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Abstract: Heart transplantation (HTx) is the ultimate treatment for end-stage heart failure.
The number of patients on waiting lists for heart transplants, however, is much higher than the
number of available organs. The shortage of donor hearts is a serious concern since the population
affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses
some challenges despite the improvement in the management of the short-term complications and in
the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated
in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage,
and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune
system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity
is activated during myocardial injury and produces deleterious effects on the heart structure and
function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial
injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially
expand the donor population by targeting the innate immune response.

Keywords: heart transplantation; graft failure; rejection; donation after brain death (DBD);
donation after cardiac death (DCD); inflammasome; Toll-like receptors; innate immune response;
ischemia-reperfusion injury

1. Introduction

Heart failure (HF) affects more than 6 million people in the United States, and of those,
approximately 10% suffer from advanced HF, requiring evaluation for mechanical circulatory support
or heart transplantation (HTx) [1,2]. As of today, heart transplant is the only cure for end-stage
HF [1]. As we get closer to the fiftieth anniversary of the first successful cardiac transplantation in
1967, heart transplantation has become a standard of care for patients with advanced heart failure [3].
After a steady rise in the number of heart transplants per year in the US, the number has now
reached a plateau due to the limited number of available heart donors [3]. Meanwhile, the number of
patients with advanced HF continues to increase tremendously [4]. In fact, the improvement in the
treatment of patients with cardiovascular diseases and the progress in the management of ischemic
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and non-ischemic cardiomyopathies have reduced the overall mortality due to cardiovascular diseases
at the expense of increasing the incidence and prevalence of HF [5–7].

The availability of an acceptable donor heart became the limiting factor for heart transplantation
almost two decades ago [3,8]. This shortage of heart donors created a strong imbalance between the
number of available hearts and the needs of the recipients, thus increasing the number of patients on
the waiting list and prolonging the time to transplantation [3,8].

The International Society of Heart and Lung Transplantation (ISHLT) registry reported a total of
4196 adult and pediatric heart transplants performed in 2012 worldwide [3]. The majority of donor
hearts came from subjects suffering from brain death after traumatic brain injury [3]. The 1- and
5-year survival for heart transplant recipients was 81% and 69%, respectively, with a median survival
of 11 years [3]. The median survival was 14 years in recipients who were alive at 1 year after heart
transplantation [3].

While these numbers are encouraging, they prompt consideration regarding the approximate
1 in 5 subjects who die within 1 year of the transplant, and the 1 in 3 who die within 5 years [3].
Improving our understanding of the pathophysiological events occurring during donor heart
procurement, storage, and transportation, and the mechanisms of acute and chronic graft dysfunction
resulting from the initial injury and from immunologic rejection, may lead to further improvements
in short- and long-term survival. Moreover, while heart transplantation is now virtually limited to
brain-dead donors (beating heart), it is conceivable that with the appropriate supportive therapies,
heart transplantation from donation after cardiac death donors (fibrillated and arrested hearts)
may become a reality [9]. This review will explore the pathophysiologic mechanisms of graft
dysfunction after heart transplantation, as well as the opportunities and challenges of performing
heart transplantation from donation after cardiac death donors (DCD). To facilitate the identification
of the acronyms, in Table 1 we report the abbreviations used in this review in alphabetical order.
We will focus especially on the role of the innate immune mechanisms, which serve as the body’s
first-line response to not only pathogens but also to sterile insults like cellular stress or injury [10].
This response is stereotyped and is well conserved between different organs and organisms. For this
reason, we will describe and discuss the evidence collected in the in preclinical and clinical data
on the heart transplantation while also looking at other organs [10]. The optimization of heart
transplantation procedures that would also allow heart transplantation from DCD donors has the
potential to dramatically increase the number and the success rate of heart transplants [9]. With this
goal in mind, we will describe the potential contribution of the innate immune response during every
phase of the organ transplantation, from the identification of the donor to the post-transplantation
course in the recipient.

2. Types of Donors

The availability of donor organs is clearly the limiting factor in all solid organ transplantation,
and the heart is no exception. The donation after brain death (DBD) represents virtually the entire
cohort of heart donors (Figure 1) [3,8,9]. Patients with traumatic brain injury represent the larger
portion of donors and account for 45% of the total of DBD, followed by massive strokes and anoxic
brain damage [3,8].
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Table 1. Abbreviations.

Abbreviations Full Names

AAT Alpha-1Antitrypsin
ACR Acute cellular rejection

AdorA2B Adenosine Receptor A2B
AMI Acute Myocardial Infarction
AMR Antibody-mediated rejection
APC Antigen Presenting Cells
ASC Apoptosis Speck-Like Protein containing a Caspase recruiting domain (CARD)
ATP Adenosine Triphosphate
β-AR β-Adrenergic Receptor
CARD Caspase recruiting domain
CAV Coronary Artery Vasculopathy

DAMPS Damage Associated Molecular Patterns
DBD Donation after Brain Death
DCD Donation after Cardiac Death
HF Heart Failure

HMGB-1 High-mobility group protein B1
HMP Hypothermic Machine Perfusion
HTx Heart Transplantation
IL-1 Interleukin-1

IL-18BP Interleukin-18 Binding Protein
IL-1Ra IL-1 receptor antagonist

IL-1RAp IL-1R Accessory protein
IL-1RI Interleukin-1 receptor type 1
IRFs Interferon Regulated Transcription Factors

ISHLT International Society of Heart and Lung Transplantation
LRRs Leucine-rich repeats

LVADs Left Ventricular Assisting Devices
MAPK Mitogen Activated Protein Kinases
MHC Major Histocompatibility Complex

MyD88 Myeloid Differentiation Factor 88
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NF-kB Nuclear Factor-κB
NLRP3 NOD Like Receptors (NLR) containing a Pyrin Domain

PGD Primary Graft Dysfunction
PRRs Pattern Recognition Receptors

P2X7R Purinergic 2X Receptor 7
PYD PYRIN Domain
ROS Reactive Oxygen Species
SCS Static Cold Storage
TIR Toll/Interleukin-1 Receptor

TIRAP Toll/Interleukin-1 Receptor (TIR) domain containing an adaptor protein
TLR Toll-Like Receptor

TNF-α Tumor Necrosis Factor-alpha
TRAP Toll/Interleukin-1 Receptor (TIR) Adaptor Protein
TRIF TIR-domain-containing adapter-inducing interferon-β
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Figure 1. Contribution to solid organ transplantation divided per donor type. (A) The graph 
represents the relative percentage of organs derived from death donors in the years 2001 and 2008; 
(B) The source of hearts utilized in heart transplantation has not changed for the past two decades, 
deriving entirely from DBD. Abbreviations: DBD = donor after brain death; DCD = donor after cardiac 
death. Modified from [11]. 

