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Abstract. In Bayesian phylogenetic and phylodynamic studies it is common to summarise the pos-
terior distribution of trees with a time-calibrated consensus phylogeny. While the maximum clade
credibility (MCC) tree is often used for this purpose, we here show that a novel consensus tree method
– the highest independent posterior subtree reconstruction, or HIPSTR – contains consistently higher
supported clades over MCC. We also provide faster computational routines for estimating both consen-
sus trees in an updated version of TreeAnnotator X, an open-source software program that summarizes
the information from a sample of trees and returns many helpful statistics such as individual clade
credibilities contained in the consensus tree. HIPSTR and MCC reconstructions on two Ebola virus
and two SARS-CoV-2 data sets show that HIPSTR yields consensus trees that consistently contain
clades with higher support compared to MCC trees. The MCC trees regularly fail to include several
clades with very high posterior probability (≥ 0.95) as well as a large number of clades with moder-
ate to high posterior probability (≥ 0.50), whereas HIPSTR achieves near-perfect performance in this
respect. HIPSTR also exhibits favorable computational performance over MCC in TreeAnnotator X.
Comparison to the recently developed CCD0-MAP algorithm yielded mixed results, and requires more
in-depth exploration in follow-up studies. TreeAnnotator X – which is part of the BEAST X (v10.5.0)
software package – is available at https://github.com/beast-dev/beast-mcmc/releases.

Keywords: phylogenetics, Bayesian inference, MCMC, consensus tree, TreeAnnotator, MCC, BEAST,
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1 Introduction

Bayesian phylogenetic inference remains one of the most widely used frameworks to estimate the
evolutionary relationship between a set of genetic or genomic sequences [Larget and Simon, 1999,
Huelsenbeck et al., 2001, Ronquist et al., 2012, Suchard et al., 2018, Bouckaert et al., 2019, Höhna
et al., 2016]. One of the key outcomes of such a Bayesian analysis is a set of phylogenetic trees
sampled from the model posterior. This set is then summarized into an easily disseminable and
interpretable result – usually a single representative tree used as a framework to display important
phylogenetic relationships and other quantities of interest such as divergence times or trait evolu-
tion. Given that this set of trees may contain (tens of) thousands of unique topologies, a range of
summary tree calculation methods have been developed over the past decades. An extensive review
of these methods is beyond the scope of this paper, but can be found in – for example – Bryant
et al. [2003].

Current Bayesian phylogenetic software packages undertake a random walk through the space
of trees, usually employing Metropolis-Hastings sampling [Metropolis et al., 1953, Hastings, 1970]
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to attempt to sample trees from the posterior distribution as this space is explored. Were time and
electricity unlimited, a preferred point-estimate of the phylogenetic tree would be the one most
frequently visited (the maximum a posteriori or MAP tree). In practice, for all but trivially small
data sets, these stochastic algorithms will likely never visit the same tree twice. Consequently, the
approach taken is to consider constituent parts of the tree independently, reporting the frequency
of individual clades (for rooted trees) or splits (for unrooted trees). Hereon we will refer to clades as
BEAST [Suchard et al., 2018, Bouckaert et al., 2019] is exclusively focused on rooted trees. For many
phylogenetic questions, these clade frequencies can be used directly to provide support for competing
hypotheses without considering the tree as a whole. Similarly, estimates of parameters of interest
in the models employed (e.g., rates of evolution, substitution model parameters or population size
dynamics) are marginalized or averaged over all sampled trees.

However, in many cases it is desirable to represent the totality of the phylogenetic information
in the form of a single tree, ‘annotated’ with individual clade frequences and averages or credible
intervals of continuous parameters of the tree such as node ages. Furthermore, this tree can be
used to visualize jointly-estimated results such as trait evolution or spatial spread. As such, it is
essential that this ‘summary’ tree includes all of the highly-supported clades.

