1, an example of the NLM estimated weights for
a small squared region is displayed. As can be noticed, the
NLM method finds successfully as similar to the current
pixel (small red square) other edge pixels within the search
window.

2.2. Multicomponent Nonlocal Means (MNLM). As in med-
ical MR imaging the acquisition of multiple images with
different acquisition parameters is a common practice, the
above method can be extended to be used in a multicom-
ponent framework. Effectively, the similarity measure can be
better estimated by combining information not only from
the surrounding pixels but also using information of the
different components in a similar manner as performed on
colour image denoising using the RGB space [12].
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Therefore, the multicomponent similarity function is
computed as follows:
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Where C is the number of components and hi parameter is
related with the noise standard deviation of each image.

The MNLM algorithm, as in the single component case,
has three free parameters, and the filtering results highly
depend on their correct setting.

The first parameter, Rsearch, is the radius of the search
window. Although the original method claimed to use all
the pixels in the image by taking the weighted average of
every pixel, this is inefficient if the only similar locations are
relatively nearby. Besides, the computational burden would
be prohibitive for clinical applications. Therefore, the search
window has to be reduced to a local window Ω of smaller
size.

The second parameter, Rsim, is the radius of the neigh-
bourhood window used to compute the similarity between
two pixels. If the value of Rsim is increased the similarity mea-
sure will be more robust but fewer similar neighbourhoods
will be found.

The third parameter, h, is related to the decay of the
exponential curve and controls the degree of smoothing. If
h is too small, little noise will be removed while if h is set too
high, the image will become blurry.

In our experiments, Rsearch was set to 10 (this is a 21× 21
search window), which has been found experimentally as a
good compromise between noise reduction and computa-
tional burden. For 2D processing an Rsim of 2 has been found
to be a good choice for typical noise levels in MR imaging
[15]. However, for multicomponent imaging the additional
information from other components allows the use of a
smaller similarity region (in our experiments an Rsim = 1
was used, i.e., a 3 × 3 similarity region) dealing in a more
point specific similarity measure and therefore increasing the
number of similar patches. Finally, the parameter hi was set
to σi

√
2, being σi the noise standard deviation in each image

component (this value was found to be experimentally the
best choice).

2.3. Proposed Method. Although the MNLM filter obtains
remarkable results, a number of optimizations can be done
to increase its accuracy.

2.3.1. Similarity Function. In (3) the distance between two
equal noisy patches will have an average distance equal to 2σ2

[11]. Therefore, its associated weight will not be equal to 1 as
expected (assuming h2 = 2σ2) but 1/e (see (2) and (5)). This
can be easily solved by simply subtracting 1 from exponent in
the weight computation; so similar pixels will have a weight
close to 1 (this has the same effect than subtracting 2σ2 to

distance as calculated in (3)). To avoid negative values due
to the subtraction operation, we calculate the normalized
distance as the maximum of the distance after the subtraction
and 0. This optimization is specially effective on low-noise
conditions:
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In this case, the multicomponent similarity function is
computed using the same definition as in (5) but subtracting
1 to averaged distance to obtain a weight close to 1 when
computing the distance of two equal patches.

2.3.2. Multicomponent Preselection. Another useful improve-
ment is to perform a pixel preselection in order to save useless
computations and to improve filtering results by excluding
nonsimilar pixels in the averaging process. Several methods
of preselection have been already proposed using gradient
information [16] or local image moments [17].

In the present work, we propose selection of those pixels
with a difference of their first local moment (mean value of
a 3 × 3 image patch) smaller than the k σi/

√
n (being σi the

noise standard deviation in the image i and n the number of
pixels used to compute the mean) in each image:
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In single image denoising the value of k can be set to
3 which correspond to the third quantile of a standard
normal distribution. Patches with mean value differences
higher than this threshold have a very small probability to
be similar to the current patch. In multicomponent data
this threshold was found experimentally to be too restrictive.
In our experiments, we have set k = 4 which was found
to be a better option. Experiments using the local variance
were performed to improve the preselection step but no
significant improvements were found. We will refer to the
optimized MNLM method including optimizations 1 and 2
as OMNLM.