Over the past years, with an attempt to increase the number of donors, “extended criteria” have 
been introduced in the HTx practice [12–14]. Typically, “extended criteria” refers to organ 
procurement from older donors, or from donors with clinical co-morbidities (i.e., hypertension and/or 
diabetes) [3,15–17].  

Another source of extended donor organs comes from patients who have been resuscitated after 
cardiopulmonary arrest [18]. The heart procurement from these donors, however, is suboptimal, and 
is hindered by the underlying cardiac dysfunction derived from the cardiac arrest [18]. From 2000 to 
2013, the percentage of heart donors after resuscitated cardiac arrest used in the totality of HTx has 
doubled, though it still represents a very small minority of advanced HF cases [19]. Careful selection 
of these donors has shown safety and outcomes similar to the standard DBD donors, at least in the 
first years [20].  

Heart Transplantation from Donors after Cardiac Death  

As stated above, the rate of HTx has reached a plateau while the number of other solid organ 
transplantations (i.e., kidney) has increased significantly over the years, primarily by utilizing organs 
from donors after cardiac death (DCD) [11,21].  

In a study from the New England Outpatient Procurement Organization, DBD donor 
contribution of solid organs for transplantation went from 87% to 53% between 2001 and 2008, while 
DCD donor contribution increased from 13% to 47% (Figure 1) [22]. The use of DCD donors not only 
increases the available organs for transplantation, but has also had a significant impact on the overall 
wait times for transplantation and on the mortality of patients awaiting transplantation [23]. 
However, this has led to no changes in HTx, which remained a DBD procedure (Figure 1).  

HTx from DCD is characterized by inherent challenges related to cardiac death and organ 
harvesting [24–27]. DCD entails several steps during which the myocardium is subjected to the 
deleterious effects of hypoxia and ischemia, which certainly injure the heart [9,25]. Generally, DCD 
is considered when the donor is found inevitably destined to die, but is not brain dead. The donor is 
therefore followed closely by the transplant team, and organ explant occurs only after cardiac arrest. 
In most instances, termination of the ventilator support, according to the wishes of the donor’s  
next-of-kin, is performed in the operating room area. After anoxia ensues, cardiac arrest is inevitable. 
Once pronounced dead, the organs are harvested. 

The main steps of the DCD process are described below and a graphic timeline with the average 
time intervals for each step is reported in Figure 2.  
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Figure 1. Contribution to solid organ transplantation divided per donor type. (A) The graph represents
the relative percentage of organs derived from death donors in the years 2001 and 2008; (B) The source
of hearts utilized in heart transplantation has not changed for the past two decades, deriving entirely
from DBD. Abbreviations: DBD = donor after brain death; DCD = donor after cardiac death. Modified
from [11].

Over the past years, with an attempt to increase the number of donors, “extended criteria”
have been introduced in the HTx practice [12–14]. Typically, “extended criteria” refers to organ
procurement from older donors, or from donors with clinical co-morbidities (i.e., hypertension and/or
diabetes) [3,15–17].

Another source of extended donor organs comes from patients who have been resuscitated after
cardiopulmonary arrest [18]. The heart procurement from these donors, however, is suboptimal, and
is hindered by the underlying cardiac dysfunction derived from the cardiac arrest [18]. From 2000 to
2013, the percentage of heart donors after resuscitated cardiac arrest used in the totality of HTx has
doubled, though it still represents a very small minority of advanced HF cases [19]. Careful selection
of these donors has shown safety and outcomes similar to the standard DBD donors, at least in the
first years [20].

Heart Transplantation from Donors after Cardiac Death

As stated above, the rate of HTx has reached a plateau while the number of other solid organ
transplantations (i.e., kidney) has increased significantly over the years, primarily by utilizing organs
from donors after cardiac death (DCD) [11,21].

In a study from the New England Outpatient Procurement Organization, DBD donor contribution
of solid organs for transplantation went from 87% to 53% between 2001 and 2008, while DCD donor
contribution increased from 13% to 47% (Figure 1) [22]. The use of DCD donors not only increases the
available organs for transplantation, but has also had a significant impact on the overall wait times for
transplantation and on the mortality of patients awaiting transplantation [23]. However, this has led to
no changes in HTx, which remained a DBD procedure (Figure 1).

HTx from DCD is characterized by inherent challenges related to cardiac death and organ
harvesting [24–27]. DCD entails several steps during which the myocardium is subjected to the
deleterious effects of hypoxia and ischemia, which certainly injure the heart [9,25]. Generally, DCD
is considered when the donor is found inevitably destined to die, but is not brain dead. The donor
is therefore followed closely by the transplant team, and organ explant occurs only after cardiac
arrest. In most instances, termination of the ventilator support, according to the wishes of the donor’s
next-of-kin, is performed in the operating room area. After anoxia ensues, cardiac arrest is inevitable.
Once pronounced dead, the organs are harvested.

The main steps of the DCD process are described below and a graphic timeline with the average
time intervals for each step is reported in Figure 2.
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Figure 2. Steps and timing of the donation after cardiac death protocol (DCD). This timeline is based 
on the standard DCD organ procurement protocol and incorporates the timing for storage, 
transportation and implantation that are applied to the Donation after Brain Death heart. The DCD 
heart becomes ischemic starting from the termination of ventilator support and ensuing anoxia. Initial 
ischemia occurs in the donor (warm ischemia) and lasts approximately between 25 and 35 min. The 
storage and transportation may increase the time of ischemia (cold ischemia during storage and 
preservation) for an additional 4 h. With the heart transplantation and the restoration of the 
circulation, the donor’s heart is reperfused within the recipient’s circulation. 

