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Objectives: The current demographic information from China reports that 10%-19% of patients
hospitalized with coronavirus disease (COVID-19) were diabetic. Angiotensin-converting
enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are considered first-
line agents in patients with diabetes because of their nephroprotective effects, but adminis-
tration of these drugs leads to upregulation of angiotensin-converting enzyme 2 (ACE2), which
is responsible for the viral entry of severe acute respiratory distress syndrome coronavirus 2
(SARS-CoV-2). Data are lacking to determine what pulmonary effects ACEIs or ARBs may have
in patients with diabetes, which could be relevant in the management of patients infected
with SARS-CoV-2. This study aims to assess the prevalence of pulmonary adverse drug effects
(ADEs) in patients with diabetes who were taking ACEI or ARBs to provide guidance as to how
these medications could affect outcomes in acute respiratory illnesses such as SARS-CoV-2
infection.
Methods: 1DATA, a unique data platform resulting from collaboration across veterinary and
human health care, used an intelligent medicine recommender system (1DrugAssist) devel-
oped using several national and international databases to evaluate all ADEs reported to the
Food and Drug Administration for patients with diabetes taking ACEIs or ARBs.
Results: Mining of this data elucidated the proportion of a cluster of pulmonary ADEs asso-
ciated with specific medications in these classes, which may aid health care professionals in
understanding how these medications could worsen or predispose patients with diabetes to
infections affecting the respiratory system, specifically COVID-19. Based on this data mining
process, captopril was found to have a statistically significantly higher incidence of pulmonary
ADEs compared with other ACEIs (P ¼ 0.005) as well as ARBs (P ¼ 0.012), though other specific
drugs also had important pulmonary ADEs associated with their use.
Conclusion: These analyses suggest that pharmacists and clinicians will need to consider the
specific medication’s adverse event profile, particularly captopril, on how it may affect in-
fections and other acute disease states that alter pulmonary function, such as COVID-19.
© 2020 American Pharmacists Association®. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In late 2019, an outbreak of pneumonia, later found to be
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), occurred in Wuhan, China. Coronavirus dis-
ease (COVID-19) patient symptomatology includes fever,
dyspnea, myalgia, and pneumonia, but can also progress to
acute respiratory distress syndrome (ARDS), acute cardiac
injury, as well as acute kidney injury and death.1 A study
evaluating 191 patients with COVID-19 found that 48% of
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patients had comorbid conditions, including 19% with
diabetes.2 There was a statistically significant difference
(P ¼ 0.001) in mortality between patients with comorbid
conditions, including diabetes, compared with those
without.2 It is known that long term hyperglycemia has
deleterious effects on many organ systemsdmost notably
the eyes, kidneys, nerves, and heart. However, less research
has described the pathophysiologic effects diabetes may
have on the respiratory system. In light of the recent
COVID-19 outbreak, more research is needed to understand
the effects that diabetes (and its medications) may have on
the respiratory system and how that could affect the man-
agement of diseases such as COVID-19.

The renin-angiotensin system (RAS) is implicated in the
pathophysiology of numerous disease states including diabetic
nephropathy and hypertension. Drugs affecting this system
have been explored to manage nephropathy occurring in pa-
tients with diabetes, and angiotensin-converting enzyme in-
hibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are
the ones currently recommended.3,4 Currently available ACEIs
differ based on potency, pharmacokinetics (especially tissue
distribution), andwhether themolecule is a prodrug. ACEIs are
also delineated into 3 structural classes based on the func-
tional group responsible for binding to ACE.5,6 Although ACEIs
and ARBs are generally considered to have similar adverse
event profiles, evaluation of postmarketing ADEs may shed
light on minute differences that could have important clinical
impacts.