The traditional approach to constructing a summary tree, one that long precedes the rise of
Bayesian approaches, is the majority-rule consensus tree [Margush and McMorris, 1981]. Often
employed to summarize resampling approaches such as bootstrapping [Felsenstein, 1985] or jack-
nifing [Farris et al., 1996] with maximum-likelihood or maximum-parsimony phylogenetics, this is
a tree constructed from a set of clades and their frequencies. The most popular version is the 50%
majority consensus tree, a tree constructed such that it contains all of the clades with at least
50% frequency (a strict consensus tree contains only 100% frequency clades). However, for non-
trivial data sets these trees will not be fully resolved (bifurcating) as clades that do not meet the
criteria for inclusion are collapsed into polytomies. As a result, these methods generally preclude
appropriate presentation of time scales or reconstruction of geographic dispersal.

To address these limitations for analyses, where the phylogeny itself is not exclusively the result-
of-interest, the BEAST packages [Suchard et al., 2018, Bouckaert et al., 2019] took the approach of
finding the maximum clade-credibility (MCC) tree to use as the single tree representative of those
sampled. The MCC tree is that amongst the sampled set which has the highest product of all the
individual clade frequencies. Thus, it is a tree that the Markov chain actually visited although, in
practice, only a small sample of trees is evaluated. For example, by default, BEAST stores a sample
of 10 000 trees regardless of the length of the chain. This ‘thinning’ or downsampling is done to
remove the autocorrelation that exists between adjacent samples and to produce a tractable set of
trees in terms of both storage and the feasibility of downstream analyses. A sample of this size will
likely capture all high-frequency clades but will not resolve the relative support for low-frequency
clades. Furthermore, the MCC tree may be missing some clades that have less than 100% frequency
if, by chance, they don’t all co-occur in at least one tree of this limited sample. Sampling more
frequently will not necessarily abrogate this issue because this larger set of trees will have greater
autocorrelation.

We here propose a summary tree approach – the highest independent posterior subtree recon-
struction (HIPSTR) algorithm – that attempts to address the limitations of both majority-rule
consensus trees and MCC trees. HIPSTR aims to construct a tree that contains all the highest
frequency, mutually compatible, clades even if that specific tree was never actually sampled by the
MCMC.

Since implementing the approach described here, related work has been presented by Berling
et al. [2024] which is based on the conditional clade distribution (CCD) which offers an advanced
estimate of the posterior probability distribution of the tree space. The authors extend the appli-
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cability of CCDs by introducing a new parametrization for CCDs and describing fixed-parameter
tractable algorithms to compute the tree with highest probability. Of specific interest to the method
we present here is the CCD0-MAP consensus tree, which Berling et al. [2024] recommend as the
preferred point estimator for Bayesian phylogenetic inference of time trees. Comparison of HIPSTR
to CCD0-MAP is however inhibited by numerical and computational issues that prevent the com-
putation of the CCD0-MAP tree for the large data sets we consider – for these we are compelled
to resort to the CCD1-MAP algorithm (see Berling et al. [2024]).

2 Methods

2.1 Algorithm

An initial pass of the full set of trees collates a table of all observed clades, their frequency (clade
credibility) and a list of all observed pairs of child clades. Starting at the root clade of all tips a
post-order traversal is performed of this tree structure down to the individual tips. On the return
of the traversal a credibility score is computed for each subtree explored. This subtree credibility
is the maximum product of the credibility of each pair of descendant subtrees and the credibility
of the clade that contains them. As these individual subtrees will be present in many places in the
data structure, the maximum subtree credibility and the associated pair of subtrees is stored in a
cached keyed by a clade-specific hash for rapid recall. Finally a second post-order traversal of just
the maximum credibility subtrees is performed to construct the single, fully bifurcating, HIPSTR
tree. A second pass of the set of trees can then accumulate distributions of parameters such as node
ages, evolutionary rates, and trait values for the set of clades present in the HIPSTR tree.

