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Abstract

The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated with
Weddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collected
between November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorarius
maccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152
anellovirus genomes that share 63–70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwise
comparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque teno
Leptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n¼133, genomes encompassing 40 genotypes) is highly recom-
binant, whereas TTLwV-2 (n¼19, genomes encompassing three genotypes) is relatively less recombinant. This study
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documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, how-
ever, the role these anelloviruses play in seal health remains unknown.
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1. Introduction

Infectious diseases are the leading causes of mass mortality in
wildlife and the global uptick of emerging viral disease makes
pathogen surveillance crucial for the protection of animal
health (Dobson and Foufopoulos 2001; Morner et al. 2002;
Blomström 2011). However, identifying viruses is difficult be-
cause traditional molecular techniques such as polymerase
chain reaction (PCR) amplification and serology-based assays
are only useful for the detection of known viruses and their
close relatives (Wang et al. 2002; Symonds et al. 2009).
Metagenomic approaches that enrich for viruses and use high
throughput sequencing platforms are powerful approaches for
revealing viral communities, including novel viruses, in animal
populations (Edwards and Rohwer 2005; Delwart 2007; Rosario
and Breitbart 2011).

Parts of Antarctica, a continent characterized by extreme cli-
mate and isolation, are inhabited by unique wildlife. The dense
breeding grounds of some animals creates an increased risk of
infectious diseases spreading amongst the population at an epi-
demic scale (Kerry et al. 1999). Similarly, increased human activ-
ity on the continent through tourism and research bases is
thought to have exposed wildlife to diseases previously attrib-
uted to domestic animals. Such findings have led to concerns
about pathogen introduction associated with anthropogenic ac-
tivities (Austin and Webster 1993; Olsen et al. 1996; Gardner et al.
1997; Retamal et al. 2000; Torres 2000). Unfortunately, little is
known about the pathogens associated with Antarctic animals.

Within the context of viral pathogens identified in Antarctic
wildlife, the use of sequencing approaches has led to the identifi-
cation of some viruses in Antarctic penguins, i.e. Adélie penguin
(Pygoscelis adeliae), Chinstrap penguins (Pygoscelis antarctica) and
Gentoo penguins (Pygoscelis papua), including an adenovirus, par-
amyxoviruses, orthomyxoviruses, a polyomavirus and a papillo-
mavirus (Thomazelli et al. 2010; Hurt et al. 2014, 2016; Lee et al.
2014, 2016; Varsani et al. 2014, 2015). Similarly, a polyomavirus
has been identified in sharp-spined notothen (Trematomus penne-
lii), an Antarctic fish (Buck et al. 2016), a parapoxvirus (Tryland
et al. 2005) and a polyomavirus (Varsani et al. 2017) in Weddell
seals (Leptonychotes weddellii), and an adenovirus has been identi-
fied in South Polar skua (Stercorarius maccormicki) (Park et al. 2012).
In addition, serology-based assays have enabled the detection of
a putative birnavirus and flavivirus (Morgan and Westbury 1981;
Morgan et al. 1985; Gardner et al. 1997) in penguins (Adélie pen-
guin, Blue penguin; Eudyptula minor and Emperor penguin;
Aptenodytes forsteri), and a putative herpesvirus in Antarctic seals,
namely Weddell seals and crabeater seals (Lobodon carcinophaga)
(Harder et al. 1991; Stenvers et al. 1992).

A recent health assessment testing Weddell seals for anti-
bodies to specific known bacterial and viral pathogens indicated
that this population remains relatively naı̈ve, leaving them po-
tentially vulnerable to mass die-offs due to their close living
proximity and lack of herd immunity (Yochem et al. 2009). Due
to this vulnerability, it is important to identify viruses associated
with these populations. Viral surveys will provide insight into
the viral diversity that is currently associated with these seals,
and will provide the genetic information necessary to develop

new molecular assays to assess the prevalence of identified vi-
ruses and begin to elucidate their impact on animal health.

