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Computer simulations are regularly used for studying the evolution of strategies in

repeated games. These simulations rarely pay attention to game theoretical results that

can illuminate the data analysis or the questions being asked. Results from evolutionary

game theory imply that for every Nash equilibrium, there are sequences of mutants that

would destabilize them. If strategies are not limited to a finite set, populations move

between a variety of Nash equilibria with different levels of cooperation. This instability is

inescapable, regardless of how strategies are represented. We present algorithms that

show that simulations do agree with the theory. This implies that cognition itself may

only have limited impact on the cycling dynamics. We argue that the role of mutations or

exploration is more important in determining levels of cooperation.
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1. INTRODUCTION

Costly cooperation—where individuals reduce their own fitness in order to increase somebody
else’s—is ubiquitous in the natural world. It is however not immediately clear why costly
cooperation would have survived a process of mutation and selection. A parallel problem arises
in engineering, when autonomous agents need to learn how to cooperate with each other. If agents
respond to individual rewards, there is little incentive for groups of agents to behave cooperatively
(Shoham and Leyton-Brown, 2008). Recognized by Darwin himself (Darwin, 1859), the problem of
cooperation is still considered one of the biggest open problems in science (Pennisi, 2005).

Cooperation problems arise due to a mismatch between individual incentives and collective
goals. This tension is best captured by the prisoner’s dilemma (Rapoport and Chammah, 1965).
Assuming that players have two possible actions, cooperate and defect, the game is specified by
payoffs R, S, T, and P, such that T > R > P > S. The payoff for mutual cooperation is R; the payoff
for mutual defection is P; S is the payoff for a cooperator that meets a defector; and a defector
meeting a cooperator will get T. Regardless of what the other player does, the payoff of playing
defect is larger than the payoff of playing cooperate, while the payoff of mutual cooperation is
higher than the payoff of mutual defection. Thus, rational players will end up in the less desirable
outcome of mutual defection.

Explaining the emergence of cooperation requires a mechanism that keeps the cooperators
from losing ground to defectors. Such a mechanism will have to offset the costs of
cooperation by causing cooperators to also be on the receiving end more often. One set of
mechanisms is population structure in general, which causes deviations from random matching,
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and includes networks, group selection, and other spatial
structures (Nowak, 2006b). Such deviations from random
matching can induce kin selection. Another mechanism is
indirect reciprocity based on reputation (Axelrod and Hamilton,
1981). Cooperation can be sustained if players are uncertain
about when the game ends, and the probability of repetition is
large enough. While repeated interactions can sustain strategies
that behave cooperatively, strategies that do not cooperate can
also be stable (Fudenberg and Maskin, 1986).

To see how direct reciprocity can sustain
cooperation, consider a prisoner’s dilemma that is repeated
for an uncertain, but, in expectation, large number of rounds.
A strategy that always cooperates (ALLC) will be invaded by a
strategy that always defects (ALLD), because the latter always
exploits the former. The strategy “Tit-for-Tat” (TFT) cooperates
on the first round and repeats the previous move of its opponent
thereafter. TFT against itself results inmutual cooperation. ALLD
will exploit TFT in the first round, but will receive the payoff of
mutual defection thereafter. Because the game in expectation
is repeated many times, the advantage of exploiting the other
in the first round is more than offset by the disadvantage of
receiving the payoff of mutual defection instead of the payoff of
mutual cooperation in subsequent rounds. Thus, players using
TFT will have little incentive to switch to ALLD, and a mutually
cooperative outcome becomes feasible.

With different possibilities for equilibrium behavior—both
TFT and ALLD for instance are equilibria—one question could
be if there is an overall best way to play a repeated prisoner’s
dilemma. In a pioneering study, Axelrod (1984) requested
programmable strategies from game theorists, and pitted them
against each other in a round-robin computer tournament,
where each game was repeated two hundred times. The strategy
TFT, described above, was the winner of that tournament.
Axelrod’s pioneering research was followed by a wealth of
interdisciplinary research, cutting across fields and techniques
such as evolutionary dynamics, game theory, and computer
science. AfterTFTwonAxelrod’s tournament, some other studies
have also declared other winners; for instance Nowak and
Sigmund (1993) suggested that win-stay, lose-shift (WSLS) was
a better strategy. Both simulations and game theoretical analyses
are commonly used.

Recent game theoretical work shows that no equilibrium is
fundamentally more stable than any other equilibrium. In this
paper we will show that this prediction should also hold for
studies based on simulations, provided the data are analyzed
properly. This finding has strong implications for studies of
cognition and cooperation. Given that game theoretical results
predict instability without imposing any restrictions on the
strategies, no matter how cognitively sophisticated, the instability
of cooperation is inescapable. We argue that the role of
mutations, or how agents explore the strategy space is more
important in predicting whether cooperation is more or less
likely.

The rest of the paper is organized as follows. Section 2
describes how different techniques have approached the problem
of cooperation in repeated games. Our goal is to show that
these different approaches are not only compatible, but also

powerful when used together. Section 3 summarizes recent
game theoretical findings, and delineates what properties should
be present in a meaningful simulation program. One such
simulation program is presented in section 4. Our main
contributions are presented in section 5, where we formulate
algorithms to analyse the data from the simulations. These
include an algorithm to capture transitions between prevalent
strategies in a noisy simulation, as well as a way to determine
if prevalent strategies are Nash equilibria, as predicted by the
theory. Finally section 6 concludes by discussing the implications
of our results.

2. AN OVERVIEW OF DIFFERENT
APPROACHES

2.1. Evolutionary Game Theory
In evolutionary game theory the focus of models is naturally
on evolution, typically assuming that there is a population of
strategies, competing for a place in the next generation based
on the payoffs they get from interacting with others (Nowak,
2006a). The length of the game is uncertain, and the probabilities
of different lengths are implied by the continuation probability δ,
which makes the probability of k repetitions follow a geometric
distribution with success probability δ. Sometimes the length of
the game is described by the expected number of rounds. If δ is
the continuation probability, then 1

1−δ
is the expected number of

rounds.
In this literature, the set of strategies is often restricted

for mathematical tractability. Many studies consider what is
known as reactive strategies (Nowak and Sigmund, 1992). These
are triplets (y, p, q), where y is the probability of cooperating
in the first round, p is the probability of cooperating if the
opponent cooperated on the last round, and q is the probability of
cooperating if the opponent defected in the last round. Three of
the strategies discussed in section 1 are included in this strategy
space; TFT is represented by (1, 1, 0); ALLC is (1, 1, 1); and ALLD
is (0, 0, 0).