The increasing availability of DCD donors represents a unique opportunity to increase the 
number of hearts available for transplantation [23]. A recent study showed that when the DCD 
donors were matched for selection criteria with DBD heart donors, the authors noted a 15%  
match [28]. This would have resulted in a 17% increase in the heart donation in the authors’ Organ 
Procurement Organization in Wisconsin [28]. A similar study was done in Belgium where a 15% 
increase in overall HTx activity was noted if the DCD donor hearts could be utilized for 
transplantation [29]. In the same study, the impact of this potential 15% increase in available hearts 
for transplantation would have decreased the mortality on the transplantation waitlist by 40% [29].  

Mechanical circulatory support devices, such as left ventricular assisting devices (LVADs), are 
often used to temporarily assist patients waiting for heart transplantation [30]. LVADs have safely 
extended the wait times for patients, but the number of patients who ultimately receive a transplant 
still represents only a small fraction [31,32]. 

The economic impact of heart transplantation from DCD donors is also quite large [32]. Many 
patients on transplant waitlists are supported with intravenous inotrope treatments and/or 
ventricular assist devices, adding to the total cost of care [33].  

In order to consider heart transplantation after DCD, it is necessary to characterize the type and 
degree of cardiac injury occurring during the DCD process and to develop the strategies needed to 
protect, preserve, and prepare the hearts for re-implantation [24,25]. A recent report showed that 
perfused and rehabilitated human DCD hearts can be successfully transplanted in donors with 
promising results [34]. 

3. Myocardial Injury during Organ Procurement 

Donation from living donors is feasible in many forms of solid organ transplantation, but for 
obvious reasons, it is not an option for HTx [3].  

The success of organ transplantation from DBD is inferior compared to the transplantation of 
organs from living donors, as reported by some studies that suggest brain damage somehow impairs 
the function of the transplanted organ [35–38].  

Retrospective studies have showed that the time of ischemia inversely correlates with the 
success of organ transplantation [39]. In DBD, the time of warm ischemia is minimal, and cold 
ischemia is the major contributor to myocardial damage [40–42]. Warm ischemia is referred to as the 
lack of blood flow and tissue oxygenation that occurs at normal body temperature [39]. The cell 
metabolism stays high at normal body temperature. The occurrence of ischemia leads to  

Figure 2. Steps and timing of the donation after cardiac death protocol (DCD). This timeline is based on
the standard DCD organ procurement protocol and incorporates the timing for storage, transportation
and implantation that are applied to the Donation after Brain Death heart. The DCD heart becomes
ischemic starting from the termination of ventilator support and ensuing anoxia. Initial ischemia
occurs in the donor (warm ischemia) and lasts approximately between 25 and 35 min. The storage and
transportation may increase the time of ischemia (cold ischemia during storage and preservation) for
an additional 4 h. With the heart transplantation and the restoration of the circulation, the donor’s
heart is reperfused within the recipient’s circulation.

The increasing availability of DCD donors represents a unique opportunity to increase the number
of hearts available for transplantation [23]. A recent study showed that when the DCD donors were
matched for selection criteria with DBD heart donors, the authors noted a 15% match [28]. This would
have resulted in a 17% increase in the heart donation in the authors’ Organ Procurement Organization
in Wisconsin [28]. A similar study was done in Belgium where a 15% increase in overall HTx activity
was noted if the DCD donor hearts could be utilized for transplantation [29]. In the same study, the
impact of this potential 15% increase in available hearts for transplantation would have decreased the
mortality on the transplantation waitlist by 40% [29].

Mechanical circulatory support devices, such as left ventricular assisting devices (LVADs), are
often used to temporarily assist patients waiting for heart transplantation [30]. LVADs have safely
extended the wait times for patients, but the number of patients who ultimately receive a transplant
still represents only a small fraction [31,32].

The economic impact of heart transplantation from DCD donors is also quite large [32].
Many patients on transplant waitlists are supported with intravenous inotrope treatments and/or
ventricular assist devices, adding to the total cost of care [33].

In order to consider heart transplantation after DCD, it is necessary to characterize the type and
degree of cardiac injury occurring during the DCD process and to develop the strategies needed
to protect, preserve, and prepare the hearts for re-implantation [24,25]. A recent report showed
that perfused and rehabilitated human DCD hearts can be successfully transplanted in donors with
promising results [34].

3. Myocardial Injury during Organ Procurement

Donation from living donors is feasible in many forms of solid organ transplantation, but for
obvious reasons, it is not an option for HTx [3].

The success of organ transplantation from DBD is inferior compared to the transplantation of
organs from living donors, as reported by some studies that suggest brain damage somehow impairs
the function of the transplanted organ [35–38].

Retrospective studies have showed that the time of ischemia inversely correlates with the success
of organ transplantation [39]. In DBD, the time of warm ischemia is minimal, and cold ischemia is the
major contributor to myocardial damage [40–42]. Warm ischemia is referred to as the lack of blood
flow and tissue oxygenation that occurs at normal body temperature [39]. The cell metabolism stays
high at normal body temperature. The occurrence of ischemia leads to faster consumption of energy
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and intracellular substrates, and the accumulation of metabolic byproducts [39]. The most common
form of warm ischemia that occurs in the heart is due to coronary artery disease [43]. The reduction
of the lumen of the coronary artery (due to growth of an atherosclerotic plaque or to plaque rupture)
causes a regional poor tissue perfusion [43,44]. In contrast to warm ischemia, cold ischemia happens at
a very low cellular metabolic rate. Due to the low temperature reached during organ storage, cellular
damage is reduced [42,45–48]. In heart transplantation, the maximum tolerated time of cold ischemia
is estimated at 4 h, which is considerably shorter than other organs with a lower metabolic rate (e.g.,
liver and kidney) [49]. Cold ischemia is practically inevitable due to the need of transporting the donor
organ [41,42]. Storage solutions have been optimized to preserve organs during transportation [50].
Heart preservation goes through two processes: the cessation of heartbeat, using a cold cardioplegic
solution, and the cold storage [41]. Cessation of heartbeat reduces energy expenditure by >90%. For the
flushing and storage of an organ to be transplanted, there are several solutions, developed to preserve
or protect the ischemic organ, and often optimized for each organ [41]. In heart transplantation,
hyperkalemia is one of the requirements for the cardioplegic solution, and the St. Thomas™ solution is
the most commonly used solution [41]. Blood-based solutions are also used for this type of intervention,
by mixing the donor’s blood with a cardioplegic solution [41]. The storage can then be carried out in
two different ways, either by using static cold storage (SCS) or by hypothermic machine perfusion
(HMP), which is capable of giving metabolic support [41]. In preclinical studies, the HMP is found
superior to the SCS in preserving the DCD hearts because of the increased metabolic support [50,51].