As part of an ongoing study on Weddell seals in the Ross
Sea, we opportunistically sampled faeces, and took nasal and
vaginal swabs to identify viruses associated with these animals.
In these samples, as well as in a kidney sample from a deceased
Weddell seal and a faecal sample from a South Polar skua
(a bird that scavenges placenta and carcasses of seals), we iden-
tified a diversity of anelloviruses. Anelloviruses are non-
enveloped, circular, negative sense, single-stranded DNA viruses
that belong to the family Anelloviridae (Okamoto et al. 1998b;
Biagini 2009). The first anellovirus, human torque teno virus
(TTV), was discovered in a Japanese patient with posttransfusion
hepatitis of unknown aetiology (Nishizawa et al. 1997). Since
then, numerous anelloviruses have been characterized and
grouped into 12 different genera, which have been found in a va-
riety of hosts including pigs, wild boar, dogs, seals, sea lions, pine
marteen, bats, horses, cats, sea turtles and a range of primates
(Abe et al. 2000; Romeo et al. 2000; Okamoto et al. 2001; Martinez
et al. 2006; Al-Moslih et al. 2007; Ng et al. 2009a,b, 2011; King et al.
2011; Nishiyama et al. 2014; Fahsbender et al. 2015). Despite their
ubiquity and ability to cause persistent infections, the aetiology
of anelloviruses remains unknown.

Most of what is known about anelloviruses is based on hu-
man TTV, which has a prevalence as high as 100% in some hu-
man populations (Ninomiya et al. 2008). Individuals frequently
harbor multiple TTV genotypes (Niel et al. 2000; Nishiyama et al.
2014) and these have been identified throughout the body in-
cluding in cervical secretions, nasal secretions, the umbilical
cord, kidneys, blood, gastric tissue, and sweat (Spandole et al.
2015). There is no indication of tropism, but patterns of genotype
compartmentalization, similar to human immunodeficiency vi-
rus, have been documented within the host (Maggi et al. 1999).

Anelloviruses have been found to be highly diverse, even at the
amino acid level of the coding open reading frames (ORFs), yet the
genome organization remains relatively similar with at least two
ORFs and a conserved untranslated region (UTR). ORF1 is the larg-
est ORF and is predicted to encode the capsid protein, however,
this has not been definitively confirmed (Kamahora et al. 2000;
Okamoto et al. 2000). ORF2 encodes proteins thought to be involved
in regulation of the innate and adaptive immune system, but the
lack of an appropriate culture system has hindered the ability to
determine the functionality of these proteins and TTV pathogenic-
ity (Kakkola et al. 2007, 2009; Yu et al. 2007; Huang et al. 2012).

Here we analyze the genomes of the anelloviruses recovered
from faeces, kidney, and vaginal and nasal swabs of Weddell
seals and a faecal sample of a South Polar skua. Sequence anal-
ysis revealed two phylogenetically distinct anellovirus species
that are prevalent in all sample types, indicating that anellovi-
ruses are ubiquitous among Weddell seals.

2. Methods
2.1 Sample collection

As part of an ongoing diet study in the Ross Sea on Weddell
seals, 42 Weddell seal faecal samples were opportunistically
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collected on the fast ice of McMurdo Sound (Antarctic) during
the 2014/2015 field season. Even though there were tagged ani-
mals in the vicinity of the faeces, it was not possible to associate
the sampled faeces to a particular tagged animal. In addition to
these samples, we collected paired nasal and vaginal swabs
from Nov 2014 to Feb 2015 25 adult female Weddell seals; for
two additional animals, only nasal swabs were taken, and for
three animals we also collected faecal samples (Supplementary
Table 1). A subset of females sampled in Nov/Dec were
resampled �60 days later in Jan/Feb, providing an additional
eight nasal and nine vaginal samples. The nasal and vaginal
swabs were refrigerated and stored in UTMTM Viral Transport
Media (Copan). During the field season, a kidney was sampled
from the carcass of a 14-year-old female (Flipper Tag# 8714A;
specimen ID 17461) and frozen at �80 �C prior to analysis, see
Varsani et al. (2017) for necropsy details. Finally, a South Polar
skua faecal sample was collected off fresh snow at Cape Crozier,
Ross Island.

All applicable international, national, and/or institutional
guidelines for the care and use of animals were followed.
Weddell seal samples were collected under National Marine
Fisheries Service Marine Mammal permit #17411, Antarctic
Conservation Act permit #2014-003, and University of Alaska
Anchorage’s Institutional Animal Care and Use Committee ap-
proval #419971, with funding from the National Science
Foundation grant ANT-1246463 to Jennifer M Burns. The skua
faecal sample at Cape Crozier was collected under Animal Care
and Use Permit #4130 through Oregon State University,
Corvallis, OR, and Antarctic Conservation Act Permit #2006-010
from NSF through H.T. Harvey & Associates.