In this approach the relative simplicity of strategies often
allows for a full description of the dynamics. For example,
Nowak and Sigmund (1990) derive exact equations for the
evolutionary dynamics in this set, when the population is large
and homogeneous. A homogeneous population hampers the
chances of TFT to establish cooperation, but using computer
simulations it has been shown that TFT can lead the way for
cooperation when there is heterogeneity (Nowak and Sigmund,
1992).

With reactive strategies, behavior depends only on what the
opponent did in the last round. Alternatively, one could also
make behavior depend, not just on what the other did, but also
on what one did oneself in the previous round. Combining the
two would amount to four possible combinations of moves from
the previous round. A vector (p0, pCC, pCD, pDC, pDD) encodes a
strategy that cooperates with probability p0 in the first round, and
with the other four probabilities, depending on the four possible
combinations of actions in the previous round [see for instance,
Hilbe et al. (2015)]. Such strategies are typically referred to as
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memory-1 strategies. The set of reactive strategies is a proper
subset of the set of memory-1 strategies; any reactive strategy
(y, p, q) can be rewritten as a memory-1 strategy; just choose
(y, p, q, p, q). The strategy WSLS however is a memory-1 strategy,
but not a reactive one. This strategy is represented by (1, 1, 0, 0, 1),
and it repeats its own move from the previous round if the last
round yieldedT orR, and switches actions if the payoffwas P or S.

Cyclical dynamics are a typical finding. WSLS for instance
outperforms TFT if players occasionally make mistakes, but
WSLS itself can still be invaded by unconditional defection. The
dynamics will take a population from highly cooperative states,
based on TFT-like or WSLS-like strategies, to defection and
back. These cycles are a fundamental feature, already present
in Axelrod (1987b). Cycles also appear when strategies are
deterministic, as in for example in Imhof et al. (2005) or van
Veelen et al. (2012).

Recent research has revealed that a certain kind of memory-
1 strategies can be successful in the sense that they can always
enforce a linear relationship between payoffs, only under the
control of one player Press and Dyson (2012). Such “extortion”
strategies can for instance guarantee that a player will always get
twice the payoff of her opponent. In an evolutionary competition,
these strategies can be catalysts of cooperation, but are never a
stable outcome of evolution (Hilbe et al., 2013).

2.2. Notions of Equilibria in Games of
Direct Reciprocity
The standard approach from game theory is to ask under what
conditions a strategy will be stable, in the sense that a rational
player would not have an incentive to switch to any other strategy.
Absent any incentive to deviate, such a strategy is then a Nash
equilibrium.What is and what is not an equilibrium of a repeated
game will depend on which strategies for playing the repeated
game are allowed for. In many papers, all mappings from the
set of all possible possible histories (including the empty history)
into an action, C or D, are included. For the repeated prisoner’s
dilemma, the relevant equilibrium concepts, besides the Nash
equilibrium (NE), are the Evolutionarily Stable Strategy (ESS),
the Neutrally Stable Strategy (NSS), and Robustness Against
indirect Invasions (RAII).

The Nash equilibrium Nash (1950) is the prime solution
concept in game theory. A Nash equilibrium arises when all
players choose a strategy such that no unilateral deviations
are profitable. In a repeated prisoner’s dilemma in which the
game is repeated a finite and known number of times, the only
subgame perfect Nash equilibrium is for everybody to play ALLD
(Cressman, 1996). To see this, it suffices to realize that the
last round carries no possibility of retaliation, and thus rational
players will defect. With unconditional defection in the last
round, defection in the second-to-last round must become the
rational thing to do too, and repeating this argument implies that
playing D in all rounds is the only possibility for equilibrium
behavior.

For the game to allow for cooperative behavior in equilibrium,
the number of rounds must be uncertain. We can achieve
this by assuming that each shot is repeated with continuation

probability δ. This is also known as an infinitely repeated game
with discounting. In the repeated prisoner’s dilemma (with
discounting) there is an infinite number of Nash equilibria. This
follows from the Folk theorem, which asserts that for large
enough δ, all payoff pairs in which both players get at least the
mutual defection payoff can arise in equilibrium (Fudenberg and
Maskin, 1986). This means that we can expect cooperative as well
as uncooperative outcomes.

The multiplicity of Nash equilibria precludes a
straightforward prediction and demands a so-called refinement,
in which the conditions on the equilibria are tightened—see
Figure 1. The concept of an ESS is a natural refinement here
(Maynard Smith and Price, 1973). This concept envisions an
infinite population of strategies in evolutionary competition, in
which payoffs (or fitness values) are determined by averaging
random encounters in the population. A strategy is ESS if it
outperforms any mutant, as long as the mutant arises in small
enough proportions. All ESS’es are Nash equilibria, but not
all Nash equilibria are ESS’es. Unfortunately, in the repeated
prisoner’s dilemma there is no strategy that is ESS Selten and
Hammerstein (1984).

Because this solution concept leaves us with no strategies, it
is reasonable to try to use a concept that is more restrictive than
the Nash equilibrium, but less so than ESS. A NSS is a strategy
that is able to perform at least as good as (but not necessarily
strictly better than) any mutant arising in small enough fractions
(Maynard Smith, 1982). Unfortunately, there are also infinitely
many NSS’es in the repeated prisoner’s dilemma (Bendor and
Swistak, 1995).

Not all NSS are equally stable though. This may seem counter-
intuitive, because by definition they cannot be invaded, except
that strategies that perform just as well, also known as neutral
mutants, can drift into the population.What is possible, however,
is that some NSS’es will allow for mutants that open the door
to other strategies that could not invade by themselves. These
stepping stone paths are called indirect invasions (van Veelen,
2012). For the sake of illustration, consider the strategies TFT,
ALLC, and ALLD. While TFT is a Nash equilibrium—provided

FIGURE 1 | A Venn diagram of the Nash equilibrium and its refinements.

Those refinements are Evolutionarily stable strategy (ESS), Robust against

indirect invasions (RAII), and Neutrally stable strategy (NSS), with ESS being

the tightest. In the repeated prisoner’s dilemma with sufficiently many

repetitions, there are no ESS’es nor strategies that are RAII, and there are

infinitely many Nash equilibria and NSS’es.
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the continuation probability is large enough—it is not an ESS,
since ALLC will perform just as well against TFT as TFT does
against itself. Moreover, an indirect invasion is possible. In
a population composed of both TFT and ALLC, if ALLC is
sufficiently abundant, a mutant ALLD can invade the population
by exploiting ALLC. Thus, ALLD cannot invade TFT alone, but it
can indirectly invade with the help of neutral mutant ALLC.