A recent randomized study conducted in DBD kidney donors shows that kidneys from donors
kept in mild hypothermia (34.0–35.0 ˝C) vs. normothermia (36.5–37.5 ˝C) after brain death had
significantly decreased rates of delayed graft dysfunction [52].

Ischemia represents one of the challenges of the organ procurement and storage
protocols [41,44,46,47]. Ischemia hinders ATP production and the cellular homeostasis, leading
to uncontrolled fluid re-distribution and cellular edema [44,53,54]. Simultaneously, there is an increase
in the extracellular pH and fluid stasis in the capillaries. This produces capillary damage and decreases
the perfusion capacity of the capillaries [55,56]. In addition, reperfusion injury occurs at time of the
actual transplantation [54–56]. Reperfusion injury is intrinsic to the reperfusion and reoxygenation
process [57]. The reestablishment of the physiological amount of oxygen following a sustained period
of ischemia can be a source of reactive oxygen species (ROS) [58]. ROS are important mediators
of cellular signaling but also of injury [59]. A surge in ROS occurs when mitochondria rendered
dysfunctional during ischemia are re-exposed to oxygen, and result in a production of ROS through
NADPH oxidases and xanthine oxidase. An excessive production of ROS damages DNA, intracellular
proteins, and enzymes, potentially leading to cell death [58,59].

Unlike other solid organs, however, the heart has a high metabolic need that makes the heart
particularly sensitive to ischemia and to reperfusion injury. The use of DBD characterized a giant
leap forward in the heart transplant field, leading to surgical success and to a functional transplanted
heart. These considerations have historically prevented the use of DCD hearts for transplantation
due to the fear of early graft failure [9]. Warm ischemia during the DCD protocol (anoxia-induced
cardio-respiratory death) results in significant myocardial damage that is proportional to the duration
of time between the withdrawal of support and cardiac death [9]. Moreover, the heart undergoes
a second wave of injury upon implantation and restoration of blood flow (reperfusion injury), primarily
due to oxidative stress and inflammation [55–60]. The lack of oxygen during anoxia in the DCD protocol
induces a large increase (50-fold) in plasma catecholamine levels, further inducing cardiomyocyte
injury [61]. The warm fibrillating heart continues to expend increasing amounts of energy and thus
decreases ATP and increases low-energy phosphates [62]. In this phase, the stasis of blood induces
endothelial damage. This phase is referred to as ‘warm ischemia’, leading to the moment of heart
procurement [62]. During organ explant (procurement), the DCD heart is then exposed to ‘cold
ischemia’ as it occurs during DBD heart transplantation. The ‘warm ischemia’ prior to organ explant,
however, likely serves as a primer for further injury during ‘cold ischemia’, exacerbating the effects of
ischemia and reperfusion injury, and making the injury more severe.
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Neurohormonal activation during DCD heart transplantation contributes to further damage
before the cardiocirculatory arrest [63,64]. Reperfusion following transplantation floods the donor
heart with ROS and inflammatory mediators that have accumulated (in both donor and recipient
tissue) during the ischemic periods [55–59]. The introduction of ROS creates a surge of tissue injury,
leading to cell damage, cell death, and a second wave of inflammation [57].

From the identification of the donor to the transplantation, the donor heart is exposed to several
types of injury (Figure 3). Each of these steps is a trigger for the inflammatory response (see next
section) affecting cardiac function.

Cytokines

Brain 
Death

Heart 
Procurement

Heart 
Preservation

Heart 
Transplantation

Irreversible Brain 
Damage

Release of 
Catecholamines

Warm Ischemia
Cold Ischemia

Reperfusion Injury

Systemic Injury
(secondary to brain damage) 

Direct Cardiac Injury

Cytokines

Termination 
Ventilatory

Support

Heart 
Procurement

Heart 
Preservation

Heart 
Transplantation

Irreversible Brain 
Damage

Release of 
Catecholamines

Warm Ischemia

Cold Ischemia
or machine reperfusion

Reperfusion Injury

Systemic Injury
(secondary to brain damage) 

Direct Cardiac Injury

Cardiac
Death

Anoxia

A

B

Figure 3. Different mechanisms of injury to the donor heart before and after procurement, storage, and
transplantation, in the DBD and the DCD hearts. The DBD heart (A) is exposed to a systemic injury,
driven by the damaged brain that increases catecholamines and circulating cytokines (point further
discussed in the next section). Heart procurement initiates a local and direct injury to the myocardium
due to warm and cold ischemia. Impact of warm ischemia is considered minimal in the DBD heart.
Reperfusion due to transplantation and resuscitation further increases the damage. In the DCD heart
(B), anoxia and the long period of warm ischemia increase the heart injury. Based on the literature,
machine perfusion is an alternative to cold ischemia for organ preservation and transportation of DCD
hearts [34].
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4. Innate Immune Response during Organ Procurement

The explanted heart from DCD is therefore injured before procurement by severe hypoxia and
the surge of plasma catecholamines. Once transplanted in the recipient, the explanted DCD heart is
exposed to the ischemia-reperfusion injury, leading to cardiac dysfunction. Once the heart is grafted
and beating, the transplant faces the additional hurdles of immune-mediated rejection [3,8].

With the progress of donor-recipients matching programs and immune-suppressive therapies,
acute antigen-mediated rejection has become less prominent compared to the past [65]. However, despite
this achievement, the inflammatory response still plays a central role in determining the success of
organ transplantation [3,8].

Pre-clinical and clinical studies have highlighted that the innate immune response, which is
an antigen-independent inflammatory mechanism, contributes to organ dysfunction and enhances
acute allograft rejection [66,67]. The molecular pathways activated by the cellular response to tissue
damage initiate a cascade defined as sterile inflammatory response. The debris and byproducts of
a damaged cell (i.e., ATP, adenosine, hydrogen and potassium ions, and the release of intracellular
alarmins) are referred to as Damage Associated Molecular Patterns (DAMPs) and serve as the initial
triggers for the sterile inflammatory response [68,69]. DAMPs represent a heterogeneous group of
often structurally unrelated molecules, and as such they bind to a wide series of Pattern Recognition
Receptors (PRRs). With DAMPs, PPRs are part of the innate immune system. Together they lead to the
coordinated activation of inflammatory pathways in the resident cells, as well as to the recruitment of
leukocytes to the site of injury [66,68,69]. PPRs like the Toll-like receptors (TLRs) and the NOD-like
receptors (NLRs) are among the best characterized, due to their central and conserved role in response
to tissue and cellular injury [68,69]. The response to ischemic injury to the heart is a classic example
of sterile inflammation [68]. Identifying the DAMPs and the PRRs associated with the activation of
sterile inflammation during heart transplant may help to define better strategies to blunt the negative
effects of this pathway on organ recovery, function and longevity following transplantation.

