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Abstract: Background: Bioceramic nanometer coatings have been regarded as potential substitutes
for plasma-sprayed hydroxyapatite coatings, and the association with bone morphogenetic protein
(BMP) is an attempt to achieve faster osseointegration to hasten oral rehabilitation. Objective: This
study aimed to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7)
on the osseointegration of titanium implants coated with a thin film surface of hydroxyapatite
(HA). Methods: Two implants (n = 24) were placed in each white New Zealand rabbits’ femur
(n = 6). Implants were placed in the right femur after standard instrumentation (A and B) and
in the left femur after an over-instrumentation (C and D), preventing bone-implant contact. The
distal implants were installed associated with rhBMP-7 (groups B [regular instrumentation] and
D [over-instrumentation]) and, also, in the absence of without BMP (control groups A [regular
instrumentation] and C [over-instrumentation]). After 4 weeks, the animals were euthanized. The
bone blocks containing the implants were embedded in methyl methacrylate and sectioned parallel
to the long axis of the implant, which were analyzed by image segmentation. The data were analyzed
using a nonparametric statistical method. Results: We observed that Group A had a mean bone
formation of 35.6% compared to Group B, which had 48.6% (p > 0.05). Moreover, this group showed
28.3% of connective tissue compared to Group A, with 39.3%. In the over-instrumented groups,
rhBMP-7 (Group D) showed an enhanced and significant increase in bone formation when compared
with the group without rhBMP-7 (Group C). Conclusion: We concluded that the association of
rhBMP-7 to thin nanostructure HA-coated implants promoted greater new bone area than the same
implants in the absence of rhBMP-7, mainly in cases of over-instrumented implant sites.
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1. Introduction

Dental implants have recently been widely used, with high success rates been achieved [1].
However, longitudinal studies and histological data have shown that success for en-
dosseous implants varies with the patient’s systemic conditions and local bone quality and
quantity [2]. Moreover, the implant must be inserted with a low-trauma surgical technique
and placed with sufficient primary stability [3].

The osseointegration phenomenon may take months after implant placement in oral
rehabilitation with dental implants. However, reducing the treatment period may be
interesting for clinicians and patients [4]. In order to increase the bone-to-implant contact
(BIC) at the early response stage, several implant design alterations have been attempted [5].
Following mechanical-chemical treatments [6–10], calcium phosphate implant surface
coatings [11–14], and the association with peptide growth factors (bone morphogenetic
proteins) have been investigated, aiming at a faster osseointegration process [15–18].

Since the clinical success of oral implants is related to their osseointegration, geometry
and surface topography play a crucial role in the short- and long-term success of dental im-
plants [5]. Modifying surface topography and chemistry represents quite a challenge, and
one strategy has been to use plasma-sprayed HA coatings on implants. Most commercially
available bioceramic coated implants are prepared as 20 to 50 µm-thick plasma-sprayed
hydroxyapatite coatings [14]. However, failures due to the weak connection among bulk
metal, oxides, and bioceramic, associated with the difficulty in reproducing a uniform
coating composition and crystallinity, render its manufacture a great challenge. The advent
of nanotechnology propelled the development of 100 nm HA-coated implants [19,20], in-
tending to overcome problems related to the previous methods used for surface treatments
and generate better results [21].

The general role of bone morphogenetic proteins (BMPs) in bone formation during the
development and repair of fractures has been well studied, and its osteoinductive potential
has been confirmed both by its deployment in ectopic sites and bone defects of critical
size [17,22,23]. Clinical studies and meta-analysis also demonstrated the effectiveness of
BMPs in the induction of bone repair in lesions, such as pseudoarthrosis [24], arthrode-
sis [25], and alveolar bone [26]. Moreover, a wide body of evidence suggests a positive
effect of BMP coating titanium surface on the implant osseointegration [27]. Moreover,
two BMPs, namely BMP-2 and BMP-7, have received more attention concerning bone
formation, both of which promoted bone healing, with no significant differences being
found in their healing efficacy [28].

