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Histidine residues at the copper-binding site in human tyrosinase are essential for

its catalytic activities

Hyangsoon Noh*, Sung Jun Lee*, Hyun-Joo Jo, Hye Won Choi, Sungguan Hong and Kwang-Hoon Kong

Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, South Korea

ABSTRACT

Tyrosinase is a copper-binding enzyme involved in melanin biosynthesis. However, the detailed structure
of human tyrosinase has not yet been solved, along with the identification of the key sites responsible for
its catalytic activity. We used site-directed mutagenesis to identify the residues critical for the copper bind-
ing of human tyrosinase. Seven histidine mutants in the two copper-binding sites were generated, and
catalytic activities were characterised. The tyrosine hydroxylase activities of the CuA site mutants were
approximately 50% lower than those of the wild-type tyrosinase, while the dopa oxidation activities of the
mutants were not significantly different from that of wild-type tyrosinase. By contrast, mutations at CuB
significantly decreased both tyrosine hydroxylation and dopa oxidation activities, confirming that the cata-
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lytic sites for these two activities are at least partially distinct. These findings provide a useful resource for
further structural determination and development of tyrosinase inhibitors in the cosmetic and pharma-

ceutical industries.

1. Introduction

Melanin biosynthesis is a complicated pathway involving chemical
and enzymatic reactions and is limited to melanocytes in mam-
mals. Tyrosinase (monophenol monooxygenase, EC 1.14.18.1) plays
a pivotal role in the melanin synthesis pathway. Moreover, tyrosin-
ase is the only human melanogenic enzyme with well-established
in vivo catalytic enzyme activity', catalysing several steps in mel-
anin synthesis and generated by the hydroxylation of L-tyrosine®™.
Tyrosinase is a copper-containing metalloprotein belonging to the
type-3 copper protein family, together with haemocyanins and
catechol oxidases. These proteins are abundant in mammals, bac-
teria, fungi, and plants, and the active sites are highly conserved
among the different species®. By synthesising melanin, tyrosinase
exerts a protective function in UV-induced damage® but can also
cause hyperpigmentation, leading to aesthetic problems and mel-
anoma. Moreover, the lack of tyrosinase activity is associated with
oculocutaneous albinism (OCA) in many animal species, including
humans’®. As such, human tyrosinase is a quite attractive target
for medical and industrial applications. Particularly, the screening
of potent antagonists of tyrosinase and their subsequent develop-
ment to drugs have attracted substantial interest in the
cosmetic industry.

To date, two crystal structures of catechol oxidase™'”, three
crystal structures of haemocyanin''~'3, and three crystal structures
of tyrosinase — from Agaricus bisporus'*, Streptomyces castaneoglo-
bisporus', and Bacillus megaterium'® - have been resolved.
Unfortunately, there is still no crystal structure of human tyrosin-
ase; however, a reliable model could be generated based on the
amino acid sequence and previously reported active sites'’. The
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mature human tyrosinase consists of 529 amino acids including a
short N-terminal signal peptide targeting the nascent polypeptide
to the endoplasmic reticulum for folding, sorting, and, modifica-
tion'®. Further, it contains seven N-glycosylation motifs, two puta-
tive copper-coordinating sites distinct to CuA and CuB, one
transmembrane domain, and a short carboxyl tail that has the
important signals for targeting and sorting to melanosomes'®.
Moreover, six histidine residues in the active site are involved in
coordination with the two copper ions (CuA and CuB)?°. However,
there is no clear evidence for the direct binding of human tyrosin-
ase to copper. The alignment of amino acid sequence for tyrosi-
nases, catechol oxidases, and haemocyanins suggested that the
two homologous regions distinct to CuA and CuB could be dir-
ectly involved in the two copper bindings, which are critical for
the catalytic activities of the enzymes?'. Furthermore, a mutational
study of human tyrosinase revealed that both copper binding
sites are necessary for the catalytic activity of the enzyme and for
copper binding at the active site??,