4.1. The Inflammasome

The inflammasomes are the first-line element of sterile inflammation [69]. They act as guardians,
bridging the sensing of cell damage to the activation of the inflammatory response [70,71]. There are
several inflammasomes, classified based on the sensory component. The sensory part of the
inflammasome in the heart is a cytosolic PRR named NLRP3 (NOD-like receptors [NLR] containing
a Pyrin Domain 3) [70,71]. This is a tripartite large protein with a central NOD domain, a receptor
domain at the C-terminal (series of leucine-rich repeats –LRRs–) and an N-terminal PYRIN domain
(PYD) and is activated in response to the activity of several DAMPs. The active NLRP3 binds the
adaptor protein ASC (apoptosis speck-like protein containing a caspase recruiting domain-CARD-),
which in turn interacts with the CARD of caspase-1 [7].

Recruitment of caspase-1 into the inflammasome favors its autocatalytic activation, a step
necessary for the processing of the pro-inflammatory cytokines of the IL-1 family, IL-1β and
IL-18 [70,71]. The NLRP3 inflammasome activation leads to the amplification and progression of
the inflammatory response through the release of inflammatory cytokines. In the heart, this can be
particularly detrimental for the cardiomyocyte function, impairing contraction and in severe cases
inducing pyroptosis, a caspase-1-dependent cell death (Figure 4) [70–73]. In the heart, the NLRP3
inflammasome formation activity correlates with the intensity of myocardial damage in animal models
of ischemic and non-ischemic cardiomyopathy [69,74–79].



Int. J. Mol. Sci. 2016, 17, 958 9 of 24

Int. J. Mol. Sci. 2016, 17, 958 9 of 23 

 

 
Figure 4. Schematic representation of the signaling pathway of the NOD-like receptors (NLR) 
containing a Pyrin Domain 3 (NLRP3) inflammasome following myocardial ischemic injury. 
Extracellular debris and intracellular stress signals activate the “danger sensor” NLRP3. NLRP3 
recruits the adaptor protein ASC and the effector enzyme caspase-1. Caspase-1 converts the pro-forms 
of IL-1β and IL-18 into the biologically active forms, which are released into the interstitial space. In 
severe cases, the persistent inflammasome activity induces cell death. The release of active IL-1β and 
IL-18 induces further myocardial damage and ventricular dysfunction.  

4.2. Inflammatory Injury in the DBD Heart 

The deleterious effects of the procurement process of the donor heart are not well-defined. In 
DBD, the cardiovascular system has impaired sympathetic and parasympathetic autonomic control, 
causing changes in the myocardial perfusion and cardiac output, and increasing myocardial levels  
of adenosine, lactate and catecholamine [80,81]. These signals can act as triggers of innate  
immunity [69]. The rise in catecholamine leads to calcium overload and compromises cardiomyocyte 
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Figure 4. Schematic representation of the signaling pathway of the NOD-like receptors (NLR)
containing a Pyrin Domain 3 (NLRP3) inflammasome following myocardial ischemic injury.
Extracellular debris and intracellular stress signals activate the “danger sensor” NLRP3. NLRP3 recruits
the adaptor protein ASC and the effector enzyme caspase-1. Caspase-1 converts the pro-forms of IL-1β
and IL-18 into the biologically active forms, which are released into the interstitial space. In severe
cases, the persistent inflammasome activity induces cell death. The release of active IL-1β and IL-18
induces further myocardial damage and ventricular dysfunction.

4.2. Inflammatory Injury in the DBD Heart

The deleterious effects of the procurement process of the donor heart are not well-defined. In DBD,
the cardiovascular system has impaired sympathetic and parasympathetic autonomic control, causing
changes in the myocardial perfusion and cardiac output, and increasing myocardial levels of adenosine,
lactate and catecholamine [80,81]. These signals can act as triggers of innate immunity [69]. The rise in
catecholamine leads to calcium overload and compromises cardiomyocyte contraction/relaxation [63].
A preclinical study has also demonstrated myocardial neutrophil infiltration in a DBD model 48 h
following transplantation [82]. The same study showed that the neutrophils were of donor’s origin.
Other animal studies have shown that brain death induces myocardial deposition of the complement
C3a, and that inhibiting the complement cascade reduces the inflammatory response developed in the
heart graft and increases graft survival [83,84]. The same response was observed in a model of kidney
transplantation in the mouse [85,86]. Similarly, the DBD kidney increased the expression of several
cytokines in mice. Therefore, brain death itself induces myocardial damage and an inflammatory
response [87]. However, ex vivo experiments using human blood have shown contrasting effects of
catecholamines on the release of IL-1β. A physiological rise of catecholamines induces IL-1β [88].
However, catecholamines have an inhibitory effect when LPS is used as a stimulus for IL-1β [89].
This discrepancy may be explained by increased utilization of ATP induced by catecholamines.
This would reduce the monocytes’ LPS-mediated IL-1β release triggered by the release of ATP in the
extracellular space [72].