2.2 Sample processing

For each sample, �5 g of the faecal sample or tissue samples (in
the case of the kidney) was resuspended in 20 ml of SM buffer
(0.1 M NaCl, 50 mM Tris/HCl—pH 7.4, 10 mM MgSO4) and homog-
enized by vortexing for 30 s. The suspension was centrifuged at
10,000� g for 10 min. Following this, the supernatant was se-
quentially filtered through 0.45 and 0.2 mm (pore size) syringe
filters. Three grams of PEG 8000 (Sigma) was added to each of
the filtrates and the solution was mixed gently to resuspend the
PEG. The resulting suspension was incubated overnight at 4 �C
to precipitate virions. The solution was centrifuged at 10,000�g
for 20 min and the resulting pellet was resuspended in 2 ml of
SM buffer.

Viral DNA was extracted using the High Pure Viral Nucleic
Acid Kit (Roche Diagnostics) from the resuspended virions (200 ml)
from the faecal and kidney samples, and 200 ml of the UTMTM

Viral Transport Media in which the swabs were stored. We used
rolling-circle amplification (RCA) using the TempliPhiTM kit (GE
Healthcare) to randomly amplify nucleic acids.

2.3 High throughput sequencing and sequence analysis

A 5-ml aliquot of the randomly amplified DNA from each of the
Weddell seals faecal samples, nasal swabs and vaginal swabs
was taken, pooled and labelled as WSP, WSN and WSV, respec-
tively. The enriched DNA from the Weddell seal kidney sample
was labelled as WSK and the faecal sample from the South
Polar skua as SKP. The DNA samples WSP, WSN, WSV, WSK and
SKP were then processed to generate �100-bp paired-end librar-
ies for multiplex Illumina sequencing and sequenced on an
Illumina 2500 (Illumina) platform at Macrogen Inc. (Korea). The
resulting paired-end reads were de novo assembled using ABySS

v1.9 (Simpson et al. 2009) with a k-mer of 64. Contigs of>750 nts
were analyzed for viral-like sequences using BLASTx (Altschul
et al. 1990) against a local viral sequence database.

In all of the WSP, WSN, WSV, WSK and SKP de novo assem-
bled contigs, we identified sequences with similarities to anello-
viruses. Based on these sequences we designed four pairs of
abutting primers (Supplementary Table 2) to screen and recover
the complete anellovirus genomes from each individual sample.
The RCA product from each sample was used as a template for
PCR amplification using Kapa HiFi Hotstart DNA polymerase
with the following thermal cycling conditions: (95 �C for 3 min;
25 cycles of 98 �C for 20 s, 60 �C for 15 s, 72 �C for 2 min and a final
extension of 72 �C for 3 min). The amplicons were resolved on a
0.7% agarose gel stained with SYBR Safe (ThermoFisher) and
�2 kb size fragments were excised, gel purified and cloned into
pJET1.2 plasmid vector (ThermoFisher). The resulting recombi-
nant plasmids (five from each positive sample type) were
Sanger sequenced by primer walking at Macrogen Inc. (South
Korea).

To investigate the anellovirus diversity detected in seals, the
pairwise identities of the anellovirus genomes and ORF1 se-
quences were determined using SDT v1.2 (Muhire et al. 2014).
All anellovirus sequences with a detectable complete ORF1
were downloaded from GenBank (on the 18th of March 2017).
727 ORF1 sequences (including 152 from this study) were trans-
lated, aligned using MUSCLE (Edgar 2004) and then back trans-
lated. The resulting alignment was used to infer a Maximum
likelihood phylogenetic tree using IQ-TREE (Nguyen et al. 2015)
with GTRþ IþG4 substitution model selected using ModelFinder
(Kalyaanamoorthy et al. 2017). Branches with <60% bootstrap
support (1,000 bootstrap iterations) were collapsed using
TreeGraph2 (Stover and Muller 2010).

Evidence of recombination in the anelloviruses identified in
this study was determined using RDP 4.58 (Martin et al. 2015)
with default settings. Sequences were auto-masked for optimal
recombination detection and only events detected with more
than three different methods implemented in RDP 4.58 coupled
with phylogenetic support for recombination and a P value
of<0.05 were considered credible.