Therefore, the present study evaluated the influence of recombinant human bone
morphogenetic protein-7 (rhBMP-7) on the volume density of new bone formation, onto
a Ca- and P-based 100 nm thickness bioceramic deposition on a plateau root from a Ti-
6Al-4V implants in a rabbit model, comparing regular and over-instrumented perforations.
The positive hypothesis is that a higher bone volume density may be observed for the
thin-coated implants associated with rhBMP-7.

2. Materials and Methods
2.1. Implant Surface and Characterization

Titanium (Ti) implants of 3.25 mm × 10.0 mm (n = 24) were provided by SIN Implant
System, Sao Paulo, Brazil). The surface treatment with hydroxyapatite-thin film (100 nm
thick) was completed at the Brazilian Center for Physics Research (CBPF/RJ).

Stoichiometric HA powder (Ca/P = 1.67) was synthesized by dropwise addition
of calcium nitrate and ammonium phosphate solutions. The sputtering targets with a
diameter of 25 mm were prepared by uniaxially pressing HA under 30 MPa, followed
by sintering at 1100 ◦C. Titanium plates of 1 cm × 1 cm long (prepared precisely by the
same process as the commercial titanium implants) and commercial titanium implants
were ultrasonically cleaned with 10% hydrofluoric acid and acetone before the oxidization
layer. Hydroxyapatite coatings were prepared by right-angle magnetron sputtering (RAMS)
at room temperature and with no further heat treatment. Nanometric HA coatings with
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different thickness levels was grown onto the Ti substrates (plates and dental implants)
with a deposition rate of 5.2 nm/minutes and an RF frequency of 13.56 MHz. The partial
pressure of Ar and O2 in the deposition chamber were 5 and 1 mTorr, respectively.

After deposition, the samples were characterized with XRD (Ti plate), FTIR, and SEM
(dental implant). The XRD technique was used to identify the phase composition over the
deposited thin coating layer of the HA sputtered coatings (Figure 1A) [19,20]. The surface
plate samples were characterized by XRD, and grazing-incidence X-ray diffraction (GIXRD)
performed with synchrotron radiation, operating at an energy of 9000 eV, wavelength of
0.137 nm, fixed incident angle theta = 0.5◦ and 1◦, and two-theta in the range of 9◦ to 50◦ at
a rate of 0.04◦/point/second.
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Figure 1. (A) XRD of the implant after the surface coating. The diffraction peaks show highly crys-
talline hydroxyapatite with crystallites preferentially oriented along the axis c; (B) OH vibration bands
in the FTIR spectrum of as-sputtered HA coatings for 180 min and 120 W RF power sputtering time.

These methods provided a higher X-ray photon density, leading to a better pick reso-
lution than those obtained with commercial machines. The XRD analysis was performed at
the Brazilian Synchrotron Light National Laboratory (LNLS, Campinas/SP, Brazil). In addi-
tion, the HA vibrational bands and mainly the OH band (Figure 1B) for the as-sputtered
coatings were obtained by Fourier Transformed Infrared Attenuated Total Reflectance
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Microscopy (FTIRM-ATR) using a Shimadzu IR-Prestige-21/AIM-880 (Shimadzu Corpo-
ration, Kyoto, Japan) operating from 700 to 4000 cm−1. Before and after HA deposition,
the titanium implant surface morphology was characterized by SEM using a Jeol JSM-5800
(Akishima, Tokyo, Japan) operating at 20 kV (Figure 2).
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Figure 2. Characterization of implant surfaces by SEM. (a,c) implant without surface treatment;
(b,d) implantation after coating with a thin film of hydroxyapatite (300 nm).

The rhBMP-7 was provided by the Cell and Molecular Therapy Center (www.usp.
br/nucel, accessed on 20 August 2022), Department of Biochemistry, Chemistry Institute,
University of São Paulo (USP, São Paulo, Brazil), at a concentration of 43 mg/mL, diluted
to 2.0 mg/mL, and stored in a sterile microtube at 4 ◦C until use [29].