Recent preclinical studies have shown that in DBD donors the levels of IL-1β are increased in the
heart tissue and in the plasma [90–92]. Additionally, in non-human primates, treatment of the brain
death donors with the IL-1 blocker, recombinant IL-1Ra, increases the post-transplantation survival of
the pancreatic beta islets to levels comparable with the islets collected from living donors [93]. IL-1 is
one of the key regulators of the innate immune response, which is up-regulated by ischemia and
reperfusion injury. Data on the production of IL-1β or of the protective effects of IL-1Ra in the DCD
heart are currently lacking.
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4.3. Inflammation during Cold Ischemia

The cold storage phase, characterized by cold ischemia, can also itself have pro-inflammatory
effects [90]. In animal models of heterotopic heart transplantation, the cold storage phase leads to the
release of alarmins (i.e., HMGB1 and IL-17A), engaging more neutrophils in the transplanted heart [91].
Alarmins such as HMGB1 act as DAMP binding to the respective PRRs, i.e., Toll-like receptor-4 (TLR-4)
for HMGB1 (Figure 5) [91]. Myocardial damage increases with time of cold ischemia and the use of
a mitochondria-targeted anti-oxidant appears to reduce the injury and production of pro-inflammatory
cytokines [92]. Oxidative damage generated by dysfunctional mitochondria is a source of various
DAMPs [93,94]. During ischemia, damaged mitochondria generate ROS, oxidized mitochondrial DNA
and induce lysosomal dysfunction, activating PRRs such as the NOD-like receptor protein-3 (NLRP3)
and TLR-9 [71,95]. Although these studies show that ischemia represents a trigger for inflammation,
human studies are currently lacking. The analysis of kidneys from human patients exposed to SCS or
HMP, however, revealed that cold ischemia has a pro-inflammatory activity that is reduced with the
use of HMP [96]. Whether this could be reproducible in human hearts is yet to be determined.

The exposure of DCD hearts to a relevant time of warm ischemia, and to the catecholamine storm
that precedes cardiac arrest, functions as a primer for inflammation [61]. Animal models of acute
myocardial infarction have indeed shown that ischemia is a potent trigger of inflammation [69,97,98].
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Figure 5. Myocardial injury activates the innate immune response. Alarmins and purines released
by injured cells activate the Toll-like receptors (TLRs) and the P1 and P2 purinergic receptors.
Damaged mitochondria produce reactive oxygen species (ROS), activating the NLRP3 receptor, and
expose mitochondrial DNA to TLR9 in intracellular vesicles. TLR signaling converges also on the
NLRP3 inflammasome signaling. All together, these pathways contribute to the activation of the sterile
inflammatory response.

5. Primary Graft Dysfunction after Transplantation

Primary graft dysfunction (PGD) refers to reduced heart function in the early post-operative
period, due to left and/or right ventricular impairment requiring inotropes treatment and/or
mechanical circulatory assist devices [63,99,100]. PDG occurs in the first 24 h following the transplant
and its occurrence is associated with poor outcomes [63,100]. PDG requires inotropes administration
and, in the most severe cases, mechanical and ventilatory support [100]. The causes are not clear, but
likely include the increase in catecholamines plasma levels due to brain death, the ischemia during
procurement and storage (then followed by reperfusion injury), and the need for high-dose inotropes
or vasopressors to resuscitate the heart leading to β-Adrenergic Receptor (β-AR) desensitization and
stunning [63,99,100]. Several risk factors have been identified and are listed in Figure 6.
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transplantation procedure, the characteristics and the post-transplant care of the recipient are among
the risk factors associated with primary graft dysfunction (PGD).

Pro-inflammatory cytokines (e.g., IL-1, IL-18 and TNF-α) have cardiodepressant activity and
thus may contribute to PGD [73,101]. High inflammatory activity is seen in several of the conditions
identified as risk factors for PDG. Brain death, catecholamines, and older age of the donor, along
with the ischemic damage during the procurement and storage, expose the heart to pro-inflammatory
signaling before transplant. Furthermore, the preexisting heart failure condition of the recipient is
associated with high levels of systemic pro-inflammatory cytokines. The use of inotropes in the
recipient may further contribute to heighten the cytokine levels and promote adverse cardiodepressant
pathways [55–59,82–87,100,101].

6. Immune Response Leading to Acute or Late Rejection

Graft failure is the leading cause of death for all heart transplant recipients, followed by infection
and multiple organ failure [3].

6.1. Hyperacute and Acute Rejection

Hyperacute rejection is an antibody-mediated rejection due to the presence of pre-formed
antibodies in the recipient [102]. Antibody detection assays are performed before HTx to prevent
hyperacute rejection [103,104]. Acute rejections account for approximately 10% of deaths in the first
3 years, but acute and chronic immune injuries are likely important contributors to graft failure [3].
This occurs despite progress made to match donors and recipients, improved organ preservation
and storage, as well as progress toward increased knowledge on the use of immunosuppressive
therapies in the recipient. Immunosuppression is commonly achieved with a triple drug regimen, with
corticosteroid, calcineurin inhibitors, plus an anti-proliferative agent [3].

Two different types of acute graft rejection can occur: acute cellular rejection (ACR) and
acute antibody-mediated rejection (AMR) [105]. Rejection has no definite symptoms and the
sampling of endomyocardial biopsies is the gold-standard method for early diagnosis of allograft
rejection [105]. ACR is initiated by T-lymphocytes and is characterized by the migration of
lymphocytes and macrophages into the myocardium, with devastating effects on cardiomyocyte
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survival [105]. ACR is graded with a score from 0 to 3, using standard histopathology of the myocardial
biopsies [105]. A grade 0 represents no signs of ACR, while grade 3 is severe cellular rejection.
ACR develops more frequently than AMR [3,106]. The latter, is characterized by complement and
B-lymphocyte activation, which produces antibodies against leukocytes and endothelial antigens
of the donor organ [106]. Sometimes the donor organ already presents these antibodies before
transplantation [107]. For this reason, diagnosis of AMR is done with immuno-staining against
immunoglobulins, complement deposits or macrophages within capillaries, using peroxidase-based or
fluorescence-based staining [107]. Although less frequent, AMR portends increased mortality, more
pronounced myocardial damage, and more cardiovascular complications than ACR [106,107].

6.2. Late Rejection

AMR and ACR also increase the incidence of cardiac allograft vasculopathy (CAV), a type of
coronary artery disease associated with late rejection, which increases the risk of graft failure and
death [105,106]. CAV is associated with endothelial dysfunction, increased cytokine production, and
the presence of lymphocytes and macrophages in the intima of the coronaries [106]. Although the
pathogenesis of CAV is unknown, pre-existing conditions in the donor, like coronary artery disease,
have shown a strong association with its development [106].

The improvement in our knowledge on the pathophysiological mechanisms of acute and
chronic rejection, CAV, coupled with an increase in the number of heart donors and improved organ
preservation during procurement, storage and transplantation may be the key to augmenting the
numbers and success of future HTx.