3. Results
3.1 Anellovirus identification and genome
characterization

Analysis of the contigs from the de novo assembled reads from
Illumina sequencing of WSP, WSN, WSV, WSK and SKP samples
revealed high abundance of anellovirus-like sequences,
polymavirus-like sequences from WSK which is reported in
Varsani et al. (2017), circular replication-associated protein
encoding viral-like sequences and various DNA bacteriophages.
Given the high abundance of anellovirus-like sequences, we de-
cided to focus on these for this report. Since anelloviruses have
small circular genomes, PCRs using abutting primers were per-
formed to recover 152 anellovirus genomes from the various
samples, ranging in size from 2,105 to 2,212 nts. Analysis of the
genome-wide pairwise identity of these revealed that the seal
associated anellovirus genomes share >64% pairwise identity
(Fig. 1). Of the 152 genomes identified, 74 genomes sharing
>64% identity were recovered from seal faeces, 37 genomes
sharing >70% identity from nasal swabs, 34 genomes sharing
>72% identity from vaginal swabs, and four genomes sharing
>73% identity from the kidney. In addition, three anellovirus ge-
nomes sharing >75% identity were recovered from South Polar
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skua faeces. These Antarctic anelloviruses share �63–70%
genome-wide identities (Supplementary Data 1) with other pin-
niped anelloviruses from Pacific harbor seals (Phoca vitulina)
sampled in USA (Pacific coast) and the Netherlands (HQ287751,
KF373758, KF373760, KM262781, KM262785).

Based on species demarcation criteria of 35% divergence of
the ORF1 amino acid sequences endorsed by the International
Committee for the Taxonomy of Viruses (ICTV) (King et al.
2011), the anelloviruses identified in this study represent two
species for which we propose the name torque teno
Leptonychotes weddellii virus (TTLwV) -1 and -2. This species
demarcation is also supported by the phylogenetic analysis of
the ORF1 protein sequences of the TTLwVs (Fig. 2). The genome
organization of representatives from the two phylogenetically
distinct anellovirus species, TTLwV-1 and TTLwV-2, are illus-
trated in Fig. 1. Both genomes have the same organization, with
three open reading frames and a hypothetical protein, and are
approximately the same genome size, �2.1 kb. However, there
are differences in ORF size and position, specifically for ORF3.

A Maximum likelihood phylogenetic analysis of all available
complete ORF1 nucleotide sequences from GenBank (n¼ 727)
show that TTLwVs are related to other anelloviruses discovered
in pinnipeds (Fig. 2), and most closely related to the Pacific harbor
seal anelloviruses and torque teno Zalophus virus (Figs 2 and 3).
In general, the ORF1 phylogenetic analysis (Supplementary Fig.
S1) shows some level of host specificity and within lineages there
appears to be a significant level of concordance between the phy-
logenies of the anelloviruses and their hosts (host phylogeny in-
ferred with TimeTree; http://www.timetree.org/; Hedges et al.
2015; Kumar et al. 2017). Furthermore, it is clear that there are
two lineages of porcine-associated, pinniped-associated and
rodent-associated anelloviruses. Thus, it is highly likely that
there were multiple diverse anelloviruses that were circulating
amongst the most recent common ancestor (MRCA) of mam-
mals. Within the hominoid-associated anelloviruses, those from

chimpanzees (n¼ 10) and gorillas (n¼ 3) appear to be interspersed
with those from humans (Fig. 2 and Supplementary Fig. S1).
Within the primate lineage, given the depth of sampling of non-
human primates, it is difficult to test for a coevolution hypothe-
sis or infer any cross-species transmission events. The
mosquito-associated anelloviruses are almost certainly derived
from a vertebrate blood meal (see taxa marked with * in
Supplementary Fig. S1).

TTLwV-1 (n¼ 133) was identified in the South Polar skua fae-
ces, as well as the kidney, nasal and vaginal swabs, and faeces
from Weddell seals, while TTLwV-2 (n¼ 19) was exclusively
found in seal faeces (Fig. 3). All of the genomes identified belong
to the pinniped clade, indicating that the seal itself is the most
probable host of all of TTLwVs.