In this study, we sought to demonstrate whether the seven
copper-binding histidine residues (H180, H202, H211, H363, H367,
H389 and H390) around the two copper binding sites are neces-
sary for the «catalytic activities and folding of tyrosinases.
Nakamura et al.>® reported that seven histidine residues — H63,
H84, H93, H290, H294, H332, and H333 - are essential for the tyro-
sinase activity of Aspergillus oryzae and demonstrated that replace-
ment of each residue with asparagine abolished the catalytic
activities of the mutant enzymes. Moreover, a crystallographic
analysis of Palinurus interruptus haemocyanin showed that one of
the pairs of copper ions, CuA, is enclosed by residues H196, H200
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and H226, while the other, CuB, is surrounded by residues H346,
H350 and H386'2 Against this background, in the present study,
the mutation positions were selected by the amino acid sequence
alignment of H. sapiens tyrosinase with those of other tyrosinases
from Mus musculus, Oryzias latipes, Streptomyces antibioticus,
Streptomyces glaucescens, Streptomyces lavendulae, Streptomyces
lincolnensis, Neurospora crassa, A. oryzae and Sinorhizobium meliloti
(Figure 1), focussing on the positions of seven histidine residues
(H180, H202, H211, H363, H367, H389 and H390). Further, we
replaced each histidine residue around the CuA and CuB sites
with a non-polar amino acid, alanine, using a site-directed muta-
genesis approach. We then compared the hydroxylation and oxi-
dation activities of these mutants. These findings shed light on
the essential residues responsible for the catalytic activity of
human tyrosinase, which would be of enormous value in predict-
ing the structure and designing new inhibitors.

2. Materials and methods
2.1. Cloning and site-directed mutagenesis of human tyrosinase

We previously reported the cloning of the human tyrosinase gene
into the pHis vector, along with protein expression and purifica-
tion®*. To improve these last two steps, in this study, we used a
PCR approach to reclone the gene into the pET-26b(+) bacterial
vector (Novagen, Madison, WI, USA), which contains a 6x His-tag
at the C-terminal, using Nde | and Xho | (Takara Shuzo, Otsu,
Shiga, Japan) as restriction sites, including the stop codon.

Site-directed mutagenesis to substitute the six histidine resi-
dues with alanine was carried out using QuikChange Site-Directed
Mutagenesis Kit (Agilent, #200518) according to the manufac-
turer’'s manual.

Primers (COSMO Genetech, Seoul, South Korea) used for clon-
ing and mutation generation are listed in Table 1. Each plasmid
for the wild type and mutants was transformed into XL1-blue
competent cells and sequenced (Bionics, Seoul, South Korea).
Plasmids confirmed by sequencing were then transformed into
the Escherichia coli strain BL21 Star (DE3) (Novagene) for
enzyme expression.
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2.2. Recombinant human tyrosinase expression in E. coli

To express recombinant wild-type and mutant tyrosinase, BL21
Star (DE3) transformed with each construct was inoculated into
Luria-Bertani (LB) culture medium supplemented with 30 pg/mL
kanamycin (Sigma-Aldrich, St. Louis, MO, USA) and 1 mM CuSO,,
and then induced with 0.4mM isopropyl-f-p-thiogalactopyrano-
side (IPTG; Sigma-Aldrich) at an optical density 600 nm of 0.3-0.4
for 12 h. Centrifugation was carried out at 20,000g for 30 min at
4°C to harvest the cells, and collected cells were washed three
times with 50 MM Tris—HC| buffer with 1% Triton X-100 (Buffer A,
pH 6.8), and resuspended in 10 ml of Buffer A containing 1 mM
CuSO,4, 5mM EDTA, and 100 uM PMSF. Resuspended cells were
then lysed in a sonicator (Qsonica, Newtown, CT, USA) for 20 min
at 30-40W with 9-s pulse on and 1-s pulse off. After centrifuging
the lysate at 20,000g for 30 min at 4°C, the supernatant was col-
lected and stored at 4 °C until analysis.

