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OBJECTIVE—Sympathetic nervous system (SNS) overactivity
contributes to the pathogenesis and target organ complications
of obesity. This study was conducted to examine the effects of
lifestyle interventions (weight loss alone or together with exer-
cise) on SNS function.

RESEARCH DESIGN AND METHODS—Untreated men and
women (mean age 55 � 1 year; BMI 32.3 � 0.5 kg/m2) who
fulfilled Adult Treatment Panel III metabolic syndrome criteria
were randomly allocated to either dietary weight loss (WL, n �
20), dietary weight loss and moderate-intensity aerobic exercise
(WL�EX, n � 20), or no treatment (control, n � 19). Whole-body
norepinephrine kinetics, muscle sympathetic nerve activity by
microneurography, baroreflex sensitivity, fitness (maximal oxy-
gen consumption), metabolic, and anthropometric measure-
ments were made at baseline and 12 weeks.

RESULTS—Body weight decreased by �7.1 � 0.6 and �8.4 �
1.0 kg in the WL and WL�EX groups, respectively (both P �
0.001). Fitness increased by 19 � 4% (P � 0.001) in the WL�EX
group only. Resting SNS activity decreased similarly in the WL
and WL�EX groups: norepinephrine spillover by �96 � 30 and
�101 � 34 ng/min (both P � 0.01) and muscle sympathetic nerve
activity by �12 � 6 and �19 � 4 bursts/100 heart beats,
respectively (both P � 0.01), but remained unchanged in control
subjects. Blood pressure, baroreflex sensitivity, and metabolic
parameters improved significantly and similarly in the two life-
style intervention groups.

CONCLUSIONS—The addition of moderate-intensity aerobic
exercise training to a weight loss program does not confer
additional benefits on resting SNS activity. This suggests that
weight loss is the prime mover in sympathetic neural adaptation
to a hypocaloric diet. Diabetes 59:71–79, 2010

T
he metabolic syndrome (MetS) is an increasingly
prevalent multidimensional risk factor for car-
diovascular disease and type 2 diabetes (1). Its
etiology is complex and incompletely under-

stood, but thought to involve the interplay between meta-
bolic susceptibility, lifestyle factors, and the acquisition of
excess visceral adiposity (2). Scientific studies performed
over the last 2 decades strongly support the relevance of
the sympathetic nervous system (SNS) in both the patho-
genesis and target organ complications of MetS obesity
(3).

Several indexes of SNS activity, such as urinary norepi-
nephrine excretion, norepinephrine spillover from sympa-
thetic nerves, and postganglionic muscle sympathetic
nerve activity (MSNA) are increased in subjects with MetS,
even in the absence of hypertension (4–7). Among the
adiposity indexes, abdominal visceral fat is most strongly
associated with elevated MSNA (8). Because of the bidi-
rectional relationship between sympathetic activation and
insulin resistance, much debate has focused on their
chronology. Prospective studies with 10–20 years fol-
low-up indicate that elevated plasma norepinephrine con-
centration (9) and sympathetic reactivity (10) precede and
predict future rise in BMI and development of insulin
resistance. Although seemingly counterintuitive, sympa-
thetic activation may be causally linked to obesity via
�-adrenoceptor desensitization (11) and insulin resistance
(12,13). In established obesity, metabolic, cardiovascular
(baroreflex impairment), and medical conditions (obstruc-
tive sleep apnea) contribute significantly to sympathetic
neural drive and further aggravate insulin resistance,
hence establishing a vicious cycle (3,7). Chronic sympa-
thetic activation is associated with an increased preva-
lence of preclinical cardiovascular and renal changes that
are recognized predictors of adverse clinical prognosis
(3,14,15).

Weight loss and exercise are recommended as first-line
treatments for MetS. The Diabetes Prevention Program
and the Oslo Diet and Exercise Study have shown the
marked clinical benefits of intensive lifestyle intervention
on the resolution of the MetS (16,17). Individually, both
weight loss (5) and exercise training (18,19) cause sympa-
thoinhibition and improvement in MetS components. We
have previously reported that moderate weight loss (7% of
body weight) by diet alone is accompanied by reductions
in whole-body norepinephrine spillover and MSNA and
improvement in spontaneous cardiac baroreflex function
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in middle-aged MetS subjects (5). Because exercise is
often added to energy restriction in the treatment of
obesity, it is pertinent to clarify its additive benefits.
Augmented improvements in metabolic, anthropometric,
and cardiovascular parameters have been observed after
combined exercise training and dietary weight loss in
some (17,20,21), but not other studies (22), and there are
limited data regarding their combined effect on sympa-
thetic activity (23). Exercise training may potentially
augment weight loss induced sympathoinhibition by pro-
moting a greater loss of fat relative to lean mass (20,21), by
further improvement in insulin sensitivity (24) and reduc-
tion in plasma leptin concentration (21), and by potentia-
tion of baroreceptor sensitivity (18).