An NSS that can resist indirect invasions is called
robust against indirect invasions (RAII, van Veelen (2012)).
Unfortunately, there is no strategy that is RAII in the repeated
prisoner’s dilemma. Given any Nash equilibria, it is possible
to build a path out, in which a neutral mutant opens the door
to a different strategy that would not have been able to invade
on its own García and van Veelen (2016). What this means
is that we should expect cycles of cooperation and defection.
This is in line with some of the previous studies of evolutionary
dynamics. We will discuss these findings in more detail in
section 3.

Altogether, the game theory literature on repeated games
is enormous. Some of the richness has also carried over to
the literature on evolution in repeated games. In order to be
able to measure complexity, Rubinstein (1986) and Abreu and
Rubinstein (1988) limited attention to finite state automata.
Binmore and Samuelson (1992) and Volij (2002) did the same
in order to be able to define an evolutionary stability concept that
also accounts for complexity [see also Cooper (1996); Samuelson
and Swinkels (2003); van Veelen and García (2012)]. Evolution of
strategies with vanishing error rates is considered by Fudenberg
and Maskin (1990).

2.3. Typical Implementations
Computer scientist have been interested in the repeated prisoner’s
dilemma since Axelrod’s famous computer tournament.
They have particularly worked on the computational
aspects of implementing strategies. Roughly speaking, there
are two traditional approaches with roots in computer
science. Computational theorists have used computational
complexity theory as a way to study the algorithmic demands
of implementing certain strategies; i.e., the computational

complexity of a strategy is a way to formalize boundedly rational
agents (Papadimitriou and Yannakakis, 1994). On the other
hand, those interested in multi-agent and complex systems have
tried to understand how groups of agents can learn, by following
simple rules, to play the game. The latter mostly rely on the
simulation of an evolutionary process, in which a particular
implementation is assumed for the strategies (Axelrod, 1997).

A large number of studies restrict their strategy set to those
strategies that can be implemented with a finite state automaton
(FSA). Here, every strategy is determined by a a set of states,
together with transition rules, determining how an action from
the history of the game leads to a different state of the machine.
Each state is associated with an action, so termination will also
determine which action is chosen in the game for any given
history. A special state is designated the first action. Figure 2
shows examples of FSA’s and the strategies they encode, including
TFT, ALLC, ALLD, and GRIM.

Some papers study the computational complexity of
implementing equilibria with FSA strategies (Gilboa, 1988; Ben-
Porath, 1990), or even representations that are more powerful,
such as Turing machines (Nachbar and Zame, 1996). This
research shows that restricting implementations may change
the game outcomes. For example, if we consider a repeated
prisoners dilemma with a fixed, finite horizon, we have seen that
without restrictions on the strategy set, ALLD is the only Nash
equilibrium. If the number of FSA states is limited, however,
it may not be possible to build a FSA that knows when it has
reached the last round. In that case such a backward induction
argument for ALLD being the only equilibrium in games with a
finite horizon does no longer work (Shoham and Leyton-Brown,
2008), and other strategies may also be equilibria. It also shows
that implementing equilibria may be computationally difficult,
and therefore too demanding on boundedly rational agents
(Papadimitriou, 1992).

A different line of research uses simulations to study the
dynamics of a population learning to play the game. This typically
simulates an evolutionary process in which strategies compete
and reproduce, largely taking inspiration from evolutionary
algorithms (Fogel, 2006). A solution is a set of strategies that can

FIGURE 2 | Example FSA strategies for the Repeated prisoner’s dilemma. States are associated with game actions—C for cooperate and D for defect. Each state

has transitions on defection and cooperation, and each machine designates an initial state. (I) TFT, cooperates on the first round, and repeats the move of the

opponent thereafter. (II) ALLC, cooperates on any move. (III) ALLD, defects on any move, (IV) GRIM, cooperates as long as the opponent cooperates, and switches

to defection forever if the opponent defected.
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play the game well. The simulated selection andmutation process
then gives rises to “good” solutions after a determined number of
generations.

In the case of the repeated prisoner’s dilemma, individuals are
characterized by their strategies for the game, which are selected
on the basis of the payoff they obtain, playing against other
strategies in the population. Because strategies are evaluated
against other strategies evolving in the population, and not
against an unchanging set of opponents, this is often called
“co-evolution” in evolutionary computation (Rosin and Belew,
1997).

This line of work starts with Axelrod himself (Axelrod, 1987b).
Axelrod designed a simulation of strategies competing against
each other. Each strategy was limited to a memory of size 3,
taking into account only the last 3 moves in the history of the
game. Because a single game has 4 possible outcomes (R, S,T, P),
the strategies need to consider 43 possible histories. The initial
stages require a move for 6 more histories of size 2 or less
(C,D,CC,CD,DC,DD). Thus, each strategy can be represented
as a string of bits of size 70, assigning either C or D to each of the
possible 70 histories. This yields 270 possible strategies.

Axelrod (1987b) ran simulations where these strategies
competed against each other in a process of selection and
mutation. Selection uses a standard roulette-wheel procedure
(Fogel, 2006), which is known in biology as Wright-Fisher
process (Ewens, 2004). Crucially, he considered populations of
size 20, and ran the simulations for 50–150 generations. Two
main findings are reported. On the one hand, there is prevalence
of “TFT-like” strategies that reciprocate against opponents, while
also being cooperative on the initial moves, and forgiving if
a defecting player switches back to cooperation. On the other
hand, cycles appear where cooperation collapses to defection, and
defection is taken over by reciprocal strategies. This is in spite
of the small number of generations considered. Similar results
involving cycles where found by Lindgren (1991) for memory
size up to 5, including an environment where players occasionally
make mistakes. For these cycles to be prevalent, it is important
for the simulation run for large number of generations; e.g., up to
90, 000 in the case of Lindgren (1991).