RAS has been a subject of discussion in the wake of the
SARS-CoV-2 pandemic because ACE2, a membrane-bound
receptor involved in RAS, has been found to be the host-
cell receptor responsible for viral entry. This was also true
for SARS-CoV, which lead to an outbreak in 2002. Admin-
istration of ACEIs and ARBs, as well as thiazolidinediones
and ibuprofen, leads to the upregulated expression of
ACE2.7 The upregulation of ACE2 receptors theoretically
puts patients at higher risk of infection with SARS-CoV-2
because more target host receptors would be available for
cellular virus entry. Conversely, ACE2 presence was found to
be protective in lung tissue of animal models due to the
conversion of angiotensin II to angiotensin (1-7), which has
vasodilatory properties. Animal models have shown an in-
crease in ACE concentration can result in pulmonary
fibrosis, asthma, and ARDS. The effects of ACE-inhibiting
medications, which will lower the activity of ACE (and
therefore the concentration of angiotensin II), would theo-
retically be protective against patients developing ARDS.7

This has led to the hypothesis that ACEIs or ARBs may be
detrimental in early SARS-CoV-2 infection but paradoxically
protective in later stages. RAS is exceedingly complex, and
conflicting data are available regarding the contribution of
ACEIs and ARBs on the mortality and morbidity of COVID-19
patients.8
Objective(s)

In this study, we aimed to assess if each ACEI or ARB had
particularly serious pulmonary adverse event profiles, which
could either place patients with diabetes at increased risk for
SARS-CoV-2 infection due to diminished lung function or may
affect their management.
e146
Methods

Data sources and data mining

The 1DATA partnership between the University of
Missouri-Kansas City and Kansas State University has led to
the development of a platform to share human and animal
health care data.9 In this partnership, public databases were
integrated into the 1DATA database (www.1DATA.life), and, in
this study, were used to assess the incidence of ADEs related to
ACEIs and ARBs in patients with diabetes.10

The data used in this study were curated from multiple
publicly available data sources for patients with diabetes
including the Food and Drug Administration (FDA) Adverse
Event Reporting System (FAERS), which houses all ADEs re-
ported to the FDA by pharmaceutical companies, health care
providers, and consumers. The data, including the diabetes
dataset, are updated quarterly by the FDA and currently in-
cludes reports submitted from the first quarter of 2004 to the
last quarter of 2019. This dataset mainly focuses on drugs and
their ADEs but also includes other pertinent data such as
disease information, drug information, adverse drug event
data, demographic information, as well as outcome data.

Internationally, ADE terminologies are reported by a similar
process to the Medical Dictionary for Regulatory Activities
(MedDRA). In this database, ADE terminologies are hierar-
chically structured to regulate information for medical products
onaglobal level. Thedata structureof these terms isorganized in
accordance with MedDRA terminology as well as the Interna-
tional Council for Harmonization of Technical Requirements for
Pharmaceuticals for Human Use, an international safety
reportingguidancedatabase.Weused theMedDRAhierarchy for
regulatory information of medical products in diabetes
including low-level terms (LLTs) as well as high-level terms
(HLTs). LLTs provideverydescriptive information that is grouped
intopreferred termsand theHLTs,whichprovide informationon
anatomy, pathology, physiology, etiology, or function. HLTs are
then clustered into system organ classes, which are grouped
based on etiology, manifestation site, or purpose. Here we used
the 23.0 or earlier version of MedDRA10

Data mining algorithms were used for diabetes datasets to
identify postmarketing ADEs reported more frequently than
expected by comparing those frequencies with information on
all drugs and events in the database using the proportional
reporting ratio (PRR), as explained below.11 Databases are re-
ported by a combination of active ingredients, generic names,
or brand names. Hence, the drug names were mapped to drug
parents using the DrugBank (Alberta InnovateseHealth
Solutions, The Metabolomics Innovation Center).12 Finally,
ADEs associated with medications in the ACEI and ARB classes
administered to patients with diabetes were recorded.
Statistical analysis