2.3. Recombinant human tyrosinase purification

The His-tagged wild-type tyrosinase and mutant enzymes
were purified by loading the lysate on a diethylaminoethyl

Table 1. Primers used for and site-directed

mutagenesis.

recloning into pET26b(+)

Enzymes Sequence of primers® Direction
Wild type  5'-GGAATTCCATATGCACTTCCCTAGAGCCTGTGTCTCCTCT-3"  Forward
5'-ATCCGCTCGAGCGGTAAATGGCTCTGATACAAGCTGTG-3'  Reverse
H180A 5'-CTTTGTCTGGATGGCTTATTATGTGTCAA-3' Forward
5'-TTGACACATAATAAGCCATCCAGACAAAG-3' Reverse
H202A 5'-CATTGATTTTGCCGCTGAAGCACCAGCTT-3 Forward
5'-AAGCTGGTGCTTCAGCGGCAAAATCAATG-3' Reverse
H211A 5'-TTTTCTGCCTTGGGCTAGACTCTTCTTGT-3 Forward
5'-ACAAGAAGAGTCTAGCCCAAGGCAGAAAA-3' Reverse
H363A 5'-TCTCAAAGCAGCATGGCCAATGCCTTGCACATC-3 Forward
5'-GATGTGCAAGGCATTGGCCATGCTGCTTTGAGA-3' Reverse
H367A 5'-ATGCACAATGCCTTGGCCATCTATATGAATGGA-3/ Forward
5'-TCCATTCATATAGATGGCCAAGGCATTGTGCAT-3/ Reverse
H389A 5'-CCTATCTTCCTTCTTGCCCATGCATTTGTTGAC-3/ Forward
5'-GTCAACAAATGCATGGGCAAGAAGGAAGATAGG-3' Reverse
H390A 5/-ATCTTCCTTCTTCACGCTGCATTTGTTGACAGT-3 Forward
5'-ACTGTCAACAAATGCAGCGTGAAGAAGGAAGAT-3' Reverse

?Changed bases are underlined.