The present study was conducted to 1) test the hypoth-
esis that weight loss by combined hypocaloric diet and
aerobic exercise training would be associated with greater
sympathoinhibition and improvement in MetS components
than hypocaloric diet alone and 2) to examine the inter-
relationships between reduction in sympathetic tone and
concurrent changes in anthropometric, metabolic (insulin
sensitivity, plasma leptin concentration), and cardiovascu-
lar parameters. A moderate-intensity bicycle riding proto-
col was chosen as the exercise intervention, based on an
earlier study that demonstrated attenuation in whole-body
and renal norepinephrine spillover rates with this regimen
in healthy men (19).

RESEARCH DESIGN AND METHODS

Men and postmenopausal women, aged 45–65 years, who fulfilled Adult
Treatment Panel III criteria for the MetS (25) were recruited through
newspaper advertisement. To be eligible, candidates had to have central
obesity (waist circumference �102 cm in men and �88 cm in women) and

two or more MetS parameters (5,25). All were nonsmokers; sedentary, defined
as physical exercise two or less times per week for �20 min per session (26);
with a stable body weight (� 1 kg) in the previous 6 months; and willing to
accept random assignment. Exclusion criteria included type 2 diabetes
(fasting glucose �7 mmol/l); a history of secondary hypertension or cardio-
vascular, cerebrovascular, renal, liver, or thyroid disease; and use of drugs
known to affect measured parameters. Participants treated for hypertension
(n � 5, monotherapy with angiotensin II receptor antagonist in all cases) or
hypercholesterolemia (n � 3, HMG-CoA reductase inhibitor in all cases) were
studied after medications had been discontinued for 6 weeks. Screening
investigations comprised physical examination, medical and dietary histories,
12-lead electrocardiogram, blood biochemistry, and lipid analyses. Supine
blood pressure was measured on three occasions 1 week apart as the average
of five readings after a 5-min rest (Dinamap, Model 1846SX; Critikon, Tampa,
FL). The third of these measurements was defined as baseline blood pressure.
Stratified randomization by sex and hypertensive status in blocks of six was
used to allocate subjects to one of three groups: weight loss by caloric
restriction alone (WL), weight loss by combined caloric restriction and
aerobic exercise (WL�EX), or no treatment (control). Intervention duration
was 12 weeks. The study was approved by the Alfred Hospital Ethics
Committee, and all subjects gave written informed consent.
Dietary protocol. A modified Dietary Approaches to Stop Hypertension
(DASH) diet was used as the background diet (5,27). The macronutrient
composition was 30% fat (6% polyunsaturated, 15% monounsaturated, and 9%
saturated), 22% protein, and 48% carbohydrate. Basal energy requirements
were calculated by indirect calorimetry (Quark b2 breath-by-breath pulmonary
gas exchange analyzer; Cosmed, Rome, Italy) using the Weir equation (28).
Energy intake was reduced by 600 calories per day. Subjects were provided
with 14-day menu plans and recipes and prepared meals in their homes. They
attended fortnightly for dietary counseling. Compliance was assessed by
prospective 4-day diet records, which were analyzed using Australian Food
Composition Tables (FoodWorks Professional Version 3.02; Xyris Software,
Highgate Hill, Australia). Sodium, potassium, and protein intake were quanti-
fied by 24-h urine collections.
Exercise intervention. Exercise training comprised 40 min bicycle riding on
alternate days at a moderate intensity of 65% of predetermined maximum
heart rate (19). This corresponded to target heart rates within the range
120–145 bpm during exercise. Workload was increased as necessary to