2.3.3. Principal Component Analysis (PCA) Denoising. In the
presented method, noise reduction is achieved by averaging
similar pixels in the spatial domain. However, a higher noise
reduction can be obtained by using information in the
intercomponent domain as well.

Principal Component Analysis and related approaches
have been previously used to reduce noise in the images [18,
19]. In this context, noise removal is done by decomposing
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the signal into the local principal components, attenuating
less relevant components and reconstructing again.

The simplest approach for multicomponent image
denoising is to perform PCA decomposition of the image
series and to remove all the components that have a variance
similar to the image noise. However, although effective,
this approach requires the number of images to be higher
than the number of significant components of the image.
Besides, image inhomogeneities typically present in MRI
make it more difficult to obtain noise-related components
due to a higher number of significant components required
to represent the data. This limits the applicability of the
technique to studies that acquire large image series such us
fMRI [20]. This problem can be overcome by performing
PCA decomposition over small local windows instead of the
whole image [18].

The basic idea is that every pixel of the image can
be denoised by decomposing the local surrounding square
window of a given radius for the different images in
the corresponding components and attenuating the less
significant ones. In the proposed approach for each pixel,
the PCA decomposition of a local matrix of N × K data
is calculated, N being the number of pixels of the local
window (in our experiments, N = 9 was used, i.e., a
3 × 3 local window) and K the number of components.
The obtained components are processed (using hard or
soft thresholding) before recomposing the original matrix.
This means that, for example, a local window containing
a single tissue can be well approximated by its mean value
and therefore all components can be suppressed dealing in
a much stronger noise reduction than in the global case.
Finally, after reconstruction the filtered intensity value for
a particular pixel can be obtained by averaging estimates
of multiple overlapping windows. Such averaging allows
removal of more noise, in a similar way to the translation
invariant denoising proposed by Coifman and Donoho [21].

The attenuation can be done using hard or soft thresh-
olding similar to wavelet-based denoising. In our case, we use
soft thresholding where each component is multiplied by a
factor f defined as.

f = 1
(

1 + e−(σcomponent−2σnoise)
)2 . (10)

This process is applied as a postprocessing step after the
application of the OMNLM filter to reduce noise in the
images by using information of the spatial domain as well
as in the intercomponent domain. We will refer to the
combination of OMNLM method and PCA postprocessing
as OMNLM-PCA.

The proposed method can be summarized as follows.

(1) Spatial denoising, apply the OMNLM to the noisy
data to reduce noise in the spatial domain.

(2) PCA postprocessing, perform a final Local PCA
denoising over the spatially filtered images using an
estimate of the local remaining noise.

3. Experiments and Results

To evaluate the proposed method over synthetic cases, a
slice of simulated T1, T2, and two PD (low and high flip
angles) weighted images (1 mm3 voxel resolution and 8
bit quantization) from the BrainWeb phantom was used
[22] (see Figure 2). Noise in MRI can be Gaussian or
Rician distributed [23] depending on the image type (real
or magnitude data). In our experiments, all images were
corrupted with Gaussian-distributed random noise with
different levels since at brain tissues noise distribution can
be generally well approximated by a Gaussian distribution.
As our main interest is to remove noise from the region
of interest (typically the brain), in our experiments all the
measures have been obtained from a region corresponding
to the brain parenchyma since noise removal at background
can bias the measures.

The accuracy of the proposed filter (OMNLM and
OMNLM-PCA versions) over usual noise levels (1 to 9% of
the maximum T1-weighted image intensity) was evaluated
and compared with the MNLM method. Also, experiments
were performed to evaluate the effect of adding multiple
images in the image denoising process. All experiments were
performed using MATLAB 7.0 (MathWorks Inc., Natick,
USA).

To measure the accuracy of the different compared
approaches the Root Mean Squared Error (RMSE) and
Multicomponent Root Mean Squared Error (MRMSE) were
used:
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where X( j) is the jth noise free image component and F( j)
is its denoised image version, both containing M pixels. C
is the number of components. This measures was calculated
only from data within a mask comprising the brain tissues.