The space of 270 strategies in Axelrod’s study is considerably
large, but severely limits the memory of the strategies. Fogel
(1993) is the first study that encodes strategies as Finite State
Automata (see Figure 2), albeit limiting the size of strategies to
a maximum of 8. Interestingly, some of the strategies in Axelrod
(1987b) cannot be represented with this set of strategies, but
dependency on histories larger than 3 is possible. Fogel (1993)
also increases the population size to 100 individuals, as well as
the number of generations to 200 in most simulations, with a
few going up to 1, 000 generations. These experiments report
the emergence of cooperation, from an initial population of
defectors, but the number of generations ran is not sufficient to
check if cooperation also collapses. The strategies that evolve are
highly reciprocal, like TFT. An interesting outcome of this study
is that there is a large range of behavioral diversity that can lead
to mutual cooperation. A similar result is found in Miller (1996).

Cycles of cooperation and defection are prevalent in the
literature across different approaches. These cycles involve

mutual cooperation collapsing to defection and back to
cooperation. In evolutionary simulations, the collapse of
cooperation is often conceived as a failure of agents to learn
how to cooperate (Darwen and Yao, 1995). This issue has
been addressed using different computational techniques,
that attempt to give reciprocal strategies the capacity to be
robust and resilient to cycles. Examples include Bayesian
learning (Anh et al., 2011), swarm optimization (Franken
and Engelbrecht, 2005), reinforcement learning (Harper
et al., 2017), amongst others (Kendall et al., 2007). We
will argue that the collapse of cooperation is inherent to
evolutionary learning and independent of how strategies are
represented.

3. GAME THEORY AND SIMULATIONS

Here we outline the relevant results from game theory that should
be captured by a reasonable evolutionary simulation, as well as
the requirements from an evolutionary simulation that is in line
with the theory.

3.1. Rich Strategy Set
A repeated prisoner’s dilemma is given by the game parameters
R, S,T and P, as well as the continuation probability δ. We require
T > R > P > S, for the stage game to be a prisoner’s dilemma.
This game has an action space A = {C,D}, where C stands for
cooperation and D stands for defection.

With a few exceptions, most game theoretical results,
presented in section 2.2, assume a complete strategy space. In
order to define a (pure) strategy in this space, we first define
histories of play. A history at time t is a list of the actions played
up to and including time t − 1. We use an empty pair of brackets
to denote the empty history. The action played by player i at time
t is denoted at,i. So these histories are:

h1 = ()

ht = ((a1,1, a1,2), . . . , (at−1,1, at−1,2))

t = 2, 3, . . .

This allows us to define the set of all possible histories as

H =

∞
⋃

t=1

Ht

where Ht is the set of all possible histories at time t, defined as
H1 = {h1}, Ht =

∏t−1
i=1(A × A), for t = 2, 3, . . . . A strategy is

any function S :H → A. This definition is as general as it gets in
terms of deterministic strategies.

Not all strategies will be representable in a computer; any
non-computable function (Hopcroft et al., 2001), for example,
cannot be simulated, but is nonetheless included in the general
set defined above.

Elsewhere, we have shown that FSA strategies are dense in the
complete set of deterministic strategies. If we use a natural and
appropriate metric, a deterministic strategy can be approximated
arbitrarily closely by an FSA (García and van Veelen, 2016).
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Because of this, our simulation program will primarily use FSA’s
as a way to represent strategies in a computer. Importantly, the
simulations described below do not assume any restrictions on
the number of states in a machine, thereby providing a space
as rich as possible for the evolutionary simulations. Mutations
are designed so that the whole space can be explored with a
positive probability. The richness of the space also implies that
the number of rounds in the game should be uncertain, in order
to avoid ALLD being the only equilibrium in the game.

Results will also hold for finite mixtures of FSA’s (García and
van Veelen, 2016). These finite mixtures are equivalent to single
mixed strategies that mix (assign probabilities) in a finite number
of histories, provided that there is no population structure. With
population structure, equilibria in which individuals mix, and
equilibria that are mixtures of pure strategies would no longer
be equivalent, even if the game is not repeated (Grafen, 1979).

3.2. Nash Equilibria Are Prevalent
From the folk theorem discussed above, we know that Nash
equilibria are plentiful in the repeated prisoner’s dilemma when
δ is large enough (Fudenberg and Maskin, 1986). This should
be reflected in evolutionary simulations. Being Nash does not
preclude indirect invasions, but it is reasonable to expect that
after an indirect invasion, there will be a (possibly short) sequence
of invasions until a new Nash equilibrium is found, provided
selection is doing its job (Samuelson, 2002).

To verify that this is the case, section 5.2 provides an algorithm
that can check if an FSA is a Nash equilibrium for a given game.
We expect that strategies that are selected for will be Nash, even
if they are eventually toppled by indirect invasions (see below).

3.3. Cycles: No RAII, but Plenty of NSS
One of the main predictions from the theory is that cycles should
be prevalent. There will be plenty of neutral mutants, and because
no strategy is RAII, some of those neutral mutants will open the
door for other mutants with increased or decreased amounts of
cooperation (García and van Veelen, 2016).

The expected, normalized payoff of strategy Smeeting strategy
T is:

5(S,T) = (1− δ)

∞
∑

t=1

δt−1π

(

aS,Tt

)

(1)

Here π

(

aS,Tt

)

is the one-round payoff at time t, as a result of

playing the actions that the unfolding of strategies T and S imply
at round t. The factor 1 − delta before the sum normalizes
the payoffs, which allows us to compare how much cooperation
there is across different δ values. With the normalization, the
payoff of ALLD against ALLD is P, independent of δ, and the
payoff of ALLC against ALLC is R, again, independent of δ. The
normalized expected payoffs of any combination of strategies will
always fall between R and P, regardless of δ.

In the simulations, the population is large, but finite. With
an infinitely large population, dynamics would be deterministic,
and the theoretical benchmark for the dynamics without
mutations therefore is the replicator equation (Taylor and

Jonker, 1978). To describe the typical dynamical behavior
we expect, we can look at the replicator dynamics on
simplices that represent population states with 3 or fewer
different types of strategies present (see Figure 3) and
combine it with an insight from finite, stochastic population
dynamics.

In Figure 3A, we start in a cooperative state where everyone is
playing TFT. The strategy ALLC is a neutral mutant. Because the
payoff of ALLC and TFT against TFT and against ALLC are all
the same, neutral drift can make ALLC get a considerable share
in the population. If it does, it opens the door forALLD, which the
dynamics predict will take over if present. The key insight is that
while ALLD cannot invade TFT directly, it can invade indirectly
(van Veelen, 2012), in this case via neutral mutant ALLC.