maintain target heart rate. Once a week, exercise was performed under
supervision in the Alfred Hospital Heart Centre. Remaining sessions were
performed at the subjects’ homes, using provided exercise bicycles and heart
rate monitors. Compliance was assessed by the measurement of maximal
oxygen consumption (VO2max, expressed as milliliter per kilogram fat-free
mass per minute) during a continuous incremental cycle ergometry protocol,
during which workload was increased by 20 W/min. Subjects also kept records
of average heart rate during each exercise session.
Control group. Control subjects were instructed to maintain their usual
dietary and exercise habits. They attended the Heart Centre every 3 weeks for
body weight and blood pressure measurement.
Anthropometric measurements. Body weight was measured in light indoor
clothes without shoes, using a digital scale. Waist circumference was mea-
sured at the midpoint between the lowest rib and iliac crest and hip
circumference at the level of the greater trochanters. Body composition was
determined by dual-energy X-ray absorptiometry scan (GE-LUNAR Prodigy
Advance PA�130510; GE Medical Systems, Lunar, Madison, WI). Total body,
trunk, abdominal (measured in the abdominal cut at L1–L4 level), and
peripheral (arms and legs) fat and lean masses were measured.
Sympathetic nervous system activity. Subjects attended at 0800 having
fasted for 12 h and abstained from caffeine and alcohol for 18 and 36 h,
respectively. They were instructed not to exercise on the day before investi-
gations to eliminate acute effects of exercise (29). Subjects collected a 24-h
urine specimen immediately before attendance. Measurements of resting SNS
activity were performed in a quiet room (temperature 22°C) with subjects
lying supine. They voided before commencement. Resting metabolic rate was
first determined over a 30-min rest period using breath-by-breath pulmonary
gas analysis. Nitrogen excretion was estimated from 24-h urea measurements.
Norepinephrine kinetics. The dynamic processes of whole-body norepi-
nephrine entry or “spillover” into and removal from the central plasma
compartment were determined using the isotope dilution method (30). Tracer
doses of tritiated norepinephrine were administered intravenously by con-
stant infusion, after a priming bolus, with steady-state blood sampling from
the brachial artery (5).
Muscle sympathetic nerve activity. Recordings of multi-unit postganglionic
MSNA were made from a tungsten microelectrode (FHC, Bowdoinham, ME)
inserted into the right peroneal nerve at the fibular head (5). A subcutaneous
reference electrode was positioned 2–3 cm away from the recording site.
Standard criteria were used to ascertain an MSNA site. The nerve signal was
amplified (�50,000), filtered (bandpass, 700–2,000 Hz), and integrated. Intra-
arterial blood pressure, electrocardiogram, respiration, and MSNA were
digitized with a sampling frequency of 1,000 Hz (PowerLab recording system,
model ML 785/8SP; ADI Instruments). Resting measurements were recorded
over a 15-min period and averaged. Sympathetic bursts were counted manu-
ally and expressed as burst frequency (bursts/min) and burst incidence
(bursts/100 heart beats).
Spontaneous cardiac baroreflex sensitivity. Baroreflex sensitivity was
assessed by the sequence method (31). The slope of the regression line
between cardiac interval and systolic blood pressure was calculated for each
validated sequence and averaged during a 15-min supine recording.
Metabolic measurements. A standard 75-g oral glucose tolerance test
(OGTT) was performed, with blood sampling at 0, 30, 60, 90, and 120 min
(Glucaid, Fronine PTY, Australia). Whole-body insulin sensitivity was calcu-
lated from OGTT parameters according to the formula of Matsuda and
DeFronzo (32). Fasting blood samples were also collected for measurement of
plasma leptin, high-sensitivity C-reactive protein (hs-CRP), and lipid profile.
Laboratory measurements. Plasma norepinephrine was determined by
high-performance liquid chromatography with electrochemical detection.
Intra-assay coefficients of variation (CVs) in our laboratory are 1.3% for
norepinephrine and 2.3% for 3H-norepinephrine; interassay CVs are 3.8 and
4.5%, respectively. Arterial plasma glucose was quantified by enzymatic
methods (Architect C18000 analyzer; Abbott Laboratories, IL), insulin, and
leptin by radioimmunoassay (Linco Research, MO), lipids by automated
enzymatic methods, and hs-CRP by immunoturbidimetric assay.
Statistical methods. Data are presented as means � SE. Statistical analysis
was performed using SigmaStat Version 3.5 (Systat Software, Point Richmond,
CA). Comparisons between baseline and post-intervention data were made by
two-way repeated-measure ANOVA. The Holm-Sidak test was used for post
hoc comparisons. ANCOVA, with adjustment for baseline values, was also
performed for the primary outcome variables (norepinephrine spillover and
MSNA). Nonparametric data were log-transformed. Subgroup analyses by sex
were performed by two-way repeated-measure ANOVA. Areas under the
plasma concentration-time curve (AUC0–120) were calculated by the trapezoi-
dal rule for glucose and insulin. Associations between changes in selected
variables were assessed using Pearson’s and Spearman’s rank correlations.
Forward stepwise regressions were carried out with those univariate corre-
lations where P � 0.05. We estimated that a sample size of 20 subjects per
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group had 80% power at a significance level of 5% (two-tailed) to demonstrate
group differences of �9% in log norepinephrine spillover and �24% in MSNA.

RESULTS

Out of 123 subjects screened for eligibility, 64 were
enrolled since they met inclusion criteria. Five dropped
out after baseline testing; therefore, 59 subjects completed
the study. At baseline, treatment groups were well
matched for age, sex, anthropometric, metabolic, blood
pressure, and fitness measurements (Tables 1–3) and also
for habitual dietary intake (data not shown).
Dietary and fitness parameters. Daily energy intake
decreased by 600 � 100 and 560 � 90 calories in the WL
and WL�EX groups, respectively (P both �0.001). Macro-
nutrient changes from baseline included reductions in fat
(by 3 � 1 and 5 � 1% of total energy, respectively, P both
�0.05) and saturated fat (by 4 � 1% in both groups, P both
�0.001) and an increase in relative protein consumption
(by 4 � 1 and 3 � 1%, respectively, P both �0.001). There
were no significant dietary changes in the control group.
Mean urinary sodium excretion decreased by 22 to 37
mmol/day across the three groups (Table 3, group effect,
P � 0.12; group by time interaction, P � 0.62). Potassium
excretion did not change. Aerobic capacity increased by