2.2 Data

We assess the performance of HIPSTR on four complete-genome data sets: two Ebola virus (EBOV)
data sets, one containing 1 610 genomes from the 2013-2016 West African EBOV epidemic [Dudas
et al., 2017], and another containing 516 genomes from the 2018-2020 Nord Kivu EBOV epidemic
[Kinganda-Lusamaki et al., 2021]; and two SARS-CoV-2 data sets, one containing 3 959 genomes
from across Europe [Lemey et al., 2021], and another containing 15 616 genomes from the United
Kingdom [du Plessis et al., 2021]. We selected these data sets because of their different dimensions
(see Table 1) and because they represent key pathogens that continue to pose significant threats
to public health. We performed visualisations in baltic v.0.3.0 (https://github.com/evogytis/
baltic).

Data set Tips Trees Clades

EBOV 516 18 002 856 780
EBOV 1610 1 000 287 521
SARS-CoV-2 3 959 1 000 660 494
SARS-CoV-2 15 616 500 3 539 556

Table 1: Genomic data set properties and posterior tree sample properties of the four data sets
analysed in this study.

Further, based on our findings (but see the Results section) and our extensive experience with
the 2013-2016 West African EBOV data set [Dudas et al., 2017], we created a simulated EBOV data
set (EBOV-Sim) based on the HIPSTR tree of the original EBOV Bayesian phylogenetic analysis
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(https://github.com/ebov/space-time/tree/master/Analyses/Phylogenetic). We simulated
a sequence data set of 20 000 bp under an HKY substitution model with among-site rate hetero-
geneity [Hasegawa et al., 1985, Yang, 1996] and a strict clock with an evolutionary rate of 1E-3
substitutions per site per year. We then inferred 10 000 posterior trees from a 100 million iterations
analysis in BEAST 1.10.4 [Suchard et al., 2018] under a constant population size model, using the
same models as were used to generate the simulated data set.

2.3 Computational aspects

The initial implementation of HIPSTR dates back to September 2019 (https://github.com/beast-dev/

beast-mcmc/commit/1d3df0eabe2bd133617cf48e9e05eaa810c88152) and was originally called MMCC for
maximum marginal clade credibility. Since then, we have restructured important parts of the
TreeAnnotator code (part of the upcoming release of BEAST X - v10.5.0) in a more modular
form and reimplemented parts of the calculations, aimed at especially benefiting consensus tree
construction performance for large file sizes. This implementation benefits the computational per-
formance of both MCC and HIPSTR over the previous version of TreeAnnotator in BEAST 1.10.4
[Suchard et al., 2018] (data not shown).

MCC and HIPSTR calculations were performed in TreeAnnotator X (v10.5.0) using the default
run-time settings, whereas the CCD0-MAP and CCD1-MAP calculations in TreeAnnotator v2.7.7
required the allocation of an initial Java heap size of 32 Gb and a maximum Java heap size of
64 Gb. All calculations were performed on an Apple M2 Ultra 24-core processor with 192 Gb of
memory.

3 Results

In Table 2, we show the performance comparison of HIPSTR over MCC in terms of consensus tree
construction and computational cost on the four examples. Of note, phylogenetic analyses with over
a thousand genomes resort to storing fewer posterior tree samples, owing to markedly increasing file
sizes and ensuing post-processing issues. HIPSTR consistently yields consensus trees with higher log
marginal clade credibility and mean individual clade credibility over MCC trees, while doing so in
a markedly shorter time compared to the MCC algorithm. Further, HIPSTR consistently includes
highly supported clades, while MCC regularly misses out on clades with ≥ 0.95 and occasionally
even ≥ 0.99 posterior probability. On the data sets tested HIPSTR performs up to 2× faster
than MCC. With increasing numbers of genomes – millions in the case of SARS-CoV-2 – being
used in phylogenetic inference, computational performance for consensus tree methods needs to be
considered.