Likewise, Figure 3B shows an indirect invasion from defection
to cooperation. We start in a defecting state where everyone
is playing ALLD. This can be neutrally invaded by Suspicious
Tit-for-Tat (STFT), a strategy that defects in the first round,
and copies its opponent afterwards. A strategy that initiates
cooperation can invade once STFT is sufficiently abundant in the
population. Cooperate-Tit-for-Tat (CTFT) is one such strategy. It
always cooperates twice at the start, and subsequently copies the
opponent’s action from the previous round.

The main result in García and van Veelen (2016) is that these
indirect invasions should be prevalent. In an evolutionary process
we should observe, over a long period of time, a succession of
Nash equilibria that are toppled via indirect invasions, taking the
population from defection to cooperation and back.

3.4. Finite but Large Populations
The replicator dynamics assumes an infinite population (Taylor
and Jonker, 1978). The value of the relevant game theoretic
solution concepts, like ESS, NSS, and RAII lies in their link
to the replicator dynamics; a strategy that is ESS is guaranteed
to be asymptotically stable in the replicator dynamics (Taylor
and Jonker, 1978; Weibull, 1995), an NSS is Lyapounov stable
(Maynard Smith, 1982; Weibull, 1995), and a strategy that is
RAII is an element of an ES-set (van Veelen, 2012) that is, as
a whole, asymptotically stable (Thomas, 1985; Weibull, 1995).
In finite populations, random drift will make the population
move within an ES-set. With the repeated prisoner’s dilemma, no
strategy is RAII, and therefore the simulations should consider
a population that on the one hand is large enough, so that
selection is strong and not too noisy, if one strategy has a
selective advantage, but on the other hand is finite, so that drift
can give neutral mutants a chance to open the door for other
strategies.

4. EVOLUTIONARY SIMULATIONS

Here we formulate an evolutionary simulation that complies with
the conditions described above. We will use a Wright Fisher
process (Imhof and Nowak, 2006), which is akin to a standard
genetic algorithm, used previously in evolutionary simulations of
the repeated prisoner’s dilemma (Fogel, 2006).

A generation consists of N individuals, and is represented by
a list of N strategies. We will assume that these strategies are
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FIGURE 3 | (A) Example indirect invasion from cooperation to defection. (B) Example indirect invasion from defection to cooperation. In both cases, direct invasions

are impossible, but indirect invasions are possible. These examples are computed for δ = 3
4 .

finite state automata. As explained in section 3, this set is dense in
the full set of deterministic strategies, provided the length of the
strategies is unconstrained.

Every generation all individuals are randomly matched in
pairs to play a repeated prisoners dilemma. The number of
rounds in each interaction is a random variable; it follows a
geometric distribution with parameter δ. The number of rounds
played therefore will typically vary from pair to pair. For a pair
of strategies, the expected value of the sum of the payoffs over
the different rounds is given by Equation (1). Besides the noise
in the number of rounds, the matching process also introduces
randomness.

In the selection step, all individuals in the new generation are
drawn, one by one, and independently, from a distribution where
the probability of being the offspring of individual j from the
old generation is proportional to the payoff of that individual
j. This is known in evolutionary computation as roulette-wheel
selection.

After the new generation has been drawn, any individual
mutates with a small probability. This completes the cycle for a
generation. The cycle is repeated a large number of times.

In the remainder of this section, we will go over the
ingredients of the simulations themselves in some detail. In
section 5.1, we will discuss the way the data output should be
processed and analyzed.

4.1. Finite State Automata and Mutations
A FSA is a list of states. For every state it describes what the
automaton plays when in that state—which is either cooperate
(C) or defect (D)—to which state it goes if the opponent plays
cooperate, and to which state it goes if the opponent plays
defect. This makes it a proper strategy for the repeated prisoners
dilemma; it returns an output for every finite string of actions that
its opponent could possibly play.

The first generation is typically taken to be a population where
every individual plays ALLD. There are different, but equivalent
FSA, that all instantiate the strategy ALLD; every FSA for which
the output in all states is D. When we initialize, we take the
smallest, 1-state version: [D, 0, 0].

Every individual has a small probability to mutate. If it
mutates, then one of four things happens. Either (1) a state is
added, (2) the output when in a state is changed, (3) a transition
is changed, or (4) a state is deleted. We chose the probability that
a state is added and the probability that one is deleted such that
the size of the automata does not keep growing indefinitely over
a simulation run, but more or less stabilizes around a (possibly
large) automaton size.

The phenomenon in which the size of the genotype tends to
grow without substantially changing the phenotypic expression
is known as bloat, and is common in this kind of evolutionary
simulations (Poli et al., 2008). Importantly, the choice to nudge
the simulations into avoiding overly long automata is driven only
by the need to produce simulations that run in a reasonable
time. Computing payoffs for large automata is more costly, and
ever expanding automata over long runs make the simulations
slow down ever more. The cognitive interpretations of different
exploration or mutation schemes represent an open problem that
will be discussed in section 6. As it will be highlighted later,
the analysis in section 5.1 uses the minimal representation of
automata.

The scheme of mutations is illustrated in Figure 4. The
advantage of this mutation scheme in combination with the setup
where the population is a list of actual individuals with possibly
different strategies is that this allows the simulations to explore
the richness of the strategy set. With those four ways to mutates,
there is a sequence of mutations between any two FSA’s. That
means that every FSA has a positive probability of mutating into
the population in a finite number of mutation steps. It should be
said, however, that the probabilities with which any given mutant
enters the population depends on the current population, since
all mutations have to work with what is there—as they do in
nature.

We ignore crossover, whereby new mutants take material
from two existing strategies (Fogel, 2006). Allowing crossover
as one of the possibe ways to mutate would change the relative
likelihood of different mutations, but since stepping stone paths
out are already found without crossover, there is no reason to
expect that the dynamics will be fundamentally different with
crossover.
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FIGURE 4 | A series of mutation operations show a possible path in which

and ALLD strategy is transformed into an ALLC strategy, showing all possible

mutations.

4.2. The Game
A simulation allows the stage game to be any 2× 2 matrix game,
but for this paper we restrict ourselves to the prisoners dilemma.
For continuation probabilities δ < 1 the number of repetitions
between any pair of two agents is a random variable. It is a
geometric distribution with mean 1/δ; the probability that the
interaction lasts exactly i rounds is δi−1(1 − δ). For δ = 1 we
compute the “limit of means” payoffs. For any combination of
two FSA’s, there is a moment in time where play between them
starts repeating itself; if one FSA has n states, and the other has
m, then there are only n × m combinations of states that they
could be in jointly, so at some point they will start cycling. We
therefore take the average payoff over the cycle.