19 � 4% in the WL�EX group only, as did maximum
workload by 38 � 4 W (P both �0.001, Table 2).
Body weight and composition. Body weight decreased
by 7.6 � 0.7 and 8.8 � 0.9% in the WL and WL�EX groups,
respectively (P � 0.20 between groups) and there were
concomitant reductions in fat mass (Table 1). The reduc-
tion in waist circumference was significantly greater in the
WL�EX compared with the WL group (P � 0.01), and this
was also reflected in the change in trunk fat mass, which
tended to decrease more in the former group (P � 0.06).
Lean body mass declined significantly in both lifestyle
intervention groups. Change in lean body mass correlated
with absolute change in dietary protein intake (g/day, r �
0.47, P � 0.002), indicating that reduction in protein
consumption during weight loss was associated with loss
of lean mass. Subgroup analysis by sex showed that men
lost more weight (8.8 � 0.8 vs. 6.2 � 0.8 kg), total body fat
(7.2 � 0.8 vs. 4.3 � 0.6 kg), and trunk fat (4.7 � 0.5 vs.
2.3 � 0.4 kg) than women (P all �0.05). Women in the
WL�EX group maintained their lean body mass (mean
change was �0.5 � 0.5 kg, P � 0.26), whereas the men in
the WL�EX group tended to lose lean mass (mean change
was �1.1 � 0.6 kg, P � 0.07).

TABLE 1
Anthropometric responses by treatment group

Group Time � group
interaction (P)Control WL WL�EX

n 19 20 20
Age (years) 55 � 1 55 � 1 54 � 1 —
Sex (male/female) 11/8 12/8 12/8 —
BMI (kg/m2)

�0.001

Baseline 33.0 � 0.8 32.2 � 0.9 31.8 � 0.8
Final 33.4 � 0.8 29.8 � 0.8†§ 29.0 � 0.8†§
Change 0.4 � 0.1 �2.4 � 0.2§ �2.8 � 0.3§

Body weight (kg)

�0.001

Baseline 97.6 � 3.6 94.3 � 2.3 92.9 � 2.9
Final 98.6 � 3.7 87.2 � 2.2†§ 84.5 � 2.5†§
Change 1.0 � 0.3 �7.1 � 0.6§ �8.4 � 1.0§

Waist circumference (cm)

�0.001

Baseline 109.4 � 2.5 106.5 � 1.9 105.1 � 2.2
Final 109.3 � 2.5 99.8 � 2.1†§ 95.3 � 2.0†§
Change �0.1 � 0.5 �6.7 � 0.7§ �9.8 � 1.2‡§

Waist-to-hip ratio

0.012

Baseline 0.94 � 0.02 0.94 � 0.02 0.91 � 0.02
Final 0.94 � 0.02 0.091 � 0.01† 0.88 � 0.02†§
Change 0.0 � 0.0 �0.02 � 0.01 �0.03 � 0.01§

Total body fat mass (kg)

�0.001

Baseline 35.5 � 2.2 36.4 � 1.8 35.4 � 1.5
Final 35.9 � 2.3 31.2 � 1.9† 28.5 � 1.9†§
Change 0.3 � 0.2 �5.2 � 0.7§ �6.9 � 0.9§

Total body lean mass (kg)

�0.001

Baseline 56.8 � 2.7 53.7 � 2.2 53.1 � 2.8
Final 57.6 � 2.7 52.2 � 2.1† 52.2 � 2.7*
Change 0.7 � 0.2 �1.5 � 0.5§ �0.9 � 0.4§

Trunk fat mass (kg)

�0.001

Baseline 21.0 � 1.2 20.6 � 0.9 20.1 � 0.8
Final 21.1 � 1.2 17.5 � 1.0†§ 15.7 � 0.9†§
Change 0.2 � 0.2 �3.1 � 0.5§ �4.4 � 0.6§

Abdominal fat mass (kg)

�0.001

Baseline 3.3 � 0.2 3.2 � 0.2 3.0 � 0.2
Final 3.3 � 0.2 2.6 � 0.2†§ 2.3 � 0.1†§
Change 0.1 � 0.1 �0.5 � 0.1§ �0.8 � 0.1§