2.2. In Vivo Experiment

This study was developed according to the standards recommended by the National
Council for the Control of Animal Experimentation (CONCEA, Brazil) and approved by
the Ethics Committee for Animal Research (CEUA) of the Fluminense Federal University
(UFF, No. 005/07). Six White New Zealand rabbits, weighing between 2.5 kg and 3.0 kg,
were enrolled. They were anesthetized with general anesthesia, with the administration
of 20 mg/kg ketamine (Clortamina®) and 1 mg/kg xylazine (Rompun®) intramuscularly,
maintained with isoflurane (Isoran®) at 1% inhalatory, and local infiltration with prilocaine
hydrochloride 3% with felypressin (Prilonest®).

Following the trichotomy and disinfection of both femurs, a 4-cm incision was made
in the lining epithelium of the animal leg. The soft tissue and periosteum were elevated
and reflected, exposing the femur bone surface. Two perforations were applied to each
femur; the proximal ones being filled with implants without rhBMP-7, and the distal ones
with implants embedded in rhBMP-7. Instrumentation in the right femur was performed
until the 3.0 mm∅ drill for standard implant installation. In the left femur, an over-
instrumentation was carried out until 4.0 mm∅ drill, preventing bone-implant contact
throughout the length of the surgical defect.

The implants were immersed for 15 min in rhBMP-7 (2.0 mg/mL) before placement.
The flap was repositioned, and the skin was closed with interrupted #5.0 nylon sutures
(Johnson & Johnson, Sao Paulo, Brazil). New disinfection with Chlorhexidine 2% was
carried out to prevent further contamination. After the procedure, the animals received
4mg/Kg of Tramadol hydrochloride (Tramal®), Meloxicam 0.3 mg/kg (Maxicam®), and

www.usp.br/nucel
www.usp.br/nucel
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Enhanced Pentabiotic for veterinary use (Fort Dodge®) 0.1 mg/kg, intramuscularly and in
a single dose.

Following the study period (four weeks after surgery), the rabbits were euthanized
with an overdose of anesthetic agents. The two fragments of each femur with the implants
were collected and fixed in 70% alcohol prior to dehydration in successive alcohol solutions
and then impregnated and embedded in methyl-methacrylate. The specimens sections of
30–50 µm thickness were not stained and not pasted to the slide.

2.3. Histomorphometric Analysis

Histomorphometric analysis was performed on the digital images obtained, which
were captured through a digital camera (Evolution® MP Color, 5.0 megapixels; Media
Cybernetics, Silver Spring, MD, USA), coupled to a microscope of polarized light (Nikon
Eclipse E400, Tokyo, Japan) and acroplan lens of 10× magnification. One image from each
group was then selected for analysis.

We standardized two screws below the cortical region in order to evaluate the newly
formed bone around the implants. Image segmentation was performed using the Im-age-
Pro Plus® (Media Cybernetics, Silver Spring, MD, USA, v.4.5.0.29), targeted to the implant
(black), connective tissue (red), and newly formed bone (yellow), as shown in Figure 3.
After segmentation, the highlighted areas were counted and transported to the software
Excel 2021 (Microsoft Office®, Redmond, WA, USA) to calculate the area/segment/image
percentage. Data were analyzed using GraphPad InStat® v.3.01 (San Diego, CA, USA) and
using the Kruskal-Wallis test with Dunn post-test (p < 0.05).
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Figure 3. Image segmentation of the original picture. (a) Polarized image of the interface area;
(b) Image segmentation with Image ProPlus, showing the implant (black), connective tissue (red),
and newly formed bone (yellow). Magnification: 10×.

3. Results

The SEM images of the micrometers surface roughness (Figure 2) showed no change
after the HA nanometer coating, indicating a homogeneous and continuous layer over the
implant surface, even though FTIR and XRD showed both the presence of OH bands and
diffraction peaks, respectively, as characteristics of a well-crystallized HA.