Statistical analysis was performed using Statistical Analysis
Software (SAS) (SAS University Edition version 9.4, Cary, NC).
First, data based on the frequency of each ADE related to respi-
ratory, thoracic, and mediastinal disorders or infections were
parsed in the MedDRA and FAERS databases. Specific ADEs
collected were pulmonary edema, pleural effusion, oropharyn-
geal pain, dyspnea, dysphonia, cough, sinusitis, pneumonia,

http://www.1DATA.life
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nasopharyngitis, bronchitis, pneumonia aspiration, emphysema,
and pleurisy (Figure 1). We then employed a method proposed
and implemented by the FDA for analyzing ADE dis-
proportionality inpharmacovigilancedatabyobserved-expected
ratios.11 Thismethod, the PRR, provides a statistical summary for
the commonality of an ADE for a specific drug as compared with
the entire database for drugs in the same or other classes.11

We addressed confounding factors including patient de-
mographics and drugs that are underreported in voluntary
reporting systems including the FAERS since conditional
slicing and subsetting can confine the use of quantitative
signal detection methods such as PRR. For this purpose, we
were able to correct the analysis after applying logistic
regression for the known covariates of age, weight, and sex,
and combine this approach with PRR to improve analyses of
drug effects using the diabetes datasets. We found that these
factors do not play a substantial role in the analysis of the data.
We found that the most important ADEs (pulmonary edema,
dyspnea, dysphonia, cough, bronchitis, and pleurisy), which
may be very relevant to SARS-CoV-2 infection, are not statis-
tically significantly affected by any of these covariates (age,
sex, and weight). As a result, we assumed that:

PrðADEjdrug; age;weight; sexÞ ¼ PrðADEjdrugÞ
However, the following ADEs exhibited some sex or age

effects (ADE: effect): (1) pleural effusion: sex; (2) oropharyn-
geal pain: sex; (3) sinusitis: sex; (4) pneumonia: age; (5)
nasopharyngitis: sex; (6) pneumonia aspiration: sex; and (7)
emphysema: age.

This helped us to estimate a PRR for a specific drug-ADE
combination by calculating the following equation:

PRRij ¼
Pr
�
ADEi

���drugj
�

Pr
�
ADEi

���drugj*
� ¼

rij
nj�PL

k¼1
rik�rij

�
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where rij gives the total number of a specific event i2
f1;2; ::;Dg for a given drug j in f1;2; :::; Eg. Here Dand E
represent the number of all events and drugs in the drug class.
drug* denotes the drug class excluding the specific drug j. Also,
nj shows the total events for the given drug j. When the dis-
tribution of PRR samples are all positive, we then applied a log
transformation to data and then found the confidence inter-
val13 using the following equation:
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Friedman test results

Sample differences among the 3 groups, captopril, ACEIs,
and ARBs, were assessed for a pairwise analysis with the
assumption that data were not normally distributed using the
nonparametric Friedman test for 2 independent unequal-sized
data using SAS. Friedman test was also applied to perform
multiple comparison tests (P values for statistical significance
< 0.05). For the nonparametric Friedman test of statistical
significance, 4 pairwise and multiple comparisons were per-
formed based on the ARBs and ACEIs excluding captopril,
hence denoted as ACEI-1 (angiotensin-converting enzyme in-
hibitors, excluding captopril). Tests performed included ACEI-1
versus ARB drugs, ACEI-1 drugs versus captopril alone,
captopril versus ARB drugs, and captopril versus all ACEI-1 and
ARB drugs.
Results

We had no a priori hypothesis regarding which of the ACEIs
or ARBs would be distinct in terms of their ADE profile. After
analysis, captopril alone showed a clear signal distinct from
other ACEIs and ARBs. Therefore, we proceeded with some
specific, pairwise analysis of captopril to see if any other dis-
tinctions were found. Thirteen different pulmonary ADEs were
selected to assess the related variation due to adverse event
differences. Percent incidence of reported pulmonary ADEs for
each drug can be found in Figure 1. These values represent the
number of reported adverse events for that specific drug and
ADE as compared with all (pulmonary and nonpulmonary)
ADEs reported for that drug. Results of the Friedman test
showed that all 4 comparative analyses were statistically sig-
nificant except the ACEI-1 drugs versus ARB drugs comparison
(P ¼ 0.07), suggesting that ACEIs (excluding captopril) and
ARBs may have similar pulmonary ADE profiles in patients
with diabetes (Table 1). The Friedman test results also showed
that captopril had statistically significant increases in pulmo-
nary ADEs in patients with diabetes as compared with other
ACEIs (P ¼ 0.005) as well as compared with ARBs (P ¼ 0.012).
For multiple comparisons among all the groups using this test,
captopril versus all ACEI-1 drugs versus ARB drugs, a P value of
0.004was seen indicating statistically significant differences in
pulmonary ADE occurrences for the 2 drug groups compared
with captopril. Our results highlight a statistically significant
difference of pulmonary ADEs for captopril, an ACEI, but also
noted additional pulmonary ADEs of concernwith other ACEIs
and ARBs as well (Supplementary Figures 1 and 2).