Data are means � SE. Baseline values did not differ between groups for any parameter. *P � 0.05 and †P � 0.001 vs. baseline; ‡P � 0.01 vs.
WL group; §P � 0.01 vs. control group. WL, weight loss by caloric restriction; WL�EX, weight loss by caloric restriction and aerobic exercise.
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Metabolic variables. Fasting plasma glucose and insulin
levels were reduced and by similar magnitude in both
lifestyle groups (P all�0.001), whereas glucose tolerance
(glucose AUC0–120 and 2-h glucose concentration) did not
change. Whole-body insulin sensitivity index increased by
49 � 11% in the WL group and 45 � 12% in the WL�EX
group (P both �0.001). Fasting triglycerides, HDL choles-
terol, and plasma leptin levels decreased significantly
and by similar magnitude in both lifestyle groups (Table
3). High-sensitivity CRP decreased significantly only in
the WL�EX group. Resting metabolic rate tended to
decrease (time effect, P � 0.08) but when normalized to
fat-free mass, there were no significant group effects or
interactions.
Cardiovascular parameters. Resting blood pressure de-
creased by similar magnitude in both lifestyle groups
(Table 2). Spontaneous cardiac baroreflex sensitivity in-
creased by 50 � 20% in the WL group and 54 � 20% in the
WL�EX group (P both �0.05). The increase in baroreflex
sensitivity was greater in men than women (6.3 � 1.6 vs.
1.3 � 1.2 ms/mmHg, P � 0.02).
Sympathetic activity. Because of difficulties with arterial
line placement in four subjects, paired norepinephrine
kinetics data were available for 55 participants (17 control,
20 WL, and 18 WL�EX). Arterial norepinephrine concen-
tration and calculated norepinephrine spillover rates were
significantly reduced after both WL and WL�EX treat-
ment, whereas no changes were noted in norepinephrine
plasma clearance (Fig. 1). The percentage change in
norepinephrine spillover rate averaged �22 � 6% for the
WL group and �22 � 7% for the WL�EX group (P both
�0.01). After adjustment for baseline values by ANCOVA,
between-group differences in the final value were signifi-
cant for the WL and WL�EX groups versus the control
group (P both �0.01). Acceptable paired MSNA recordings
were obtained in 46 subjects (15 control, 15 WL, and 16

WL�EX). Both the WL and WL�EX interventions were
associated with reductions in MSNA (Fig. 2): burst fre-
quency decreased by 25 � 9 and 29 � 7% (P both �0.001),
respectively, and burst incidence by 16 � 12% and 27 � 5%,
respectively (P both �0.01). After adjustment for baseline
values by ANCOVA, between-group differences in the final
value were significant for the WL and WL�EX groups
versus the control group (P all �0.05), whereas differences
between the WL and WL�EX group were not significant.

No significant sex effects were observed for the change
in sympathetic activity after lifestyle interventions.
Correlation and regression analysis. Change in waist-
to-hip ratio was the strongest correlate of change in
whole-body norepinephrine spillover rate after lifestyle
interventions for the whole group (r � 0.31, P � 0.06). This
was also the case in men (r � 0.36, P � 0.08), whereas in
women, change in total body fat mass (r � 0.52, P � 0.06),
trunk fat mass (r � 0.55, P � 0.04), abdominal fat mass
(r � 0.60, P � 0.02), and HDL cholesterol levels (r �
�0.60, P � 0.02) were the strongest correlates. The
reduction in MSNA burst incidence after lifestyle interven-
tions correlated significantly with anthropometric changes
in the whole-group and in both sexes (Table 4). Improve-
ment in individual MetS components (fasting glucose,
insulin sensitivity, and HDL cholesterol) were also associ-
ated with the reduction in MSNA in men. Increases in
baroreflex sensitivity and fitness level were not associated
with change in either whole-body norepinephrine spillover
rate or MSNA. Stepwise linear regression analysis of the
whole-group showed that change in total body fat mass
(P � 0.03) and plasma leptin concentration (P � 0.01)
were the strongest independent predictors of change in
MSNA burst incidence, explaining 33 and 21% of the
variance, respectively. Change in whole-body norepineph-
rine spillover was predicted by change in abdominal fat

TABLE 2
Fitness and blood pressure responses by treatment group

Group Time � group
interaction (P)Control WL WL�EX

n 19 20 20
Vo2max (ml � FFM�1 � min�1)

�0.001

Baseline 29.3 � 1.4 27.1 � 1.3 29.1 � 1.4
Final 27.6 � 1.5 26.8 � 1.6 34.2 � 1.4‡§�
Change �1.8 � 1.0 �0.3 � 1.0 5.1 � 1.1§�

Maximum workload (W)

�0.001

Baseline 169 � 9 155 � 9 163 � 10
Final 161 � 10 148 � 9 201 � 12‡§�
Change �7 � 4 �7 � 5 38 � 4§�

Heart rate (bpm)

0.023

Baseline 62 � 2 63 � 2 61 � 2
Final 63 � 2 61 � 3* 57 � 2‡
Change 1 � 1 �2 � 2 �5 � 1�

Systolic blood pressure (mmHg)

0.035

Baseline 136 � 4 134 � 4 131 � 3
Final 133 � 4 124 � 4‡ 121 � 4‡
Change �2 � 3 �10 � 2 �10 � 2

Diastolic blood pressure (mmHg)

0.222

Baseline 75 � 2 76 � 2 76 � 2
Final 75 � 2 73 � 2* 72 � 2†
Change 0 � 1 �3 � 1 �4 � 1

Data are means � SE. Baseline values did not differ between groups for any parameter. *P � 0.05, †P � 0.01, and ‡P � 0.001 vs. baseline;
§P � 0.05 vs. WL group; �P � 0.01 vs. control group. Blood pressure and heart rate represent the average of five supine readings measured
by Dinamap monitor. WL, weight loss by caloric restriction; WL�EX, weight loss by caloric restriction and aerobic exercise.
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mass (P � 0.02) in women, which explained 36% of the
variance.