Figure 4 shows polarized (a, c, e and g) and segmented images (b, d, f and h) per
group. It is possible to verify a larger quantity of newly formed bone in the rhBMP-7 groups.
In order to prove this fact, the data were analyzed (Figure 5), confirming that new bone
formation was greater in groups with rhBMP-7 (b and d) compared to the average obtained
by the groups without rhBMP-7 (a and c), respectively, a = 35.6%, b = 48.6%; c = 19.7%;
d = 55.3%. Observing the newly formed bone, group d (over-instrumented group) was the
only one that presented significant bone formation compared only to group c (p < 0.01).
On the other hand, the area of connective tissue was smaller in groups b and d (a = 39.3%,
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b = 28.3%, c = 48.23%, d = 23.3%), but no significant difference was observed between
groups b and d (p > 0.05).
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4. Discussion

The implant biomaterial’s ability to allow hard and soft tissue healing around the
implant device is strongly related to the clinical success of implant dentistry [30]. Low
bone density, atrophic alveolar ridges, or immediate loading protocol constantly challenges
success ratios above 90% reported for dental implantology [31]. Thus, improvements in the
biomechanical systems through the implant design can cause an increase in biocompatibility
and osteoconductivity or osteoinductivity, leading to faster and greater bone healing or
achieving a desirable turnover [2,5,14]. In the present study, it was possible to confirm
the initial positive hypothesis, in which higher volume bone density was observed for the
thin-coated implants associated with rhBMP-7, significantly around the implants placed
in the over-instrumented implant sites. Similar results were documented by Nemcakova
et al. (2022) [28], who concluded that the BMP-7 promoted faster osseointegration and
better bone healing, suggesting a possibility of earlier loading. Furthermore, Schierano et al.
(2021) [32] concluded that rhBMP-7 stimulated the osteogenetic and anti-inflammatory
properties when surface coated implants were used.

This work used implants coated with a thin film of HA, coated through the RAMS
(Right Angle Magnetron Sputtering) system, which allowed to produce stoichiometric
HA at ambient temperature. Previous studies showed the highest proliferation of human
osteoblasts was achieved on HA RAMS-coated titanium substrates [19,20]. The use of
sputtering coatings has been shown to eliminate some of the problems associated with the
plasma-spray process, thereby increasing bone strength and the initial rate of osseointegra-
tion implants coated with HA and CaP [33]. The deposition of HA as a cover by plasma
spray technique or electrochemically increased mechanical fixation and bone growth but
showed no statistically significant difference between the individual applications of HA.
Moreover, the addition of collagen to the mineralized phase of the coating to produce a
more bone-natural surface did not increase the osteoconductive effect of HA [34].

The XRD of the Ti plates and FTIR of the dental implant analysis performed after the
coating showed a thin HA film on the implant surfaces. SEM images showed no change in
the implant surface morphology after the HA coating. These findings confirmed that the
implants used in this work were a thin film of HA-coated implants.

In recent years, studies in vitro and in vivo experiments have been conducted to
verify the effectiveness of surface treatments of implants, associating properties to improve
cellular activity [19], healing and apposition bone [35–37]. Bone cells are known to be
sensitive to the implant material’s morphology, resulting in cell bodies with distinct shapes,
orientations, and adhesion processes [38,39]. Osteoblasts did not spread completely in Ti
implants with rough surfaces and acquired a polygonal morphology. Moreover, the Ti
implants decreased the rate of cell proliferation in early incubation [40].

Among the surface modification for orthopedic and dental implants, the addition of
material based on calcium phosphate (CaP) for coating, a modification known as biomimet-
ics, has received significant attention [14,33,41,42] due to the similarity to the essential
components of natural bone. When integrated into the material’s structure, the molecules
undergo a gradual release in proportion to the degradation of the layers, thus increasing
the potential delivery system for osteogenic agents to the implant site [43].