CUA Site
™ 02 o

H. Sapiens AAB60319.1:179 — - MHYYVSMDALLGGS-EIWRDIDFAHEAPAFLPWHRLFLLRWEQEIQK-—----

M.musculus ~ BAX25613.1 :179 - -MHYYVSRDTLLGGS-EIWRDIDFAHEAPGFLPWHRLFLLLWEQEIRE-----

O.Aatipes BAA06155.1:181 — — | HYYVSRDTFLGGPGNVWRD I DFAHESAAFLPWHRVYLLHWEQEIRK-----

S. Antibioticus KUN19952.1: 37 — — THNAF IMSDTDSSE- - - - - - — RTGHRSPSFLPWHRRYLLEFERALQS-----

S. Glaucescens AAA26834.1: 37 — — THNAF | IGDTDAGE - - - - - - - RTGHRSPSFLPWHRRYLLEFERALQS-----

S. Lavendulae ABQ41256.1: 37 — —AHNYYLMSDSDFGP - - - - - - — RIHHRTPSFLPWHRRFLLDFEASLQS-----

S. Lincolnensis AXG56452.1:38 — -MH I EYYYSDGEGGL ------— RTAHMAPSFLPWHRRFLLEFERALRR-----

N. Crassa AAA33619.1: 73 — - PWAGVPSDTDWSQPGSSGFGGYCTHSS I LFITWHRPYLALYEQALYA-----

A. Oryzae CAX65671.1: 62 — -~ LHGEPFRGAG'N NS--HWWGGYCHHHNI LFPTWHRAYLMAVEKALRK-----

S. Meliloti PTD30728.1 : 62 — - MLKLPPSDPRNWYRNGFIHLMDCPHGDWWFTSWHRGYLGYFEETCRE-----

CuB Site

6 s 309 390

H. Sapiens AAB60319.1:352 - - TG | ADASQSSMHNALHI YMNG------- - - - - - - - — - TMSQVQGSANDPIFLLHHAFVDS -
M.musculus  BAX25613.1:352 — - TG | ADPSQSSMHNALHIFMNG- - - - - - - - - - - — - — — — TMSQVQGSANDPIFLLHHAFVDS -
O.Aatipes BAA06155.1:355 - - TGMAVQGQSTMHNALHVFMNG - - - - - - - - - - - - — — — — SMSSVQGSANDPIFLLHHAFIDS-
S. Antibioticus KUN19952.1:186 — - G — — — — — — — VNLHNRVHVWVGG-----—-—- - - - - - - - - — QMATGVS-PNDPVFWLHHAYVDK -
S. Glaucescens AAA26834.1:186 — — G — — — — — — — VNLHNRVHVWVGG-----—-—-—-—- - - - - - —— QMATGMS -PNDPVFWLHNAYVDK -
S. Lavendulae ABQ41256.1:186 — — G — — — — — — — TNLAEANRVHVWVGG-------—--—-—-—-—-—-—— HMATAAS-PNDPVFWLHHAA I DK -
S. Lincolnensis AXG56452.1:193 — - GP TA----WRNHNRVHRWVGG----—-—-—- - - - - - - - —— VMVGGAS-VNDPVFWMHHAFVDL -
N. Crassa AAA33619.1:267 - —-NPGDFGSLEDVHNEIHDRTGGN- - - - - - - - - - - - —— GHMSSLEVSAFDPLFWLHHVNVDR-
A. Oryzae CAX65671.1:279 — —ATSLAVPLESPHNDMHLAIGGVQIPGFNVDQYAGANGDMGENDTASFDPIFYFHHCFIDY -
S. Meliloti PTD30728.1 :255 - - PVGFS | LEGQPHNRVHMSVGGQS - - - - - - - - - - — APYGLMSQNLSPLDPIFFLHHCNIDR-

Figure 1. Amino acid sequence alignment of tyrosinases from Homo sapiens, Mus musculus, Oryzias latipes, Streptomyces antibioticus, Streptomyces glaucescens,
Streptomyces lavendulae, Streptomyces lincolnensis, Neurospora crassa, Aspergillus oryzae, and Sinorhizobium meliloti. The numbers correspond to human tyrosinase amino

acid positions, and copper ligands in human tyrosinase are indicated.
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(DEAE)-Sephacel column, following immobilisation in a metal-affin-
ity column (Pharmacia Biotech, Uppsala, Sweden). The unbound
protein fractions after passing through the DEAE-Sephacel column
were applied to a metal affinity column with Ni-NTA resin
(Novagen). The column was rinsed with 50mM Tris—-HCl buffer
containing 500 mM NaCl, 1% Triton X-100 (Buffer B, pH 7.8), and
20mM imidazole. The elution procedure was performed with
Buffer B containing 150 mM imidazole. The imidazole in the col-
lected proteins was removed by dialysis with Buffer A, and the
purified wild-type and mutant enzymes in Buffer A were then
used for subsequent experiments.

2.4. Enzyme activity assay and kinetics analysis

2.4.1. Tyrosine hydroxylase activity assay

The tyrosine hydroxylase activity of wild-type and mutant human
tyrosinase was determined as described previously?>?®. The reac-
tion mixtures containing 100 uM L-tyrosine, 5puM L-3,4-dihydroxy-
phenylalanine (.-dopa, Sigma-Aldrich), 4 mM ascorbic acid, 0.5 uM
CuS0O,, and tyrosinase enzyme in a total volume of 2.5ml were
incubated at 37°C for 3h. The L-dopa generation in the reaction
was measured by fluorescence at 360 nm excitation and 490 nm
emission, and the tyrosine hydroxylase activity was determined.
The specific activities for tyrosine hydroxylase were determined as
1 mmol mM of L-dopa produced per hour per microgram of pro-
tein under the above reaction conditions. The reaction rates with-
out enzyme or L-tyrosine served as negative controls and were
used as a normalisation factor for each enzyme reaction rate.