DISCUSSION

The main finding of this study is that incorporation of
regular, moderate-intensity aerobic exercise training dur-
ing a dietary weight loss program does not confer addi-
tional benefits on resting sympathetic neural activity,
compared with weight loss alone, in middle-aged subjects

with MetS obesity. Body weight reduction of 8–9% was
accompanied by a 22% reduction in whole-body norepi-
nephrine spillover and comparable attenuation of MSNA in
both lifestyle groups. Similarly, we identified no further
enhancement of exercise training on MetS components
(blood pressure, fasting plasma glucose, triglyceride, and
HDL cholesterol levels or insulin sensitivity), despite a 19%
increase in fitness and a significantly greater reduction in
central adiposity in the WL�EX group. However, com-

TABLE 3
Metabolic responses by treatment group

Group Time � group
interaction (P)Control WL WL�EX

n 19 20 20
Fasting glucose (mmol/l)

0.022

Baseline 5.5 � 0.1 5.7 � 0.2 5.6 � 0.1
Final 5.3 � 0.1 5.1 � 0.1‡ 5.0 � 0.1‡
Change �0.2 � 0.1 �0.6 � 0.2§ �0.6 � 0.1§

Fasting insulin (mU/l)

�0.001

Baseline 15.8 � 1.0 18.3 � 1.1 15.8 � 1.3
Final 17.8 � 2.0 12.9 � 1.0‡§ 12.9 � 1.2‡§
Change 2.1 � 1.3 �5.4 � 1.2§ �2.9 � 0.8§

HOMA-IR

�0.001

Baseline 4.10 � 0.31 4.91 � 0.31 4.09 � 0.38
Final 4.60 � 0.56 3.25 � 0.29‡§ 3.20 � 0.32‡§
Change 0.50 � 0.34 �1.66 � 0.32§ �0.89 � 0.23§

Insulin AUC0–120 (mU � l�1 � min�1)

0.024

Baseline 9,541 � 807 10,250 � 1,038 9,382 � 940
Final 9,640 � 693 7,851 � 902‡ 7,343 � 870†
Change 99 � 444 �2,340 � 819§ �2,039 � 606§

ISI

0.001

Baseline 2.36 � 0.17 2.13 � 0.15 2.74 � 0.29
Final 2.33 � 0.18 3.13 � 0.33‡ 3.85 � 0.59‡§
Change �0.04 � 0.13 1.00 � 0.27§ 1.10 � 0.42§

HDL cholesterol (mmol/l)

0.394

Baseline 1.21 � 0.06 1.19 � 0.05 1.28 � 0.07
Final 1.18 � 0.06 1.12 � 0.05* 1.19 � 0.06*
Change �0.02 � 0.03 �0.07 � 0.03 �0.09 � 0.04

Triglycerides (mmol/l)

0.048

Baseline 2.1 � 0.3 1.8 � 0.3 2.0 � 0.2
Final 2.0 � 0.3 1.3 � 0.2‡§ 1.4 � 0.2‡§
Change �0.1 � 0.2 �0.5 � 0.2§ �0.7 � 0.2§

Fasting leptin (ng/ml)

�0.001

Baseline 13.3 � 1.8 17.8 � 3.7 15.3 � 3.2
Final 15.3 � 2.7 10.3 � 2.4‡ 9.5 � 2.3‡§
Change 2.0 � 1.2 �7.5 � 1.8§ �5.8 � 1.5§

hs-CRP (mg/l)

0.035

Baseline 3.2 � 0.5 2.4 � 0.4 2.7 � 0.4
Final 3.2 � 0.5 2.3 � 0.4 1.8 � 0.3†§
Change 0.0 � 0.4 �0.2 � 0.2 �0.9 � 0.3§

Urinary sodium (mmol/day)

0.622

Baseline 180 � 21 145 � 16 147 � 16
Final 143 � 10 108 � 10* 125 � 11
Change �37 � 18 �37 � 10 �22 � 16

RMR (cal/24 h)

0.719

Baseline 1,704 � 92 1,651 � 106 1,585 � 130
Final 1,646 � 98 1,515 � 76 1,528 � 89
Change �57 � 86 �136 � 78 �57 � 75

RMR (cal � 24 h�1 � FFM�1)

0.674

Baseline 28.1 � 1.0 29.3 � 1.5 27.8 � 1.1
Final 27.2 � 1.0 27.9 � 1.3 27.9 � 1.3
Change �0.9 � 1.3 �1.4 � 1.5 0.1 � 1.2

Data are means � SE. Baseline values did not differ between groups for any parameter. *P � 0.05, †P � 0.01, and ‡P � 0.001 vs. baseline;
§P � 0.05 vs. control group. HOMA-IR, homeostasis model assessment insulin resistance index; ISI, whole-body Matsuda (32) insulin
sensitivity index; RMR, resting metabolic rate.
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bined exercise and weight loss was associated with a
reduction of plasma hs-CRP concentrations that was not
observed in the WL group.