Based on the distribution of the pairwise identities of
TTLwV-1 and TTLwV-2 ORF1 nucleotide sequences (Fig. 4), we
established that genomes with �87% identity should be grouped
into the same genotype. Accordingly, TTLwV-1 sequences were
subdivided into a total of 40 genotypes, while TTLwV-2 was sub-
divided into three genotypes (Fig. 4).

3.2 Evidence of recombination

Evidence of recombination within the genomes was detected by
analyzing each species individually with RDP 4.58 (Martin et al.
2015). TTLwV-1 and TTLwV-2 genomes have differing recombi-
nation patterns. About 89% of TTLwV-1 sequences had at least
one recombination event, while only 26% of TTLwV-2 sequences
had a recombination event (Fig. 5). The majority of the recombi-
nation events in TTLwV-1 were located in the highly conserved
translated region (UTR), which is similar to the recombination
hotspots found in human TTV and in a global anellovirus analy-
sis (Worobey 2000; Lefeuvre et al. 2009). In contrast with the
cold spots in ORF1 of the TTLwV-1 genome, TTLwV-2 has re-
combination hotspots in the coding regions, ORF1 and ORF3.
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Figure 1. (A) Distribution of genome-wide pairwise identities of TTLwVs from this study. (B) Schematic genome organizations of representatives from TTLwV-1 and

TTLwV-2 which highlights three open reading frames and a hypothetical protein.

4 | Virus Evolution, 2017, Vol. 3, No. 1

Deleted Text: -
Deleted Text:  
http://www.timetree.org/
Deleted Text: (
Deleted Text: )
Deleted Text: greater or equal to 
Deleted Text: r
Deleted Text: ; <xref ref-type=


0.3 nucleotide substituions per site

Order Species

Artiodactyla Sus scrofa
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Figure 2. Maximum-likelihood phylogenetic tree inferred from aligned ORF1 sequences of all publicly available anellovirus sequences together with those from this

study. Branches with <60% bootstrap support have been collapsed.
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Recombination may be a driving force of anellovirus diversity,
especially in TTLwV-1 (Fig. 5).

3.3 Prevalence of TTLwV in Weddell seals

Paired nasal and vaginal swabs were collected from 25 seals and
76% (19/25) of these tested positive for TTLwV-1 in at least one

of the paired samples. When parsed individually, 64% of the na-
sal swabs and 72% of the vaginal swabs were TTLwV-1 positive.
None of these samples tested positive for TTLwV-2. Of the 45
faecal samples collected, all were TTLwV positive, with 98%
positive for TTLwV-1 and 40% for TTLwV-2.

The number of genotypes per type of sample, and the preva-
lence of each genotype, illustrated in Fig. 4 and Supplementary
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Fig. S2, show the most common genotypes of TTLwV-1 are 1, 8,
and 11, while genotype 2 completely dominates TTLwV-2.
Notably TTLwV-1 genotype 1 was also recovered from the South
Polar skua faeces. The seal faeces, vaginal, and nasal swabs had
comparable diversity with 25, 24, and 21 characterized geno-
types, respectively. Although a single kidney sample was ana-
lyzed, four genotypes were identified in this organ. Additionally,
while most seals harbored one or two TTLwV-1 genotypes, a few
seals harbored many more (maximum n¼ 9 genotypes seal ID
16603; Supplementary Fig. S2).

There is no clear distribution pattern of the 40 genotypes of
TTLwV-1, yet TTLwV-2 was only found in the seal faeces (40% of
the faecal samples). Since TTLwV-2 is related to other anellovi-
ruses isolated from pinnipeds, it is likely to also be infecting
seals, but may have a different and more specific tropism than
TTLwV-1, which seems to have pan-tropism. The overlapping
genotypes of TTLwV-1 found in the faeces, nasal, and vaginal
swabs suggest possible faecal-oral transmission of this virus,
and indicates that future studies may be able to test the faeces
alone to capture anellovirus diversity in seals.

3.4 TTLwV-1 identification in South Polar skua faeces

TTLwV-1 was recovered from South Polar skua faeces that was
opportunistically sampled. South Polar Skua faeces contained
three TTLwV-1 genotypes (1, 13, 17; Figs 3 and 4), which were
also identified in the seal kidney, faeces, nasal, and vaginal
swabs. The presence of various TTLwV-1 genotypes in South
Polar skua faeces may reflect viruses that are dietary in origin
since these predatory birds feed on Weddell seal placenta and
scavenge seal carcasses, which may contain TTLwV, hence the
likely explanation for presence of this in its faeces.