In Table 1, a comparison of the basic MNLM filter
and the proposed OMNLM and OMNLM-PCA methods is
presented. It can be noticed that the proposed optimizations
improved significantly the accuracy of the basic filter for
all the noise levels. The OMNLM-PCA version achieved the
better results for all noise levels.

To evaluate the effect of adding new images to the
filtering process only the RMSE of the T1-weighted image
was measured when using different number of images for the
pixel similarity estimation. It is clear that no PCA step was
used when using a single image. Results comparing the basic
MNLM filter and the proposed OMNLM-PCA filter can be
observed in Table 2. Curiously, in the basic MNLM filter,
the best results were obtained when using only two images
(T1 and T2), probably because these images present good
contrast between different tissues. In this case, the inclusion
of the two PD images in the similarity measurements, did not
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Figure 2: From left to right: synthetic noise free T1, T2, and PD (low and high flip angle) weighted MR images.

Table 1: Comparison of the MNLM and proposed filters for different noise levels. MRMSE from all the images is presented. MRMSE of the
unprocessed images is presented for reference.

Noise Std. Dev. (%)
MRMSE

Noisy MNLM OMNLM OMNLM-PCA

1% 2.37 2.22 1.42 1.09

3% 7.19 3.57 2.78 2.47

5% 11.97 5.58 3.81 3.57

7% 16.72 7.60 4.78 4.55

9% 21.52 9.71 5.95 5.79

improve the results but made them slightly worse behaving as
a confounding factor.

Conversely, the proposed method presented a consistent
improvement of the results as the number of images
was increased. This was found to be mainly due to the
preselection optimization which avoids averaging the current
pixel with nonsimilar pixels.

3.1. Comparison with Other Multicomponent Denoising Meth-
ods. The described method was compared with the state-
of-the art multicomponent denoising methods. Specifically,
the compared methods were the multidimensional partial
volume modelling method (MPVM) proposed by Thacker et
al. [10] and the multicomponent method based on wavelet
thresholding using Gaussian Mixture Modelling (MGMM)
recently proposed by Scheunders and Backer [9]. These
methods were applied with their default parameters (sym4
wavelet type and depth equal 3 for the MGMM method and
a 6 tissue model for the MPVM method). Results can be
compared in Table 3.

The best results were obtained by the proposed method
for all noise levels. The MGMM method showed good results
for low-noise levels while for medium and high noise levels
this method tends to blur the images (Figure 3). The MPVM
method was less accurate than the other methods. The
execution times of the compared methods were 10 seconds
for the MVPM method, 6 seconds for MGMM method and
33 seconds for the OMNLM-PCA method.

3.2. Comparison on Real Clinical Images. To evaluate effec-
tiveness of the different multicomponent approaches on real
image conditions, four real clinical images were used (IRTSE,

PD, T2, and FLAIR) (Figure 4). All images were acquired
with a 1.5-T system (ACS-NT, with PowerTrack 6000
gradient subsystem; Phillips Medical Systems, Hamburg,
Germany) with a birdcage head coil receiver. Data was in
contiguous 3 mm thick sections throughout the brain, with
an in-plane resolution of 0.89 mm (matrix, 256 × 204, field
of view, 230 × 184 mm). All images were registered with in-
house software developed in our lab. The noise level in each
image was estimated using the LNE technique [10] which
is based on the area of the probability distribution p of the
second-order derivatives of the image (see (12)):

σnoise=
(
d
∑d

i=−d p(i)
)

0.63
where d=arg min

⎛

⎝
d∑

i=−d
p(i)−0.63

⎞

⎠.

(12)

To evaluate the efficiency of the different filters, two measures
were used. One based on the image residuals (i.e., difference
between the noisy and denoised images) and the other based
on an estimation of the noise level after filtering (in this case
a noise free image is not available for direct comparison).
These measures were estimated from all the pixels belonging
to the intracranial cavity as in this area the random noise can
be approximately considered as Gaussian-distributed.