Our findings are in agreement with those of Trombetta
et al. (23), who conducted the only other comparable
study in premenopausal obese women (albeit using non-
adherent participants as control subjects) and observed
similar reductions in resting MSNA after 4 months hypoca-
loric diet or hypocaloric diet and exercise training. Our
metabolic results also concur with those of the CALERIE
study, which identified no incremental benefit of weight
loss through increased energy expenditure via exercise as
opposed to weight loss by hypocaloric diet alone, on
insulin action and coronary heart disease risk factors,
when caloric deficit was matched in the two treatment
groups (33,34). On the other hand, the Oslo Diet and Heart

Study showed that 1-year intervention with combined diet
and exercise was more effective than diet alone in the
treatment of the MetS (17). It is likely that a combination
of factors, including weight loss, negative energy balance,
dietary composition, metabolic changes, and increased
fitness in the WL�EX group, contributed to the observed
sympathoinhibition after lifestyle intervention in the
present study.

Considerable evidence exists that dietary-induced re-
ductions in body weight are sympathoinhibitory: reduc-
tions in whole-body norepinephrine spillover (5), MSNA
(5,23,35), and an increase in the parasympathetic indexes
of heart rate variability (36) have previously been re-
ported. Similarly, exercise intervention alone, using the
same bicycle riding protocol as in the present study, has
been shown to lower whole-body norepinephrine spillover
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FIG. 1. Whole-body norepinephrine kinetics (means � SE). Arterial plasma norepinephrine concentration (A), norepinephrine plasma clearance
(B), and calculated NE spillover rate (C) before and after 12 weeks of lifestyle intervention with weight loss by caloric restriction (WL, n � 20),
weight loss by caloric restriction and aerobic exercise (WL�EX, n � 18), or no treatment (control, n � 17). *P < 0.05, **P < 0.01, and ***P <
0.001 versus baseline. Plasma NE: time effect, P � 0.004; group � time interaction, P � 0.006. NE plasma clearance: no significant time, group,
or interaction effects. Whole-body NE spillover: time effect, P � 0.002; group � time interaction, P � 0.004.
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FIG. 2. Absolute changes (means � SE) in muscle sympathetic nerve activity (MSNA) after 12 weeks of weight loss by caloric restriction (WL,
n � 15), caloric restriction and aerobic exercise (WL�EX, n � 16), or no treatment (control, n � 15). Multi-unit MSNA is expressed as burst
frequency (A) and burst incidence (B). **P < 0.01 and ***P < 0.001 versus baseline. Burst frequency: time effect, P < 0.001; group � time
interaction, P � 0.02. Burst incidence: time effect, P < 0.001; group � time interaction, P � 0.03. hb, heart beats.
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by 24% and renal norepinephrine spillover by 41% in
healthy young men independent of changes in body weight
(19). It has been hypothesized that changes in central
sympathetic outflow associated with body weight modifi-
cation or increased fitness may have a reflex origin (35).
The cardiac baroreflex is a compound reflex, where �70%
of both vagal and sympathetic components of heart rate
range are mediated by the arterial baroreceptors and
�30% by cardiopulmonary baroreceptors. Both weight
loss (5,35,37) and exercise training (38) are known to
potentiate cardiovagal baroreflex sensitivity and the
baroreceptor-sympathetic reflex (18,35); however, the
present study is the first to examine their combined
effects. Our results show no additive effect of exercise
training and hypocaloric diet, beyond that attained by
hypocaloric diet alone. The results do, however, empha-
size that weight loss is a highly effective strategy to
improve baroreflex function, as spontaneous cardiac
baroreflex sensitivity increased by �50% in both lifestyle
groups. Potential contributing mechanisms include in-
creased arterial distensibility or improved neural transduc-
tion of barosensory vessel stretch into vagal outflow (39).

Sympathoinhibition after lifestyle intervention corre-
lated positively with change in anthropometric variables in
the present study. Change in waist-to-hip ratio and abdomi-
nal fat mass were most strongly associated with reduction
in whole-body norepinephrine spillover, whereas changes
in body weight, total body, and trunk fat masses and
plasma leptin concentration were the strongest predictors
of change in MSNA. The subcutaneous fat depot is the
major source of leptin in humans, owing to the combina-
tion of a mass effect and a higher secretion rate in the
subcutaneous than visceral adipose region (40). Experi-
mental evidence in obese rodents supports the notion of
selective leptin resistance in obesity, with preservation of
leptin-dependent sympathoexcitation, but resistance to its
anorexigenic effects (41). Although no definitive leptin
administration studies have been performed in humans to
characterize its effect on SNS activity, both the present
study and an earlier weight loss trial performed by our