2.4.2. Dopa oxidase activity assay

The dopa oxidase activity of tyrosinase was measured by spectro-
photometric monitoring of dopachrome production at 475 nm as
described previously®. The reaction mixtures containing 50 mM
Tris-HCl  buffer (pH 7.5), 3mM -dopa (égopachrome =
3600M~"ecm™"), 1mM CuSO,, and 50 pL of enzyme in a total vol-
ume of 1ml were incubated at 37°C for 3 min. The unit of dopa
oxidase activity was determined as 1 pumol of dopachrom produc-
tion per minute of the reaction. The specific activities of dopa oxi-
dase were determined by units of dopa oxidase activity per
milligram of enzyme. The steady-state rates were calculated from
the linear slope of time versus absorbance curves. The reaction
rates without enzyme or L-dopa served as negative controls and
were used as a normalisation factor for each enzyme reaction rate.

2.4.3. Enzyme kinetics analysis

The K, and k., values for L-tyrosine and L-dopa were calculated
by the Lineweaver-Burk plot?” with five separate experiments. The
concentration of purified wild-type and mutant proteins was
measured by the bicinchoninic acid (BCA) assay (Thermo Fisher,
Waltham, MA, USA) using bovine serum albumin (BSA) as a stand-
ard protein.

2.5. Electrophoresis

Denatured wild-type and mutant proteins (20 ug) were loaded
onto 12% sodium dodecyl sulphate-polyacrylamide (SDS-PAGE)
gels. After separation by electrophoresis, Coomassie brilliant blue
R-250 was used to stain the gel, and the protein bands were
visualised with 40% methanol and 10% glacial acetic acid.

2.6. Three-dimensional structure modelling of tyrosinase

Structural modelling of tyrosinase was performed by ‘SWISS-
MODEL EXPASY’ software provided by Biozentrum, the Centre for
Molecular Life Sciences in Basel University (Basel, France).
Modulation of predicted protein models was carried out with
‘Autodock tools’ software provided by the Scripps Research
Institute (CA, USA). Visualisation of protein models was performed
by ‘UCSF Chimaera package’ from the Resource for Biocomputing,
Visualisation and Informatics (RBVI) of the University of California
(CA, USA)

2.7. Statistical analysis

Results are expressed as mean +standard deviation. Data were
analysed using an unpaired two-tailed Student t-test to detect the
significance of differences between groups. p <0.05 was consid-
ered statistically significant.

3. Results

3.1. Expression and purification of the recombinant wild-type
and mutant tyrosinase

Compared with our previous pHis-Tyrosinase recombinant bacterial
plasmid that contains the human tyrosinase sequence and an N-ter-
minal poly-histidine tag?*, recloning of the tyrosinase gene into the
PET26b(+) expression plasmid containing a C-terminal 6x His-tag
successfully enhanced enzyme expression and catalytic activity. The
recombinant pET26b(+)- human tyrosinase (pET-hTyr) could pro-
duce large amounts of pure and active tyrosinase (66 kDa) in the
bacterial expression system. A high yield (approximately 34%, data
not shown) of tyrosinase expression was obtained using E. coli
BL21 Star (DE3) cells followed by purification, which was greater
than that obtained in our previous study (approximately 19%)*,
demonstrating the efficiency of the 6x His tag at the C-terminal
rather than the N-terminal. As a result, the final purification was
determined to be enhanced by 49-fold, and approximately
2.75 mg/L of purified tyrosinase was obtained. The purified recom-
binant human tyrosinase exhibited a single protein band corre-
sponding to a molecular weight of 66,000 on the SDS-PAGE gel
(Figure 2), which was used for subsequent characterisation.

All of the purified tyrosinase mutants (H180, H202, H211, H363,
H367, H389 and H390) were prepared under the same conditions,
and appeared as single protein bands on the SDS-PAGE gel
(Figure 2; Supplementary Table 1). All mutants showed acceptable
soluble, expressed, and purified enzyme concentrations in com-
parison with the wild-type tyrosinase.