The first measure was the Remaining Noise Fraction
(RNF):

RNF = σdenoised

σoriginal
, (13)

where σdenoised is the standard deviation of the noise after
filtering and σoriginal is the standard deviation of the noise
in the original noisy image. Both standard deviations were
estimated using the LNE technique.
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Table 2: Comparison of the MNLM method and the proposed method for different number of images. RMSE in the T1 image is presented
for the filtering with each number of components and noise level.

Noise Std. Dev. (%)
RMSE

MNLM OMNLM-PCA

1 2 3 4 1 2 3 4

1% 2.03 2.02 2.00 2.00 1.65 1.22 1.13 1.10

3% 3.58 3.24 3.24 3.34 3.69 2.61 2.42 2.37

5% 5.55 5.02 5.09 5.47 5.58 3.81 3.53 3.45

7% 7.64 7.06 7.24 7.88 7.32 5.12 4.66 4.58

9% 9.30 8.54 8.88 9.60 9.34 6.35 5.79 5.66

Average 5.62 5.18 5.29 5.66 5.51 3.82 3.51 3.43

Table 3: Comparison of the proposed filter with MGMM and MPVM methods for different noise levels. The original MRMSE of the 4
unprocessed images was supplied for reference purposes. As can be noticed the proposed method was the best for all noise levels.

Noise Std. Dev. (%)
MRMSE

Noisy MVPM MGMM OMNLM-PCA

1% 2.39 2.45 1.39 1.09

3% 7.18 3.27 3.22 2.47

5% 11.92 5.20 4.65 3.57

7% 16.75 7.79 5.90 4.55

9% 21.50 10.64 6.95 5.79

Average 11.95 5.87 4.42 3.49

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Detail of filtering results. (a) Noisy T1 image. (b) MPVM filter result. (c) OMNLM-PCA filter result. (d) MGGM filter result.
(e) Noise Free T1 image. (f) MPVM residuals. (g) OMNLM-PCA residuals. (h) MGGM residuals. As can be noticed, almost no anatomical
information is visible in the image residuals for the compared methods (except for MPVM). However, with the proposed method, the image
details are better preserved than the others.
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Figure 4: Denoising results (from top to down: original noisy images, denoised images with the OMNLM-PCA, MPVM, and MGMM
methods).

The second measure was obtained from the image
residuals. This measure was the Number of Outliers in the
residuals, defined as the number of pixels with values lying 3
times beyond the standard deviation of the image residuals
(for Gaussian-distributed noise this is expected to be around
the 0.05% of the data).

The first measure relates with the amount of noise
removed while the second is devised to measure the quality
of the filtering process. Table 4 summarizes the results of the
different methods according to these measures.

As can be observed, MPVM method tends to overcorrect
the data, as the number of outliers is much higher than

the expected for an optimal filter (this can be noticed
in Figure 5 where image edges in the residuals are clearly
visible). This is probably related to the modelling of each
pure tissue as one grey-level value across the entire image. It
has to be considered that the proportion of outliers measured
for MPVM method represents an upper bound due to
the removal of spatially correlated residuals introduced by
field inhomogeneity artifacts. On the other hand, MGMM
method performed well showing a good agreement with
results obtained for the same level of noise (2%) on synthetic
images. The OMNLM-PCA method performed the best
according to both the measures. It removed the highest
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Figure 5: Denoising results (from top to down: reference original noisy images, residuals from OMNLM-PCA, MPVM, and MGMM resp.).
As can be noticed, no appreciable anatomical structures are visible in the proposed method.

Table 4: Comparison of the results of the different filters. RNF following filtering and data lying beyond 3 SD of original value following
filtering (in brackets). The expected number of outliers was 60 for the selected brain region.