4.3. The Selection Step
For the update step we use the Wright-Fisher process—
equivalent to roulette wheel selection in evolutionary algorithms.
All individuals in the new generation are drawn, one by one,

and independently, with a probability proportional to payoff.
More specifically, if πi is the payoff earned by individual i in the
previous generation, at every draw, the probability that individual
i will be chosen for the new generation is πi/

∑N
j=1 πj.

The best known alternative is the Moran process, where only
one individual reproduces in every cycle. While this process is
widely used in exact calculations, it is prohibitively inefficient for
Monte Carlo simulations. In the Moran process, the matching as
well as the unfolding of the game are to be repeated all over again
for a single replacement in the population, while in the Wright-
Fisher process a whole generation is replaced based on the
matching and the payoffs. Given that the only difference between
the processes is the speed, we report results using the Wright-
Fisher process. This process is efficient for simulations and also
closer to the standard literature in evolutionary computation.

As shown in Figures 5, 6, these simulations show cycles of
defection and cooperation. As expected, less demographic noise
in larger populations leads to smoother dynamics, because the
noise is averaged out.

All in all, the recipe we present for simulations incorporates
elements introduced elsewhere in the simulation literature
(Axelrod, 1987a; Lindgren, 1991; Miller, 1996; Fogel, 2006). They
crucially differ in allowing for an unbounded space, considering a
gamewith discounting, and running the simulations long enough
to observe cycles. Next, we will show how to verify that these
simulations align with theory.

5. ANALYSING SIMULATION DATA

Having formulated a suitable evolutionary simulation, verifying
that game theoretic predictions are aligned with simulation
outcomes requires us to inspect the data in a way that highlights
indirect invasions as the the main drivers of the dynamics. Here
we describe how such analysis can take place.

5.1. Capturing Transitions and Indirect
Invasions
Step 1: Detecting Equilibria
The aim of the simulations is to find out if the possibility
of indirect invasions indeed shapes evolutionary dynamics in
repeated games. Before being able to say if an equilibrium was
left through an indirect invasion, it is important to first be able
to say if it was left at all. While transitions are made possible
by a mutation process that constantly produces new strategies,
that very same production of new strategies also creates noise
in the population. This implies that if we think for instance of
a pure equilibrium, we should not only classify a population as
being at that equilibrium if the population consists of that one
strategy only and nothing else. Given the frequent introduction
of mutants, most of which enter only to be eliminated from
the population before ever having attained a considerable share,
we should also classify nearby population states as being at that
equilibrium, and create a bandwidth which allows us to disregard
this noise.

If the population at time t consists of strategy A only, and at
time t + 100 of strategy B only, then it is fair to say that at least
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FIGURE 5 | Average payoff through time, where higher payoffs imply more cooperation. A slice of a typical simulation shows cycles of defection and cooperation. In

this case, the population size is 512, δ = 0.75, mutation probability is set to 10−4, and the prisoner’s dilemma is given by R = 3, S = 0, T = 4, and P = 1.

FIGURE 6 | Average payoff through time, where higher payoffs imply more cooperation. A slice of a typical simulation shows cycles of defection and cooperation. In

this case, the population size is 1, 024, δ = 0.75, mutation probability is set to 10−4, and the prisoner’s dilemma is given by R = 3, S = 0, T = 4, and P = 1.

one transition has occurred. If on the other hand the population
at time t, and at time t+ 100, and at all times in between, consists
of between 90 and 100% strategy A, plus a remainder that is
composed of an ever changing set of other strategies, then it
seems reasonable to assume that a transition has not occurred,
and that the little differences only reflect the regular influx and
extinction of new mutations.

We therefore begin the classification of a population state by
ranking the composing strategies from frequent to infrequent.
Then we look at the minimum number of strategies that is
needed to capture at least a fixed percentage of the population
(we choose 90% for the threshold). A population state is then
characterized by how many strategies are needed to reach this
percentage (1 strategy, 2 strategies, 3 strategies) and which those
strategies are, ordered from most popular to least popular. In
case more than 3 strategies were needed, this was classified under
“other interior states”. With a threshold of 90%, a population
that, for example, consists of 65% strategy A, 30% strategy B, and
5% strategy C is classified as a mixture of 2 strategies; A (most
popular) and B (second most popular). The classification thereby

never ignores more than 10% of the population. With small but
positive mutation rates and population sizes in the simulations, a
population where the three most popular strategies made up less
than 90% of the population is a rare exception.

This classification allows us, at least to some extent, to pick
up three types of (possible) equilibria; pure ones, mixed ones
with two strategies, and mixed ones with three strategies. If the
population is at a pure equilibrium, we expect that it finds itself
in a corner pocket (see Figure 7), and that most of the mutants
do not take the population outside this corner pocket, provided
mutation rates are small enough (Wu et al., 2012; Vasconcelos
et al., 2017). If a population is a mixed equilibrium with two
strategies, it should find itself somewhere in between two vertices.
The construction of the pocket implies that we cannot capture
mixed equilibria where one of the pure strategies would make up
less than 10% of the population in equilibrium.

With this way to classify population states, we can follow
the population as it travels from region to region. At any such
transition, we can check if this transition can be associated with
a neutral mutant entering or exiting the population, or with
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FIGURE 7 | With only three strategies present, this depicts the classification of

population states with a threshold of 90%.

advantageous or disadvantageous mutants entering or exiting
the population. This gives us the possibility to characterize a
sequence of transitions as an indirect invasion or an invasion of
a different kind. If strategy A is a pure equilibrium strategy, and
B is a neutral mutant of A, and C has a strict advantage against B,
then—with obvious abbreviations—going from the region A to
AB to BA to B to BC will be classified as an indirect invasion1.
If A is a pure equilibrium, and D is a mutant with a selective
disadvantage, then going from region A to region AD is classified
as a different invasion.

This immediately points out the trade-off that we face for
the choice of a threshold. If we choose a threshold that is
larger than n−1

n , where n is the population size, then any
mutant entering the population will take it outside the corner
pocket. All mutants will therefore be recorded as transitions,
and all disadvantageous mutants will be recorded as “different
invasions”, even though theymight be extinct the next generation
already. This high threshold thereby leaves no room at all to
observe what we are interested in, which is the difference in
how selection acts on different (sequences of) mutants. On the
other hand, if we choose the threshold as low as 50%, then
we leave no room to observe dynamics near mixed equilibria
at all, as described above. So a lower threshold means more
room to observe selection at work, but also more mixed
equilibria that will go unnoticed, because they end up in corner
pockets.