group (5) suggest that reduction in plasma leptin is a
significant independent predictor of sympathoinhibition
after lifestyle intervention. Improvement in insulin resis-
tance as indicated by decreased fasting insulin concentra-
tion and increased whole-body insulin sensitivity index
also correlated with change in MSNA and support the
notion that hyperinsulinemia enhances central sympa-
thetic outflow (42). Changes in electrolyte status that
coincide with energy restriction can modulate the re-
sponse of the SNS. In particular, sodium depletion to �80
mmol/day has been shown to override the suppressive
effect of energy restriction and instead trigger sympathetic
activation and baroreflex impairment (43). In the present
study, we chose not to supplement with sodium, as we felt
this was more representative of weight loss in the com-
munity at large. Average 24-h urinary sodium excretion
decreased modestly to levels commensurate (at week 12)
with intermediate sodium intake in the DASH-Sodium trial
(44). SNS activation would not be expected at this level of
sodium intake; however, some contribution to sympa-
thoinhibition versus baseline intake cannot be ruled out.
Consumption of the DASH dietary pattern, which is rich in
potassium and magnesium and reduced in total and satu-
rated fat, may have also contributed to the observed
reductions in blood pressure in the present study. Overall,
however, absolute potassium intake did not change in our
study, because of relatively high baseline consumption
and use of the DASH diet at hypocaloric levels.

In our study, both WL and WL�EX produced compara-
ble changes in metabolic risk factors, which were in the
direction associated with reduced coronary heart disease
risk. One exception was the change in plasma HDL cho-
lesterol, which decreased significantly and by similar
magnitude in both lifestyle groups. The impact of weight
loss on lipids depends on a number of factors including
energy balance, dietary composition, and concomitant
exercise level (45). Using the same moderate-intensity
exercise protocol, Reid et al. (46) demonstrated a signifi-
cant increase in HDL cholesterol; however, this was
diminished when exercise was prescribed together with
weight loss. The relative reduction in total and saturated
fat intake from baseline may have contributed to the
decline in HDL cholesterol in our study (45). Change in
HDL cholesterol correlated inversely with change in sym-
pathetic activity, which likely reflects favorable alterations
in HDL metabolism with loss of visceral fat mass, since
change in HDL also related inversely to change in abdom-
inal fat. It is also possible that reduction in central
sympathetic outflow per se may have increased levels of
HDL by increasing blood flow to peripheral vascular beds,
thereby enhancing lipoprotein lipase activity (47). In our
study, hs-CRP improved only in the WL�EX group, which
was unexpected in light of previous work, including our
own, which consistently shows that levels of this acute-
phase reactant decrease after dietary weight loss (5,48).

The strengths of the present study are its randomized
controlled design, which accounted for the effects of
familiarization on sympathetic measurements; the use of
both norepinephrine kinetics methodology and direct mea-
surement of postganglionic MSNA to quantify sympathetic
neural drive; and the close individualized supervision of
each participant. Our study also has some limitations.
First, only a subset of subjects had paired MSNA data and
hence the sample size precludes demonstration of differ-
ences smaller than 30% between groups. Second, exercise
training has many different facets, including frequency,

TABLE 4
Univariate correlates with change in muscle sympathetic nervous
activity burst incidence (bursts/100 heart beats)

Whole group
(n � 31)

Men
(n � 18)

Women
(n � 13)

r P r P r P

	Weight (kg) 0.38 0.04 0.51 0.03 0.37 0.21
	BMI (kg/m2) 0.39 0.03 0.51 0.03 0.34 0.26
	Total body fat mass

(kg) 0.40 0.03 0.49 0.04 0.52 0.07
	Abdominal fat L1–L4

(kg) 0.43 0.08
	Trunk fat mass (kg) 0.33 0.07 0.48 0.04
	Fasting insulin

(mU/l) 0.39 0.03 0.41 0.09
	Fasting glucose

(mmol/l) 0.56 0.02
	Log ISI �0.31 0.097 �0.50 0.04
	HOMA-IR 0.44 0.07
	HDL cholesterol

(mmol/l) �0.54 0.02
Log 	leptin (ng/ml) 0.46 0.01 0.62 0.02

Whole-group data represent pooled correlates of WL and WL�EX
groups.
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duration, intensity, and exercise type. Our exercise proto-
col was based on moderate-intensity aerobic training on
alternate days over a 12-week period, and thus further
studies are required to examine whether higher intensity
or frequency training or the inclusion of resistance exer-
cise has additional benefits on neuroadrenergic function.
For instance moderate-intensity exercise training 7 days
per week has been associated with greater reduction in
norepinephrine spillover than the same protocol 3 days
per week (49,19). Resistance exercise training improves
postexercise heart rate recovery and heart rate variability,
reflecting improved cardiac vagal activity (50), but there is
a paucity of data to date using robust measurements of
sympathetic activity in this setting.

In conclusion, this study provides evidence that both
hypocaloric diet and hypocaloric diet with exercise train-
ing elicit significant improvements in resting sympathetic
neural drive and MetS components. The results suggest
that weight loss, and in particular abdominal fat loss, is the
prime mover in sympathetic neural adaptation to a hy-
pocaloric diet. These findings support the adoption of
lifestyle changes for the prevention of cardiovascular
sequelae of obesity.
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