3.2. Stability of the recombinant wild-type tyrosinase
and mutants

The stability of the purified wild-type tyrosinase and mutants was
confirmed by refolding of proteins. The refolded wild-type tyrosin-
ase exhibited similar activity to the wild-type tyrosinase expressed
in E. coli, indicating that the tyrosinase expressed in BL21(DE3) has
a stable protein structure (86.3% vs. control, p=0.0981, Figure
2(B)). Furthermore, all of the purified tyrosinase mutants showed
similar activities between purified and refolded proteins (purified
vs. refolded, p > 0.05 for all mutants, Figure 2(B)).
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Figure 2. (A) SDS-PAGE of wild-type human tyrosinase and mutant enzymes after purification through diethylaminoethyl (DEAE)-Sephacel and immobilised metal-affin-
ity chromatography. The gel was stained with Coomassie blue. The arrow indicates the calculated size of 66 kDa, corresponding to human tyrosinase. (B) Confirmation
of tyrosinase stability by refolding. The tyrosinase expressed and purified in E. coli BL21 was denatured by adding 8 M urea, and then refolded by gradationally reduc-
ing the urea concentration by dialysis. The activity of the refolded tyrosinase was measured and compared to that of the early purified tyrosinase. The values represent

the mean+SD (n=23).

3.3. Catalytic activities of the recombinant wild-type tyrosinase
and mutants

The wild-type tyrosinase was expressed and purified as a func-
tional enzyme, showing clear hydroxylation and oxidation activ-
ities, and all six mutants showed lower activities than those of the
wild-type (Table 2). The majority of the mutant enzymes, except
for the H389A mutant, showed significantly lower tyrosine hydrox-
ylase (monophenolase) activity for the L-tyrosine substrate, sug-
gesting that these substituted residues are required for tyrosine
hydroxylation activity, whereas dopa oxidase (diphenolase) activity
was reduced significantly in four mutants (H363A, H367A, H389A
and H390A) around the CuB site. Three mutants (H180A, H202A
and H211A) around the CuA site retained partial activity up to
88%, 76% and 89%, respectively, for the dopa oxidation reaction
compared with that of wild-type tyrosinase. This finding sug-
gested that the copper binding of the three histidine residues
around CuA is essential for binding to the aromatic substrate, L-
tyrosine. Moreover, structure modelling for human tyrosinase

Table 2. Specific activity of the wild-type tyrosinase and mutant enzymes for L-
tyrosine hydroxylation and L-dopa oxidation reactions.

I-Tyrosine I-Dopa

Specific activity Relative Specific activity Relative
Enzyme (umol-pg~"-h™")  activity (%) (units/mg) activity (%)
Wild type 108.3+2.1 100 1.53+0.10 100
H180A 472+1.2 44 1.35+0.02 88
H202A 435+0.9 40 1.17+£0.01 76
H211A 51.6+0.8 48 1.37+0.03 89
H363A 249+0.3 23 0.23+0.02 15
H367A 20.6+0.3 19 0.34+0.03 22
H389A 110.5+0.2 102 1.04+0.03 68
H390A 173+05 16 0.40 +0.05 26

Values are means + SD, generally based on n > 5.

using Swiss-model Expasy software based on tyrosinase-related
protein 1 structure — which is already resolved with X-ray crystal-
lography?® - predicted that these three residues are also involved
in direct binding to the copper atom (Figure 3).
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Figure 3. (A) Proposed three-dimensional structure of human tyrosinase. The di-
copper site was found in the centre of the four-helix bundle motif. H180, H202
and H211 residues show direct binding with the copper atom at the CuA site,
and H363, H367 and H390 are directly coordinated with the copper atom at the
CuB site. However, H389 is located around the CuB site without direct binding.
(B) Schematic illustration of CuA- and CuB-binding sites of human tyrosinase.
Based on three-dimensional structure modelling, the residues H180, H202, and
H211 show direct binding with CuA, whereas H363, H367 and H390 are directly
coordinated with CuB. H389 is located around CuB but without direct binding.