To meet PRR reporting requirements, 3 criteria must be
satisfied: (1) more than 3 reported incidences, (2) a PRR greater
than 2, and (3) a PRR that is greater than the lower 95% CI
boundary, with the lower CI itself being over 1. After applying
these criteria, captopril had reportable incidences for most of
the reported pulmonary ADEs in patients with diabetes. Other
drugs, including ARBs, met the criteria for some pulmonary
ADEs (Supplementary Table 1) but did not show the same
trends across multiple ADEs as depicted with captopril.
Discussion

Evaluation of the collated databases revealed that captopril,
the first ACEI approved back in 1981, has a higher incidence of
pulmonary ADEs in patients with diabetes as compared with
other ACEI drugs (P¼ 0.005) as well as a statistically significant
difference in pulmonary events compared with ARBs
(P ¼ 0.012) (Table 1).
e147



Figure 1. Relative percentages of reported pulmonary adverse events of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers from the Food and
Drug Administration Adverse Event Reporting System and Medical Dictionary for Regulatory Activities databases organized by drug. Abbreviations used: ACEIs,
angiotensin-converting enzyme inhibitors; ADEs, adverse drug effects; ARBs, angiotensin II receptor blockers.
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Captopril’s high incidence of pulmonary ADEs highlights
the fact that the drugs belonging in one class are not identical
and that its pharmacokinetics and pharmacodynamics can
affect the patients’ health especially during acute processes
like COVID-19. This is especially important as current obser-
vational studies of COVID-19 patients tend to group drugs
within a class and are not analyzing the potential differences
within each class. ACEIs can be broadly classified into 3
structural classes: sulfhydryl-, dicarboxyl-, and phosphorous-
containing molecules. Notably, captopril is the only currently
available ACEI belonging to the sulfhydryl-containing class and
may explain the higher incidence of ADEs observed.5 The
binding of ACEIs to ACE has shown notable differences when
modeled via Autodock Vina14 and maybe a source of variation
in reported ADEs, though this remains under examination.
Areas of future research, structure-activity relationship, and
Table 1
Results from the nonparametric Friedman test of statistical significance for 4
pairwise comparisons

Comparison P value

Captopril versus ACEI-1 0.005a

Captopril versus ARBs 0.01a

ACEI-1 versus ARBs 0.07
Captopril versus all ACEI-1 drugs versus ARB drugs 0.004a

Abbreviations used: ARBs, angiotensin II receptor blockers; ACEI-1, angio-
tensin-converting enzyme inhibitors excluding captopril.

aDenotes statistical significance (P < 0.05).

e148
binding affinity may also explain the pulmonary ADE differ-
ences between captopril and other ACEIs and ARBs. For
example, captopril has an inhibitory constant (Ki) of 1.7 nM, a
measurement used to describe the potency of an inhibitor to
its target, as compared with enalapril’s Ki of 0.2 nM.5 Finally,
we have focused this discussion on how these pulmonary
ADEs may affect COVID-19 morbidity and mortality; however,
it is useful to consider how these RAS antagonists, when given
to diabetics, may affect the management of other pulmonary
diseases (e.g., COPD, pneumonia).