Different surfaces were tested, including porous titanium oxide implants, and no
significant differences were seen in osseointegration [44,45]. Conversely, elegant studies
developed by Lee et al. (2010) [17] and Susin et al. (2010) [46] used rhBMP-2 and rhBMP-7,
respectively, coating porous titanium oxide implants, obtained satisfactory results in the
increased the alveolar ridge and also affecting resident bone remodeling. The rhBMP-2
also has great potential to increase alveolar bone, loading the implant osseointegration,
and long-term function. This type of BMP increases alveolar bone integration and the
predictability of clinical protocol used, changing the current treatment paradigms [47].

The combination of growth factors and titanium implants with HA-coatings shows
bone growth in all dimensions of the implant when associated with ng/rhBMP-2 (non-
glycosylated rhBMP-2), but without statistical differences between groups in terms of
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bone height and BIC, observing a higher bone density when there was no binding of HA,
indicating that HA coatings may not be necessary when using non-glycosylated BMP-2 [48].
In the present study, the rhBMP-7 mammalian heterologous expression system allows the
correct post-translational process, producing a glycosylated rhBMP-7 [29].

It is worth mentioning that the rhBMP-7 presented a very high osteoinduction capabil-
ity since only 15min of contact with coated implants were enough to significantly increase
the bone area. This handling time was significantly less than previously reported [16,46,49],
suggesting an adequate working time for the potential clinical uses. A previous study
testing different BMP concentrations showed that the formation of new trabecular bone
was found only with 380 µg of BMP-2 [50]. Studies using porous titanium oxide implants
soaked (soak-load) at high concentrations of rhBMP-2 (3.0 mg/mL) showed no increased
bone formation compared to groups receiving lower concentrations (0.75 and 1.5 mg/mL)
at 8 weeks [51]. Despite the present work, we could not quantify the adsorbed concentration
of rhBMP-7; the concentration was less than 2.0 mg/mL.

Stenport et al. (2003) [52] showed that 10 mg of BMP-7 associated with collagen as a
carrier did not contribute significantly to the increased in titanium implant anchorage in
bone. On the other hand, the association of rhBMP-7 (1.5 and 3.0 mg/mL) to the implants
improved bone formation, extending above the platform of the implant after 8 weeks.
The surface of the porous titanium oxide acted as an effective surface carrier for rhBMP-7,
indicating a potentially clinically important stimulatory effect of local bone formation,
resulting in a vertical gain of the alveolar ridge [46,49]. However, it was impossible to
compare the differences in such experimental models due to the lack of a proper control
group without rhBMP-7. The need for higher BMP concentrations may be due to the loss of
part of the protein by the action of proteases released during the early inflammatory phase
following the implant placement.

In the present work, we showed that coating HA implants with rhBMP-7 can signifi-
cantly enhance new bone formation. These results agree with previous studies that used the
same protein but with different implant surfaces and are not over-investigated [28,32,46].
Thus, it appears the newly formed bone observed was attributable to the protein osteoin-
ductive effects and not to the size of the implant site, which justifies the lack of statistical
significance between groups (for newly formed bone). In fact, the protein associated with
the over-instrumentation accelerated local bone formation. This practice could be suitable
for immediate loading protocols since we showed increased (3-fold) bone formation around
implants in over-instrumented sites when compared to the control group.

A limiting factor involved in this study is related to the control of the inflammatory
level since increased interleukins (pro-inflammatory cytokines) concentration also occur,
which might impair the action of BMPs. Moreover, even though a better result was obtained
with rhBMP-7, mainly in sites with over-instrumentation, this osteoinductive biomaterial is
very expensive and may not be used routinely. Consequently, this fact reduces interest in
applying it on a large scale. Therefore, we suggest that controlled clinical trials in patients
with atrophic bone volume or critical-size defects may be adopted to compare the results in
a clinical setting.

5. Conclusions

It was possible to conclude that the association of rhBMP-7 to thin HA-coated implants
promoted greater new bone area than the same implants without rhBMP-7, mainly in cases
of over-instrumented implant sites.
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