3.4. Kinetic analysis of the recombinant wild-type and
mutant tyrosinase

Kinetic properties of the wild-type and mutant tyrosinase were
obtained by the Lineweaver-Burk plot and are shown in Table 3.
The K, values of the mutant enzymes for the L-tyrosine hydroxyl-
ation reaction showed no significant difference compared with
those of the wild-type enzyme. This result indicated that histidine
residues around both the CuA and CuB sites are not involved in L-
tyrosine substrate binding. By contrast, the K, values of the
mutant enzymes for the .-dopa oxidation reaction were more vari-
able. The three mutants around the CuA site showed K., values

Table 3. Kinetic parameters of the wild-type tyrosinase and mutant enzymes for
L-tyrosine hydroxylation and L-dopa oxidation reactions.

L-Tyrosine L-Dopa

Km kcat kcat/Km Km kcat kcat/Km
Enzyme (M) s @MY (mMm) ) (mmMT'sT
Wild type 1.32+0.12 0.61+0.025 046 034008 341+23 1003
H180A  1.81+0.12 034+£0.012 019  042+0.07 285+1.9 67.9
H202A  1.63+0.11 042+0.017 026  045+0.07 30.0+25 66.7
H211A  1.44+007 050£0.043 034  037£0.09 324+3.1 87.6
H363A  1.99+0.08 0.44+0.01 022 3.09+0.12 17.2+13 5.6
H367A  1.77+0.15 048+0.011 027  320£0.09 158+1.0 49
H389A  1.67%0.10 0.63+0.018 038  0.24+0.05 384+1.2  160.0
H390A  1.47+0.13 052+0.017 035  036+0.07 29.7+13 82.5

Values are means =+ SD, generally based on n>5.

similar to those of the wild-type enzyme, but K, values of the
H363A and H367A mutants were nine-times lower than those of
the wild-type enzyme, suggesting that these two histidine resi-
dues may affect the binding affinity with the L-dopa substrate as
well as copper binding. Furthermore, according to the k., values
for the wild-type tyrosinase and mutants, the three histidine resi-
dues bound to the CuA site are more critical for the L-tyrosine
hydroxylation reaction, whereas the histidine residues at the CuB
site play a more essential role for the L-dopa oxidation reaction
(Table 3).

In the predicted 3 D tyrosinase model (Figure 3), the most likely
binding sites of tyrosinase for CuA were determined to be H180,
H202 and H211, which directly bind to copper atoms. Similarly, at
the CuB site, the copper atom was coordinated by three histidine
residues, H363, H367 and H390, through direct binding. H389
could be involved in catalytic reactions with indirect cooperation
at the CuB region in human tyrosinase.

4, Discussion

In this study, recombinant wild-type and mutant human tyrosinase
enzymes were overexpressed in E. coli BL21 (DE3) and utilised to
analyse the catalytic activity. It has been reported that N-glycosy-
lation is necessary for human tyrosinase stability and activity
in vivo®*', However, our previous studies and those of another
group have also shown that recombinant human tyrosinase from
E. coli could exhibit activity without phosphorylation or glycosyla-
tion'®2432 As expected, we could detect the catalytic activity of
recombinant human tyrosinase expressed in BL21 (DE3) in
this study.

Previous studies of tyrosinase suggested that histidine residues
are critical for its catalytic activity. In A. oryzae tyrosinase, the
replacement of three histidine residues (H63, H84 and H93) with
asparagine at the CuA binding site largely abolished copper bind-
ing by approximately 50%, revealing that the histidine residues
are required for copper binding. Moreover, these residues were
deemed to be critical for catalysis, given the diminishment of the
copper content and the abolishment of tyrosine hydroxylase and
dopa oxidase activities with L-tyrosine and L-dopa, respectively?>.
Similarly, copper contents in the histidine residue substituents
(H93A, H116A and H125A) of a polyphenol oxidase, type-3 copper
enzyme of C. grandiflora, were decreased, confirming that the his-
tidine residues are critical for copper binding®®. Consistent with
these previous reports, in this study, we confirmed that three his-
tidine residues, H180, H202 and H211, of human tyrosinase
around the CuA site are essential for enzyme activity as deter-
mined by site-directed mutagenesis. These three histidine residues
may be directly involved in copper binding to catalyse the L-tyro-
sine hydroxylation reaction.