From the simulations we know that mixed equilibria with
two strategies outside the corner pockets, where both strategies
account for more than 10% of the population, are typically
left because one of the composing pure strategies fixates.
This is caused by noise, and such paths out of a mixed

1If C already has a selective advantage when the population is in BA, then also a

sequence of A to AB to BA to BAC (or to BC) counts as an indirect invasion.

equilibrium will get less likely in larger populations, since
it involves the population moving against the direction of
selection. Therefore, the larger the population, the longer the
mixtures tend to stick around. It seems natural to expect that
mixed equilibria where one strategy accounts for less than
10% of the population are left through fixation even more
easily. Note also that subdivisions of the simplex, as pictured
in Figure 7, are unavoidable if we want to analyse simulation
output; we need to be able to say when an equilibrium is
left.

Step 2: Counting Transitions
Once we have changed the raw data into a sequence of “regions,”
we need to count transitions out of equilibria. As starting
points of paths out of equilibrium, we only chose equilibria
that were not themselves reached by a neutral invasion. The
reason is that it is very well possible that an equilibrium is
invaded by a neutral mutant that still is an equilibrium itself.
In fact, equilibria typically are followed by a sequence of neutral
mutants that have the same self-play, which, for as long as
they are equilibria, is the equilibrium path. This implies that
if we find a sequence of neutral mutants that themselves are
equilibria, which is followed, first, by a neutral invasion to
a state that is not an equilibrium, which in turn is followed
by an advantageous mutant, then it is reasonable to count
the whole sequence as one single indirect invasion. It is for
sure an indirect invasion starting from the last equilibrium,
and also one when we start from the first one, and from
all equilibria in between, but counting it as just one single
indirect invasion is more than reasonable. (All other sequences
out of equilibrium—zero or more neutral mutants followed by
the entry of disadvantageous mutant—are qualified as “other
invasions”).

For a more formal version, we can, for a strategy P (which
is possibly a mixture over pure strategies) define the set of
(evolutionary) worse, equal, and better performers against P2.

SW (P) =
{

Q | U (Q, P) < U (P, P) or
(

U (Q, P)

= U (P, P) and U (Q,Q) < U (P,Q)
)}

SE (P) =
{

Q | U (Q, P) = U (P, P) and U (Q,Q) = U (P,Q)
}

SB (P) =
{

Q | U (Q, P) > U (P, P) or
(

U (Q, P)

= U (P, P) and U (Q,Q) > U (P,Q)
)}

An observed sequence of strategies O, P,Q1, ...,Qn is counted as
one indirect invasion if P is an equilibrium, if P /∈ SE (O)—that
is, P is not reached by a neutral invasion itself—if Q1 ∈ SE (P),
Qi ∈ SE

(

Qi−1
)

for 2 ≤ i ≤ n − 1—that is, Q1 to Qn−1 is a
sequence of neutral mutants—and if Qn ∈ SB

(

Qn−1
)

—that is,
Qn is an advantageous mutant. Some of those Qi can themselves
be equilibria too. Similarly, an observed sequence of strategies
O, P,Q1, ...,Qn is counted as one single other path out of

2This P is a distribution over strategies, as in García and van Veelen (2016), and is

not to be confused with the payoff P from the prisoner’s dilemma.
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equilibrium if P is an equilibrium, P /∈ SE (O), Q1 ∈ SE (P), Qi ∈

SE
(

Qi−1
)

for 2 ≤ i ≤ n − 1, and Qn ∈ SW
(

Qn−1
)

. Again, some
Qi for 2 ≤ i ≤ n− 1 can be equilibria themselves too. Obviously,
a sequence of strategies O, P,Q, with P /∈ SE (O) and Q ∈ SW (P)

also counts as one path out of equilibrium that is not an indirect
invasion.

5.2. Verifying Nash Equilibria
In order to be able to determine if a finite automaton—and hence
a pure strategy—is a Nash equilibrium, we present an algorithm
called the best responder. This algorithm finds the payoff of the
best response against strategy S, as well as the best response itself.
If the payoff of S against itself equals this payoff, then S is a
Nash equilibrium. This is a useful device, since the infinity of the
strategy space does not allow us to simply compare the payoff of
S against itself to the payoff of all other strategies against S one
after the other.

Suppose strategy S is an automaton with NS states. Any state
i is characterized by an action played by S when it finds itself
in this state—λS : {1, ...,NS} → {C,D}—and a list of transitions
as a function of the action played by the opponent of S—
µS : {1, ...,NS} × {C,D} → {1, ...,NS}.

The value to the opponent of strategy S of S being in state i is
denoted by V∗

S (i) , i = 1, ...,NS. We aim to find these values as a
solution to the following system:

VS (i) = max
a∈{C,D}

{π1 (a, λS (i)) + δVS (µS (i, a))} i = 1, ...,NS

Let V∗
S (i) , i = 1, ...,NS be the solution to this system. The

discounted value in the initial state, (1− δ)V∗
S (1), is the

maximal discounted payoff that can be earned against S, and

a∗i = argmax
a∈A

{

π1 (a, λS (i)) + δV∗
S (µS (i, a))

}

gives the optimal action when S is in state i.
The best responder does the following iteration.

Initialization step:

VS,1 (i) = 0, i = 1, ...,NS

Iteration step:

VS,n+1 (i) = max
a∈A

{

π1 (a, λS (i)) + δVS,n (µS (i, a))
}

i = 1, ...,NS

where VS,n (i) is the value to the opponent of strategy S of S being
in state i, at step n in the iteration.

It is quite straightforward that this iteration converges, as
is shown in the following simple lemma. We will assume that
the initialization makes sure that we begin with values for all
states that are below the solution of the system (whenever this
procedure is invoked, we make sure that is in fact the case) but
that is not actually necessary for convergence.

Lemma 1. If VS,1 (i) ≤ V∗
S (i) for all i and if δ ∈ [0, 1) then the

above iteration converges to V∗
S (i) , i = 1, ...,NS.

Proof: First, if VS,n (i) ≤ V∗ (i) for all i, then also

VS,n+1 (i) = max
a∈A

{

π1 (a, λS (i)) + δVS,n (µS (i, a))
}

≤ max
a∈A

{

π1 (a, λS (i)) + δV∗
S (µS (i, a))

}

= V∗ (i)

for all i.