Health care providers have been left with many questions
when treating patients with COVID-19, including how ACEIs or
ARBs may affect their clinical course.15 Results from this study
may be helpful when prescribing or continuing ACEIs or ARBs
for patients with diabetes and infections or illnesses that may
affect pulmonary function, such as COVID-19. This research
highlights the important caveat that generalizations cannot
always be safely made to a medication class, and health care
providers should be well aware of nuances between each drug
and how it may contribute to the clinical course of infections,
particularly during the COVID-19 pandemic. The complexity of
considering each drug that the patient is taking and how it
affects both chronic and acute illnesses emphasizes the benefit
a pharmacistdthe medication expertdhas on a patient’s care
team and ultimately the patient’s health outcomes.

Forthcoming 1DATA consortium studies include analysis of
electronic medical records to evaluate the prevalence of ACEIs
or ARBs in patients with COVID-19, and to elucidate if patients



Pharmacovigilance in diabetes: COVID-19 implications

SCIENCE AND PRACTICE
on specific medications were more likely to have a difficult
clinical course. In addition, evaluation of the binding affinity
and structure-activity relationship of captopril may help
explain why it is responsible for a disproportional amount of
pulmonary ADEs in patients with diabetes.

Limitations

A limitation of this analysis relates to it being a retrospec-
tive analysis of curated ADE databases from spontaneous
reporting systems. Nuances in reporting ADEs between FAERS
andMedDRA databases could have resulted in the exclusion or
inclusion of data that may have affected our datasets.

Conclusion

Statistical analysis suggests that the ACEI, captopril, has a
statistically significantly different ADE profile for pulmonary-
related events than ARBs as well as other ACEIs. However,
there are considerable inter- and intraclass variations across
other individual RAS drugs, suggesting that these also merit
attention.
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Appendix
Supplementary Figure 1. Relative percentages, organized by symptoms, of pulmonary adverse drug effects for angiotensin-converting enzyme inhibitor drugs.
Abbreviations used: ACEI, angiotensin-converting enzyme inhibitor; ADEs, adverse drug effects.
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Supplementary Figure 2. Relative percentages, organized by symptoms, of pulmonary adverse drug effects for ARB drugs. Abbreviations used: ADEs, adverse drug
effects; ARB, angiotensin II receptor blocker.
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Supplementary Table 1
Adverse drug effects meeting the criteria for reporting

Pulmonary ADE Benazepril Captopril Enalapril Fosinopril Lisinopril Perindopril Quinapril Ramipril Candesartan Irbesartan Losartan Olmesartan Telmisartan Valsartan

PULMONARY
EDEMA

0 3 1 0 1 1 1 2 1 1 1 1 1 2

PLEURAL
EFFUSION

0 3 2 3 1 1 0 1 1 1 1 1 1 1

OROPHARYNGEAL
PAIN

0 0 1 0 1 1 1 1 1 0 2 2 1 1

DYSPNEA 1 3 2 1 1 1 1 1 1 1 1 1 1 2
DYSPHONIA 0 0 1 0 1 3 0 0 3 0 3 1 0 1
COUGH 1 3 1 1 1 1 1 1 1 1 2 1 1 1
SINUSITIS 0 0 1 1 1 1 1 3 3 1 1 0 0 1
PNEUMONIA 1 3 2 0 1 3 1 1 1 1 2 1 1 2
NASOPHARYNGITIS 0 0 1 0 1 3 0 1 1 3 1 1 1 1
BRONCHITIS 0 3 1 0 1 1 1 1 0 1 1 1 3 1
PNEUMONIA

ASPIRATION
0 3 0 0 1 0 0 0 0 1 1 0 1 2

EMPHYSEMA 0 3 0 0 0 0 0 0 0 0 1 0 0 1
PLEURISY 0 3 0 0 0 0 0 0 0 0 1 0 0 3

Note: Numbers in the table indicate howmany of the following criteriaa are met: (1) at least 3 incidences, (2) a proportional reporting ratio greater than 2, and (3) a proportional reporting ratio that is more than the
lower 95% CI boundary with the lower CI being greater than 1.

aSource: U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. Guidance for Industry Good
Pharmacovigilance Assessment Guidance for Industry Practices and Pharmacoepidemiologic Assessment. Available at: http://www.fda.gov/cber/guidelines.htm. Accessed April 14, 2020.
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