7. Immune Response following Transplantation

7.1. Lymphocytic Response

T- and B-lymphocytes mediate the rejection mechanisms of ACR and AMR [105,106].
T-lymphocytes have the ability to recognize non-self major histocompatibility complex (MHC)
molecules, through the activity of antigen presenting cells (APC) transiting in the graft [108].
This induces the T-cell transition into effectors, which makes them reactive against the graft [108].
In addition, the expression of the adhesion molecule selectins and the MHC are increased in DBD
organs, which may increase T-lymphocyte reactivity against the graft [87].

7.2. Innate Immunity and Myocardial Injury following Transplantation

Innate immunity is a mechanism activated by ischemia and reperfusion injury and considered
an alternative to the adaptive, lymphocyte- and antigen-mediated immunity. This innate immune
response, together with the systemic inflammation that follows brain injury or death and the adaptive
immunity post-transplantation, induces myocardial injury and dysfunction (Figure 7).

Innate immunity represents a stereotyped mechanism that has evolved to promptly respond to
injury occurring as a consequence of invading microbiologic pathogens (infectious inflammation) or
in response to non-infectious tissue injury (sterile inflammation) [68,69]. As such, innate immunity
is activated following several types of injury or stress signaling and occurs at an organ or cellular
level by the presence of DAMPs and through the activation of PRRs [66]. This signaling pathway
is more complex, and involves several molecules and regulatory proteins [66]. The complexity is
further increased since different players are activated at different stages of organ procurement and
transplantation or in different ways according to the type of donor death (DBD vs. DCD). Identifying
the central nodes in the sterile inflammatory response common to the ischemic injury, to DBD- and to
the DCD-associated myocardial damage will help to develop ad-hoc strategies to reduce graft failure.
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the host immune system induce injury to the heart, amplification of the inflammatory response, and
production of pro-inflammatory cytokines. This phenomenon leads to further injury and contractile
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8. The Innate Immune Response as a Potential Pharmacological Target

Several types of PRRs have been identified; some are involved exclusively in the pathogens
associated molecular patterns (PAMPs), and others with dual function of recognizing PAMPs and
DAMPs [66].

8.1. Interleukin-1α and Its Role as Alarmin

Interleukin-1α (IL-1α) is expressed on the endothelium of coronary arteries and increases T-cell
adhesion to the endothelium [109]. IL-1α belongs to the IL-1 family of cytokines and is particularly
relevant in the signal transduction of the innate immunity [73]. IL-1α is present as an active form
in intact cells, and is either expressed on the membrane or released by damaged or dying (necrotic)
cells, acting as an alarmin [73]. IL-1α shares similarities with IL-1β, which, unlike IL-1α, requires
processing from pro-IL-1β to its mature form and is actively produced only during inflammation [73].
Therefore, IL-1α acts as a DAMP, while IL-1β represents a mediator and amplifier of the inflammatory
response. The two forms of IL-1 bind to the same IL-1 receptor type I (IL-1RI), which induces the
transduction of the intracellular signal with relevant consequences for the inflammatory response [73].
IL-1 signaling induces activation of nuclear factor-κB (NF-κB) and induces the expression and release
of several “secondary” cytokines, with relevant consequences for the initiation, amplification and
sustainment of the inflammatory response [73]. This pathway is reviewed in detail below.

8.2. Targeting the Toll-Like Receptors (TLRs) Pathway

The TLR family of receptors is commonly involved in this type of dual recognition of PAMPs
and DAMPs, and among other PRRs, TLRs are better characterized [110,111]. In mammals, there
are 12 identified TLRs involved in the recognition of bacteria, fungal or viral products [108].
These are type-I integral membrane receptors, with leucine-reach repeats (LRRs) in the extracellular
domain [110]. The TLRs share a similar structure and mechanism of activation, working as homo- or
hetero-dimers [110]. Upon binding to their ligands, the extracellular domains of two TLRs get closer,
leading to interaction of the C-terminal Toll/Interleukin-1 receptor (TIR) domain of the two TLRs [108].
The TIR domain is present also in the intracellular C-terminal of the IL-1RI receptor and other receptors
of the IL-1 family [73,110]. The TIR domain transduces the signal by interacting with different
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intracellular protein adaptors (i.e., MyD88, TIRAP, TRAP and TRIF) [69,110,111]. MyD88 (Myeloid
Differentiation Factor 88) interacts with the TIR of almost all the TLRs, with the exception of
TLR-3 [110]. Like IL-1RI signaling, the TLR signaling activates NF-κB, as well as the Mitogen Activated
Protein Kinases (MAPK) signaling and members of the Interferon Regulated Transcription Factors
(IRFs) [110]. All together, the TLRs recognize a wide spectrum of PAMPs and DAMPs [110]. A few
examples of TLR agonists active in ischemia-reperfusion injury are alarmins (e.g., heart shock proteins,
HMGB1), fragments derived from degradation of proteins of the extracellular matrix degradation
(e.g., fibronectin, fibrinogen, hyaluronan, S100), and mitochondrial DNA [112]. HMGB1 is increased
following traumatic brain injury, and thus may sensitize the organs to tissue injury or contribute to
altered organ function [113].

Expression of TLR-2 and TLR-4 increases due to ischemia-reperfusion injury in kidney transplants
and the donor TLR-4 mediates ischemia-reperfusion injury [114,115]. TLR-2 and TLR-4 are
constitutively expressed in the heart and drive ischemic injury to the heart in animal models of
myocardial ischemia-reperfusion injury [69,113]. HMGB1 is increased in mouse cardiac isograft due to
ischemia-reperfusion [91]. In this model, TLR-4 deletion reduced acute cardiac injury [91].

TLR-2 is increased in human transplanted kidneys during acute rejection. Several experimental
studies in the mouse support the role of TLRs in acute rejection [116]. Gene silencing of the TLRs
intracellular adapters MyD88 and TRIF delays graft rejection in a mouse model of heterotopic heart
transplant [117]. Experimental kidney transplant has also showed that TLR-2 and TLR-4, and the
MyD88 and TRIF signaling, contribute to chronic graft dysfunction [118]. These data support the
hypothesis that pharmacological blockade of TLR signaling has protective effects during all phases of
heart transplant.

8.3. Targeting the NLRP3 Inflammasome Pathway

The inflammasome has a key role in the early sensing, activation and amplification of
inflammation in response to tissue injury. The activation of the inflammasome in the heart requires
two independent processes, the priming and the triggering; one without the other is insufficient to
induce cardiac dysfunction [119].