Figure 1 shows a tanglegram comparing the MCC and HIPSTR consensus trees for the 516-
genome EBOV data set of Kinganda-Lusamaki et al. [2021]. We observe high similarity between
both trees, especially in their backbones, due to the high posterior probability (> 0.80) that ensures
that they become part of both trees. Away from the backbone, we also observe a large number of
differences. In order to not clutter Figure 1 with a large number of posterior probability / clade
credibility values (of which summary statistics are readily available from TreeAnnotator X), we
compare these values for the MCC and HIPSTR trees in more detail in Figure 2, for all four data
sets. Figure 2 shows increased divergence between MCC and HIPSTR trees as posterior support
wanes, indicative of the MCC trees not including a number of relatively well-supported nodes
(0.50 < support < 0.80) and the HIPSTR trees consistently selecting better supported nodes
among those with lower posterior probability (< 0.50). Note that a slight trend difference can be
observed for the largest SARS-CoV-2 data set for clade credibility values between 0.80 and 1.0,
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Data set Method med(ICC) ICC ≥ 0.99 ICC ≥ 0.95 ICC ≥ 0.50 log(MCC) Time

EBOV MCC 0.1555 103/103 116/116 160/177 -1355.52 116s
(516) CCD0-MAP 0.2784 103/103 116/116 177/177 -923.66 >5h

CCD1-MAP 0.1949 100/103 112/116 165/177 -1752.89 235s
HIPSTR 0.2751 103/103 116/116 176/177 -950.08 57s

EBOV MCC 0.1780 380/381 419/421 587/634 -3960.10 10s
(1 610) CCD0-MAP NA NA NA NA NA NA

CCD1-MAP 0.1660 368/381 404/421 568/634 -4686.60 35s
HIPSTR 0.3120 381/381 421/421 633/634 -3039.60 6s

SARS-CoV-2 MCC 0.0730 852/852 955/959 1214/1325 -10146.85 40s
(3 959) CCD0-MAP NA NA NA NA NA NA

CCD1-MAP 0.0720 846/852 948/959 1261/1325 -11540.45 107s
HIPSTR 0.1880 852/852 959/959 1305/1325 -8630.85 21s

SARS-CoV-2 MCC 0.0120 2929/2929 2992/2995 3693/3980 -57546.68 85s
(15 616) CCD0-MAP NA NA NA NA NA NA

CCD1-MAP 0.0060 2929/2929 2994/2995 3886/3980 -58636.38 369s
HIPSTR 0.0440 2929/2929 2995/2995 3980/3980 -51352.61 50s

EBOV-Sim True tree 0.5239 620/620 658/658 819/819 -1762.67 79s
(1 610) MCC 0.4728 619/620 657/658 784/819 -2610.98 150s

CCD0-MAP NA NA NA NA NA NA
CCD1-MAP 0.4726 599/620 631/658 778/819 -3543.36 311s
HIPSTR 0.5239 620/620 658/658 819/819 -1786.64 81s

Table 2: Consensus tree reconstruction and computational performance of MCC, HIPSTR, CCD0-
MAP and CCD1-MAP on four genomic data sets (number of sequences between brackets). HIPSTR
consistently yields consensus trees with higher log marginal clade credibility, median individual
clade credibility and number of clades with ≥50% posterior probability included over MCC, and
equal or higher number of clades with ≥99% and ≥95% posterior probability. HIPSTR is also
computationally more efficient than MCC, yielding up to 2× higher performance (s: seconds; h:
hours). CCD0-MAP could only be computed successfully on our smallest data set but yielded the
best performance, at the expense of a very lengthy run time; CCD1-MAP performance was far
inferior to all other methods tested. log(MCC): log marginal clade credibility; med(ICC): median
individual clade credibility. NA: result not available due to TreeAnnotator v2.7.7 producing a
numerical error or becoming unresponsive.
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likely owing to a difference in Bayesian inference methodology due to the much increased number
of taxa [du Plessis et al., 2021].