4. Conclusion

The advent of NGS technology has proven to be a powerful tool
for virus discovery and has changed the field of virology. Here
we took advantage of this technology to investigate viral pres-
ence and diversity in Antarctic wildlife, which remains largely
unknown. Previous studies of Weddell seals have focused on
wildlife exposure to known viruses, limiting our understanding
of the myriad of viruses present in this unique environment.

Samples tested from Weddell seals from the Ross Sea led to
the discovery of 152 anellovirus genomes. Sequencing complete
genomes enabled the recognition of two new species, TTLwV-1
and TTLwV-2 and the role recombination plays in driving
TTLwV diversity. TTLwV is phylogenetically related to the other
pinniped-associated anelloviruses that were recovered from the
brain and lungs of the Pacific harbor seal, the lungs, liver, lymph
nodes and tonsils of a California sea lion (Zalophus californianus),
and the faeces from subantarctic fur seals (Arctocephalus tropica-
lis) and South American fur seals (Arctocephalus australis) (Ng
et al. 2009b, 2011; Bodewes et al. 2013; Kluge et al. 2016).
However, this is the first time anelloviruses have been charac-
terized in Weddell seals and the first time they have been de-
scribed in Antarctic vertebrates.

Although anelloviruses cause persistent infections and are
ubiquitous among humans and various animal species, their
aetiology remains a mystery (Spandole et al. 2015). This was the
first time a prevalence study showed anelloviruses to be ubiqui-
tous within a pinniped population, with TTLwVs present in
100% of the seal faecal samples. TTLwV-1 genomes from the
seal faeces were related to those recovered from the vaginal and
nasal swabs and kidney, indicating that these were shedding

from the seal itself and not infecting seal food sources. The fact
that the same TTLwV-1 genotypes were found within the seal
tissues and faeces may also suggest that this anellovirus species
is transmitted through the faecal-oral route, which is a hypoth-
esis proposed for the transmission of TTV in humans (Okamoto
et al. 1998a; Ukita et al. 1999). Although TTLwV-2 was only de-
tected in faecal samples, phylogenetic analysis indicates that
this species may also infect seals. Failure to detect TTLwV-2 in
the seal tissues tested here suggests that this species has more
specific tropism than TTLwV-1.

Nevertheless, sampling of Weddell seal faeces alone could
give a broad perspective of anellovirus diversity circulating
within this Antarctic pinniped population. Sampling faeces may
therefore be a valuable, non-invasive sampling tool for captur-
ing the diversity and prevalence of pinniped anelloviruses.
Previous prevalence studies of pinniped-associated anellovi-
ruses screened the serum and lungs, which may have greatly
underestimated the prevalence of anelloviruses in pinniped
populations (Ng et al. 2011; Fahsbender et al. 2015).

Future studies focusing on the anelloviruses in Antarctica
will provide insight into their presence in other species and
how they are transmitted through the food web. The South
Polar skua faeces derived TTLwVs are most likely acquired from
scavenging Weddell seal placenta or carcasses. Therefore, de-
tection of TTLwV in South Polar skua faeces and Weddell seal
samples may provide an example of a situation in which viruses
could be used as proxies for trophic interactions (Dayaram et al.
2016; Godinho et al. 2017). Additionally, it remains to be deter-
mined whether TTLwV is present in Antarctic surface waters, as
has been shown for some anelloviruses in Italy and Japan
(Haramoto et al. 2005; Verani et al. 2006).

More work needs to be done to determine the role of
TTLwVs in Weddell seal health. TTLwVs are diverse and perva-
sive in this population, with individuals infected with multiple
genotypes. The health effects of infection by specific genotypes
or co-infection with different genotypes remain unknown. With
the exception of the dead Weddell seal from which the kidney
sample infected with a polyomavirus (Varsani et al. 2017) was
obtained, all other animals were in apparent good health, with
most sighted months and years following handling.
Determining the viral load of TTLwV may prove to be important
for providing clues as to the strength of seal immune systems
since anellovirus loads are thought to be good indicators of im-
munosuppression (Hofer 2014).
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