Hence V∗
S (i) − VS,n (i) ≥ 0 for all states i and all iterations n.

By definition we also have

VS,n+1 (i) ≥ π1

(

a∗i , λS (i)
)

+ δVS,n

(

µS

(

i, a∗i
))

for all i.

Therefore

0 ≤ V∗
S (i) − VS,n+1 (i) ≤ δ

(

V∗
S

(

µS

(

i, a∗i
))

− VS,n

(

µS

(

i, a∗i
)))

for all i.

This implies that

0 ≤ max
i

(

V∗
S (i) − VS,n+1 (i)

)

≤ δmax
(

V∗
S (i) − VS,n (i)

)

and since 0 < δ < 1 we find that limn→∞

(

V∗
S (i) − VS,n (i)

)

= 0
for all i.

The best responder gives us both the maximum payoff

(1− δ)V∗
S (1) when playing against S, and an optimal strategy

when playing against S, as a∗i prescribes what to play when S
is in state i. For numerical reasons, we use the optimal strategy
against S when we evaluate whether S is a best response to itself.
For that, it is important to be able to distinguish between the
payoff of S against itself being exactly equal to the maximum
payoff when playing against S, or smaller. If we were to use the
maximum payoff (1− δ)V∗

S (1) that results from this iteration
directly, then this will have some numerical inaccuracy in it.
Comparing that maximum payoff against S to the payoff of
S against S may lead to an incorect outcome, because the
latter is computed by simply evaluating a discounted stream of
payoffs, which will also have some numerical inaccuracy in it,
but typically a different one than the iteration. We therefore may
inadvertedly find these to be different, when they really should
be the same number. In order to avoid that, we use the optimal
strategy against S that the iteration produces, first let it play
against S, then let S play against itself, and compare the two
payoffs. This way, they will have the same inaccuracies in both,
because both procedures of evaluating the discounted payoffs are
the same.

Note that the algorithm works with phenotypes, not with
genotypes, so two different ways to encode for instance
the strategy ALLD will be treated as one and the same
strategy. To allow for this, we minimize the FSA representing
the strategy, and compare only minimal implementations
(Hopcroft et al., 2001).

Using this algorithm we can check whether or not pure
strategies that appear in the simulation are are Nash. Figure 8
shows that for large population sizes, the dynamics is composed
almost exclusively of Nash equilibria. This result is expected
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FIGURE 8 | Nash equilibria are prevalent as predicted by the theory. Our

algorithm only works for pure strategies, which implies that we can provide a

lower bound on the time that is spent in equilibria, as mixed equilibria will

naturally arise in a large strategy space. For this simulations δ = 0.75, mutation

probability is set to 10−4, and the prisoner’s dilemma is given by R = 3, S = 0,

T = 4, and P = 1.

to hold with sufficiently small mutation rates, since we want
selection to dominate the process. Also, as expected, this shows
that large populations are required to meet the predictions
from game theory. Previous work has shown deviations
between simulations and game-theoretical predictions when the
population size is small Fogel et al. (1998).

The best responder only works for pure strategies, so for
mixed population states, we have no automated check whether
or not they are a Nash equilibrium. That implies that for the time
the simulation spends in mixed states, we do not know if this is
an equilibrium state or not.

Following the recipe articulated in sections 5.1 and 5.2, García
and van Veelen (2016) show that indirect invasions account for
more than 80% of the transitions in cycles when the population
size is above 500, and up to 100% for a population size of 1,000
individuals.

Indirect invasions dominate the dynamics, taking the
population from one Nash equilibria to another, with varying
different levels of cooperation. This is in line with the theory that
predicts no stability, regardless of how strategies are represented.

6. DISCUSSION

We provide algorithms for analysing evolutionary simulations.
Using this it can be shown that game theoretical concepts
are in line with the cycles that are typically observed in
computer simulations and approaches inspired in evolutionary
computation. Paths in and out of cooperation crucially depend on
the right sequence of strategies arising. The typical route involves
a neutral mutant that catalyses the collapse of the resident
strategy.

To verify this it is important to run the simulations
long enough so that cycles can appear. Once these appear,

the right algorithms can show that all cycles follow a
certain path where neutral strategies are important in
toppling strategies out of their prevalence. To detect these
cycles, we use an algorithm that identifies transitions
(section 5.1), and another one to show that for large
populations the dynamics is dominated by Nash equilibria
(section 5.2).

Our work also shows that simulation models are compatible
with game theory analysis. Not only can game theory make it
easier to focus on the right kind of data analysis of simulation
results, but simulations themselves can also help us push game
theory forward. Our view is that more attention should be paid
to how representations and mutations may affect the odds for
cooperation to arise (e.g., García and Traulsen, 2012). While
cycles are unavoidable in repeated games, different mutation
schemes—and strategy representations—may lead tomore or less
cooperation.

Our analysis shows that cycles are prevalent when using the
most general space of deterministic strategies, including non-
computable strategies. This implies that cognition itself may
bear little impact in changing the cyclic dynamics. The collapse
of cooperation is unavoidable under evolutionary learning,
regardless of how smart strategies are. Research should therefore
focus on understanding the process of strategy exploration and
implementation.

To see this, notice that although the set of FSA strategies
ignores, for example, strategies that can count (e.g., implemented
using Pushdown Automata), the theory of indirect invasions
also holds in that case. Therefore, under a reasonable
scheme of mutations, smarter strategies will ultimately also
succumb to cycles. We can expect this to hold for any kind
of machine, including Turing machines, because they are
all subsets of the functional strategy definition. Levels of
cooperation may vary according to mutation schemes, but
these are not directly concerned with cognition or with how
smart the strategies per se are. Cycles are to be expected
either way.

We have chosen to present results using the Wright Fisher
process, because this turns out to be more computationally
efficient when doing Monte Carlo simulations, as compared to
the Moran process. In terms of the long-term outcomes, we
do not expect major differences if using a process in which
fitter individuals reproduce more and noise is not prevalent.
This is because the game theoretical results do not depend on
any specific choice of the process, relying only on selection
itself. Exploring processes other than the Wright Fisher process
may lead to differences in details, such as the speed of
convergence. The specific effects of different implementations
of the selection process are an important topic for future
research.

There is no winning strategy in the repeated prisoner’s
dilemma, because every strategy can be overturned by the right
sequence of mutants. Some exploration process may be more
conducive than others to cooperation. The cognitive aspects
of innovation and exploration are therefore more important
in this problem than the cognitive aspects of implementing
strategies.
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