Fig. 1: Tanglegram illustrating the similarities and differences between the MCC and HIPSTR trees
for a phylogenetic analysis of the 2018-2020 Nord Kivu EBOV data set with 516 complete genomes.
The backbone of both trees is highly similar, owing to their high posterior probability (> 80), while
many differences occur between clusters with lower posterior probability (< 50; but see Figure 2).
The log product of clade credibilities for the HIPSTR tree (-950.08) is much higher than that of
the MCC tree (-1355.52), and only marginally lower than that of the CCD0-MAP tree (-923.66).

Comparison of the CCD0-MAP consensus tree [Berling et al., 2024] to the MCC and HIPSTR
trees only proved possible for our smallest use case, i.e. the 516-genome EBOV data set [Kinganda-
Lusamaki et al., 2021]. Figure 3 shows a tanglegram comparing the HIPSTR and CCD0-MAP
consensus trees for this data set, illustrating small differences between the two and only in lower-
level clades. As shown in Table 2, only a single clade with posterior probability ≥ 0.50 differs
between these two consensus trees, with the CCD0-MAP tree containing this clade. For all other
data sets - including our simulated data set - we hence had to resort to the CCD1-MAP consensus
tree [Berling et al., 2024] as an alternative. However, in terms of both the log marginal clade
credibility and the proportion of clades with posterior probability ≥ 50% this tree is lacking in
performance compared to all other consensus tree approaches discussed in this study.
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Fig. 2: Ordered plots of the posterior probability (log scale) of all clades in the HIPSTR (red)
and MCC (blue) trees. Both consensus trees have all the same clades down to approximately 0.80
posterior probability, after which the HIPSTR trees consistently include higher supported clades
than the MCC trees – also evident from the differences in log marginal clade credibility; see Table 2.

4 Discussion

We have presented here the novel highest independent posterior subtree reconstruction (HIPSTR)
algorithm for reconstructing a potentially unsampled consensus tree from a posterior set of phylo-
genetic trees, as well as an updated version (X or v10.5.0) of TreeAnnotator. We have shown that
HIPSTR consensus trees contain consistently higher clade credibilities than MCC trees, on two
EBOV and two SARS-CoV-2 data sets, and that computational performance of HIPSTR surpasses
that of MCC reconstruction. Based on these improvements, we recommend the use of the HIPSTR
consensus tree over that of the MCC tree.

Comparison of HIPSTR with the CCD0-MAP (employing a parametrization of a CCD based
on observed clades) consensus tree [Berling et al., 2024] was only possible for our smallest data set
(the 516 genome Ebola virus alignment) due to larger data sets being computationally intractible to
the current implementation of the latter method. For the data where CCD0-MAP was successfully
constructed, it yielded a further improvement over the HIPSTR tree, including the one clade with ≥
0.50 posterior probability that the HIPSTR tree did not contain. However, CCD0-MAP calculation
came at aconsiderable computational cost of over 5 hours, compared to under 1 minute for the
HIPSTR approach. For all other data sets, CCD0-MAP did not produce a result despite signifcant
run time and memory being allocated. As an alternative, we calculated the CCD1-MAP (employing
a parametrization of a CCD based on observed clade splits and thus having more parameters and
requiring more uncorrelated samples) consensus tree for those data sets, but these did not prove
competitive with the method proposed here. HIPSTR provides a fast and accurate estimation of
the MCC tree that would be obtained from a much larger independent sampling of posterior trees.
Hence we conclude that the HIPSTR algorithm and accompanying implementation make for the
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Fig. 3: Tanglegram illustrating the similarities and differences between the HIPSTR and CCD0-
MAP consensus trees for a phylogenetic analysis of the 2018-2020 Nord Kivu EBOV data set with
516 complete genomes. These highly similar consensus trees have identical backbones and mostly
small differences occurring in the lower-level clades. The log product of clade credibilities for the
CCD0-MAP tree (-923.66) is slightly higher than that of the HIPSTR tree (-950.08), whereas both
are much higher than that of the MCC tree (-1355.52).
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most appealing choice among available time-calibrated consensus phylogenetic tree approaches and
should be preferred over the MCC tree.
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