Ischemia triggers the activation of the NLRP3 inflammasome both in vivo and in vitro [75,120].
In vivo, purines seem to be important triggers of NLRP3 activation. Inhibition of the ATP-activated
purinergic receptor P2X7R, the adenosine receptor AdoR2B, or their individual gene silencing
are mechanisms sufficient to blunt caspase-1 activation and to induce cardioprotection [69,75,121].
Data obtained with cultured cardiomyocyte exposed to ischemia, on the other hand, suggested that
the inflammasome activation is, at least in part, independent from extracellular ATP release, thus
suggesting mitochondrial dysfunction as an independent trigger [69].

Data on the role of the inflammasome during organ procurement, storage, or reperfusion due
to transplantation are currently lacking. A recent report showed that IL-18 blockade using IL-18
binding protein (IL-18BP) improved graft survival in a mouse model of syngeneic heterotopic
heart transplantation [122]. IL-18BP expression of pro-inflammatory cytokines (including IL-1β),
reduced cardiomyocyte necrosis and infiltration of CD4+ T-lymphocytes, macrophages and neutrophils.
The inflammasome regulates acute graft versus host disease in an experimental model of hematopoietic
cell transplantation [123]. In the same study, increased expression of caspase-1 and IL-1β was
observed in tissue samples of patients presenting with graft versus host disease [123]. In the mouse,
cardiac allografts present diffuse protein expression of the inflammasome component ASC and IL1β,
suggesting activation of the inflammasome pathway [124]. A recent study also showed that cardiac
biopsies collected to monitor tissue rejection were positive for ASC specks, indicating the presence of
the inflammasome [125]. ASC positivity directly correlated with the severity of cellular rejection and
early death caused by heart failure [125]. Interestingly, myocardial samples collected during organ
procurement, in human DBD and DCD donors, showed that DCD hearts express more caspase-1 and
NF-κB mRNA [126].
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Inflammasome inhibitors to be used in clinical practice today are lacking [127]. A small molecule
inhibitor derived from glyburide developed at the Virginia Commonwealth University (Richmond,
VA, USA) has shown to reduce myocardial injury in animal models of ischemic and non-ischemic
heart disease [128–130]. A novel inhibitor, also derived from glyburide, MCC950, developed in Ireland
has been shown to inhibit NLRP3 in vitro and in vivo, but it has not been tested in animal models of
cardiac diseases [131]. Targeted inhibition of the NLRP3 inflammasome prior to harvesting, during
harvesting and transport, or after transplantation may prove useful in reducing myocardial injury, thus
potentially preventing primary graft dysfunction and the secondary stimuli for the immune rejection.

Reduced NLRP3 activation can be reached by inhibiting the P2X7 receptor [75]. In fact,
following experimental acute myocardial infarction, P2X7 inhibition blunts caspase-1 activity and
reduces myocardial damage [75]. Similar results were observed with inhibition of the adenosine
receptor AdorA2B [121]. P2X7- and AdoRA2B-targeted drugs are currently undergoing clinical
development [132,133].

Additional strategies that reduced myocardial ischemia-reperfusion injury by inhibiting caspase-1
in the mouse were alpha-1 antitrypsin (AAT) or derived small peptides. Plasma-derived or
human recombinant AAT, or genetically engineered small peptides designed to recapitulate the
anti-inflammatory effects of the C-terminal peptide of AAT and other serine protease inhibitors (SP16,
Serpin Pharma, Manassas, VA, USA), have shown to significantly reduce infarct size in myocardial
ischemia-reperfusion injury in the mouse [134,135]. Na2S, a hydrogen sulfide donor, has also shown
promising effects on ischemia-reperfusion injury and inflammasome inhibition [136].

NF-κB signaling, mediated by the TLR or other PRRs and/or cytokine/chemokine receptors, is
also an important determinant of inflammasome activation [69]. NF-κB drives the transcription
of the inflammasome components and cytokines [69]. Inhibition of NF-κB reduces myocardial
ischemia-reperfusion injury and caspase-1 in mice, likely by inhibiting inflammasome priming [137].

Studies to characterize the functional role in injury, organ dysfunction and tissue rejection of the
inflammasome in the heart, however, are lacking.

8.4. Interleukin-1 Blockade

IL-1β blockers are considered the standard of care for the clinical treatment of inflammasome-
mediated diseases [138–140]. Anakinra is a recombinant form of IL-1Ra and blocks IL-1α and IL-1β
signaling [73]. Rilanocept is a chimeric protein developed by conjugating the ectodomains of the IL-1RI
and the IL-1R Accessory protein (IL-1RAp), which also neutralize both the forms of IL-1 [73]. A third
blocker, canakinumab, is a blocking antibody that selectively blocks IL-1β [73]. Anakinra was shown
to reduce graft versus host disease in mice [123]. The 3 blockers, as well as genetic manipulation of the
IL-1RI pathway, exert cardioprotection in animal models of ischemic heart disease [141–147].

Anakinra is currently tested in clinical trials to evaluate its anti-inflammatory and cardioprotective
effects in patients with acute myocardial infarction (AMI) and/or heart failure [148–151]. In a pilot
clinical trial of patients with large AMI, anakinra blunted the acute inflammatory responses and
appeared to reduce the incidence of heart failure [148,149]. In patients with heart failure with reduced
or preserved ejection fraction, anakinra given for 14 days significantly improved exercise capacity,
measured as peak oxygen consumption [150,151]. IL-1β blockade with canakinumab is also under
investigation in a large clinical trial of 10,000 patients with prior AMI [152]. The effects of these
pharmacologic agents on ischemia-reperfusion injury following heart transplant or in heart transplant
rejection are however unknown.

9. Conclusions

Heart transplantation success is influenced by the intrinsic damage linked to the ischemic
and inflammatory injuries during all phases of organ procurement and transplantation.
Unfortunately, myocardial injury starts in the donor and continues in the recipient. Understanding the
mechanisms of the innate immune responses is vital to reduce graft injury and corroborate the



Int. J. Mol. Sci. 2016, 17, 958 16 of 24

strategies to reduce activation of the adaptive immunity. Progress toward this knowledge will
support the development of targeted therapies to be used to preserve or minimize the myocardial
injury during heart transplantation, and also to potentially increase the pool of transplantable donor
hearts by considering DCD hearts. A better understanding of the innate immune response of the
transplanted heart may lead to novel therapeutic strategies to protect the graft from ischemic and
inflammatory injury.
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