H290, H284, H332 and H333 around the CuB site were found
to be required for catalytic function and to act as copper-coordi-
nating ligands of the mature tyrosinase from A. oryzae®.
Moreover, Spritz et al.?? described that human tyrosinase contains
four conserved histidine residues (H363, H367, H389 and H390).
They further showed that the H390A mutant eliminated catalytic
activity, but did not reduce copper binding, whereas the H389
replacement resulted in complete lack of activity. This suggested
that only H389 plays an essential role in copper binding of human
tyrosinase, despite the recognition of H390 as a conserved residue
in all putative copper binding sites®2. However, we found that the
H363, H367 and H390 residues of human tyrosinase are likely dir-
ectly involved in copper binding based on evaluations of catalytic
activity and structural modelling. Furthermore, in contrast to these
previous findings, H389 did not abolish the catalytic activity for L-
tyrosine hydroxylation and showed indirect binding with the cop-
per atom at the CuB site. Although we showed that H389 was
indirectly involved in tyrosine hydroxylation reaction, its precise
role at the CuB site requires further investigation.

Although the CuB site exhibits a higher conservation than CuA,
studies of tyrosinase from different species have shown the
involvement of the conserved histidine residues in copper bind-
ing. The conserved histidine residues around copper ions may
play different roles in stability, flexibility, and additional structure
conformation for the catalytic activity of tyrosinase. According to
structure studies in other species, H54 in tyrosinase from S. casta-
neoglobisporus (TyrSc) was ligated to CuA that is transferred from
the caddie protein through H82, M84 and H97 to the flexible H54
residue, which changes its conformation to coordinate the copper
in the active site®*. In B. megaterium tyrosinase (TyrBm), M61 and
M184 residues transfer copper ions to the flexible H60 (in the
same manner as H54 in TyrSc), which positions the copper ion in
the active site®. Furthermore, H251 residues of A. bisporus tyrosin-
ase coordinate CuB in the active site, which consequently causes
CuB flexibility in the active site®. A structural study of tyrosinase
from A. oryzae (TyrAo) showed that the thioether bond between
H94 and C92 is formed only in the presence of copper in the
active site’’.

Moreover, it has been proposed that the proton of the
hydroxyl group of monophenols may be removed and transferred
to one of the coordinating histidine residues in the catalytic
mechanism of tyrosinase®®*®. The deprotonated substrates are
bound to the active centre of tyrosinase®, and this may be stabi-
lised by the interaction with the conserved histidine residues serv-
ing as a proton acceptor, even though this should be proved by
compelling evidence.

Furthermore, recent studies have identified that an Asn residue
along with a Glu residue is critical for tyrosinase tyrosine hydroxyl-
ation activity at Cu binding sites, showing that polyphenol oxi-
dase, which lacks monophenolase activity, can be transformed to
a tyrosinase by simply introducing an asparagine. A conserved
water molecule activated by asparagine and glutamate is pro-
posed to mediate the deprotonation of the monophenol at the
active site*’*2, Another study showed that an alternative set of
four key residues, including a conserved glutamate and phenyl-
alanine, are located around copper active sites with conserved
copper-coordinating histidine residues®>. The present study thus
further expands this mechanism by demonstrating the key role of
histidine residues of tyrosinase for its catalytic activity, although
further study may be needed to elucidate the role of each histi-
dine residue in this process.

Thus, we conclude that one of a pair of copper ions, CuA, dir-
ectly binds to three histidine residues (H180, H202 and H211),
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while the other, CuB, directly binds to three other histidine resi-
dues (H363, H367 and H390) and indirectly binds to H389. We fur-
ther assume that copper coordination at one site may facilitate
copper binding at the other site. However, the crystal structure of
human tyrosinase is required to identify the crucial residues for
copper binding in catalysing reactions.
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