Noise MPVM MGMM OMNLM-PCA

IRTSE 58.76(2.1%) 0.77 (292) 0.34 (84) 0.33 (51)

PD 64.06(2.9%) 0.44 (250) 0.30 (68) 0.23 (52)

T2 58.20(3.3%) 0.43 (174) 0.26 (95) 0.19 (74)

FLAIR 52.40(2.2%) 0.39 (246) 0.25 (79) 0.18 (69)

Average 58.35(2.6%) 0.51 (240) 0.28 (81) 0.23 (61)



International Journal of Biomedical Imaging 9

quantity of noise (77% in average) while showing a number
of outliers very close from the theoretically expected for
an optimum filter (60 in this case). Figures 4 and 5 show
the filtered images with the compared methods and the
corresponding residuals for visual comparison.

4. Conclusion/Discussion

In this paper, a new method for multicomponent MR image
denoising has been proposed and evaluated using both
synthetic and real clinical data. The proposed method has
been compared with related state-of-the art methods.

It has been demonstrated that using multicomponent
images to denoising image series presents important benefits
over single image techniques due to the increased data
redundancy.

Our proposed filter removes noise in the image domain
by averaging similar patches around the image by using a
robust multicomponent similarity measure which has been
shown to improve the results of the MNLM method. Besides,
the proposed filter also removes noise in the intercomponent
domain by using a local PCA-based decomposition. The
proposed method has shown a consistent improvement in
the results when the number of images increases in contrast
with the erratic behaviour of the basic version.

The proposed method has been shown to outperform
significantly all the other compared methods. The MPVM
method showed a poor performance, especially at high
noise levels. This can be attributed to a more cautious
image formation model, which was designed to avoid the
use of spatial smoothness constraints for some clinical
applications. The MGMM method showed numerically a
good performance but a significant blurring effect was
present in the filtered images.

There are a number of factors that can influence the
denoising results of the proposed method such as image
inhomogeneities, incorrect image registration or spatially
dependent noise.

As the denoising is performed using a local region
surrounding the processed pixel the image inhomogeneities
are expected to have a low impact in the final results.
However, if an inhomogeneity correction is performed prior
the denoising process, this effect can be minimized at the
expense of spatially modulating the noise amplitude. A
more significant factor is the correct registration of the
image series. However, it has been observed that as the
similarity measure is computed from several images mainly
the incorrectly registered image(s) will be affected by this
factor due to the robustness of the similarity measure.
Besides, if registration errors are present, this will not cause
an incorrect denoising but a suboptimal one since the
preselection step only will reduce the number of similar
patches as it is based on the intersection of distances of the
local means.

Finally, it has to be noticed that modern MRI is
increasingly acquired using parallel imaging which leads to
spatially-dependent and variable noise pattern. In such case
the proposed method only requires an estimation of the local

image noise and therefore an automated local noise estimator
is required. In this sense, there are several works dealing
with this issue [24, 25]. Other possibility is to obtain local
noise estimations from the less significant local principal
components [19]. These issues will be addressed with more
research in near future.

The implementation of the proposed method in the 3D
case can potentially improve the results by increasing the
number of similar pixels in the local surrounding volume
and by using a more specific local similarity volume. In
this work, we have chosen a 2D implementation to ease
the comparison with other multicomponent state-of-the
art methods. Besides, it has to be noticed that in 3D the
execution time may be an issue for some implementations.
However, as the proposed method is highly parallelizable
the processing time associated with this technique can
be dramatically reduced using distributed computing and
related techniques [17].

There are a number of possible applications of the pro-
posed method to improve the quality of the images acquired
on dynamic series such as fMRI, perfusion and diffusion
weighted imaging or MR relaxometry. The application of the
proposed methodology in these fields has to be addressed
with further research.

Abbreviations

NLM: Nonlocal Means
MNLM: Multicomponent Nonlocal Means
OMNLM: Optimized Multicomponent Nonlocal Means
MPVM: Multidimensional Partial volume Modelling
MGMM: Multicomponent Gaussian Mixture Modelling
ADF: Anisotropic Diffusion Filter
PCA: Principal component Analysis
RGB: Red, Green, and Blue
MSE: Mean Squared Error
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